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1 INTRODUCTION

Convective flows are present in many applications for which simplified models and
feedback control strategies may be desired. For example, one may consider the recy-
cling of burned gases in car engines, helium transport in cryogenic devices or airflows
in ventilation systems (buildings, tunnels or mines). In such cases, detailed dynamic
models and the use of computational fluid dynamics would not be suitable for reduced
complexity and real-time objectives. Space-averaged models can be used to describe
large and/or turbulent flows and analyzed to meet with the previous objectives.

Distributed time-delay systems provide a appealing alternative to the more clas-
sical physical models described by partial differential equations (PDE), especially to
infer some global system properties with flow interconnections. The resulting func-
tional differential equations (FDE) can describe some non-homogeneous transport
phenomena with a greatly reduced number of variation laws. Furthermore, numerous
research studies have been carried on the analysis and control of such systems (see
for example [1, 2, 3]).

The purpose of this paper is to derive a time-delay approach for the modeling
and control of large convective flows. Starting from a classical physical model, some
hypotheses are first made according to the “large” flow property (on Euler equa-
tions and the coupling between the state variables) to derive a convective-resistive
PDE model. The convection and resistance coefficients are time-varying (which al-
lows for the consideration of non-homogeneous transport coefficients) and dedicated
estimation methods are proposed, supposing that distributed flow measurements are
available. A time-delay approach is then derived, using the method of characteristics,
to express the PDE model as a FDE with a distributed delay kernel. This FDE is
used to set a feedback control strategy with tracking objectives. The efficiency of the
proposed method is finally illustrated on an airflow regulation problem associated
with mining ventilation control.

2 LARGE CONVECTIVE AIRFLOWS

2.1 Physical model and hypotheses.

This section briefly summarizes the main results presented in [4], where a non-
dimensional model was proposed to describe a large flow thanks to the bond graph
approach. The flow is described by interconnected cells containing height-averaged
values, which is equivalent to a control volume discretization (a single volume is used
at each height). The flow dynamics is obtained for each cell by deriving a flow/effort
model from Euler equation (see classical fluid dynamics textbooks such as [5] for a
complete description):
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where ρ is the density, M = ρV (V being the flow speed) the momentum, p the
pressure, E the energy (per unit mass), ⊗ the tensor product of two vectors, H the
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total enthalpy and q̇ is the rate of heat addition (see [6] for a precise description).
This description is complemented with the perfect gas equation of state p = ρRT ,
where R the specific gas constant and T the temperature. Considering a sufficiently
large airflow, the following hypotheses can be made:

H1) in the momentum equation, the impulsive term is negligible compared to the pres-
sure: ρv2 << p and the dynamics is approximated with an algebraic relationship
(i.e. Saint-Venant);

H2) only the static pressure is considered, implying that the kinetic energy term in
the energy conservation equation is omitted: H = E + p/ρ;

H3) the gas is calorically perfect: E = cvT , where cv = R/(γ − 1) (γ = 1.4) is the
specific heat at constant volume.

2.2 Distributed pressure dynamics

For real-time control purposes, we are specifically interested in the pressure dynamics,
which is the regulated variable. A dedicated model is obtained from H1−H3 and (1)
by expressing the energy equation in terms of pressure (perfect gas equation) as:
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q̇. (2)

Note that the momentum can be obtained by implicit resolution of the Darcy-
Weisbach equation, which then provides the dynamics of the density evolution. The
energy losses are defined as pressure losses induced by the surrounding environnement:

q̇(x, t)R/cv = s(x, t) + r(t)p(x, t),

where s(x, t) describes the losses due to flows leaving the main stream (sink term)
and r(t) denotes the friction losses on the boundaries. Both s and r are considered as
known engineering parameters or estimated with appropriate algorithms, as detailed
below.

Such a model can be used, for example, to describe a Poiseuille flow in a duct with
outflows at specific (known) locations.

2.3 Control-oriented model and control problem

In order to design a model-based feedback controller, the model should depict the main
tendencies and essential properties of the system dynamics. Indeed, the transport
parameters estimation proposed in the next section and the feedback control strategy
are expected to compensate the modeling error thanks to the sensors measurements.
Our aim is then to infer the model architecture from the physics and identify suitable
“free” parameters that will be provided by the estimation algorithm.
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Consider the volume-averaged impact of the momentum and density on the pres-
sure dynamics, with

M̄(t)
.
=

1

V

∮

V

M(v, t)dv and ρ̄(t)
.
=

1

V

∮

V

ρ(v, t)dv,

where V is the shaft control volume. Introducing the t and x subscripts to denote the
time and space differentiations, respectively, the physical model (2) is then approxi-
mated with the control-oriented model:

{

p̃t = c(t)p̃x + r(t)p̃ + s(x, t),
p̃(0, t) = pin(t)

(3)

where c(t)
.
= −M̄(t)/ρ̄(t) · (1 +R/cv). The boundary condition is set by the inflow

pressure pin(t).
Supposing that a proper system automation is available, the control problem can

then be decomposed in two steps:

1. provide an estimation of the transport coefficients c(t), r(t) and possibly s(x, t);
2. regulate the controlled input pin(t) according to some desired objective on the

pressure distribution p̃(x, t).

These estimation and control objectives are detailed in the next sections.

3 DISTRIBUTED MEASUREMENTS AND ONLINE

PARAMETERS ESTIMATION

Distributed measurements (i.e. obtained thanks to a wireless sensor network deployed
in the flow, see [7] for more details) are supposed to be available to set the control
law. One of the main advantages is the possibility to constrain a simplified model
according to the behavior of the flow through the time-varying parameters describing
the convective, resistive and source terms.

3.1 Gradient descent approach

A classical identification problem is to find the set of free parameters ϑ in a given
model that minimizes the difference between the measured and the estimated data.
This is done in this section by choosing a cost function J which reflects the variance
of the estimation error from a given set of measurements. Consider the general class
of systems that write as:

pt = d(t)pxx + c(t)px + r(t)p + s(t)pext(x, t) (4)

where ϑ(t) = {c(t), d(t), r(t), s(t)} denotes the convective, diffusive, resistive and
source coefficients, respectively, and pext(x, t) is a distributed source term of known
(time-varying) location. The boundary conditions are given by p(0, t) = p0(t) and
px(L, t) = 0, for x ∈ [0, L]. In order to obtain a real-time estimation algorithm, the
cost function is defined as:
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J(ϑ, t) =
1

2

∫ x

0

||pmeas(θ, t)− p(ϑ, θ, t)||22dθ

where pmeas(x, t) is the measured pressure distribution. The output error is then
minimized for ϑ∗ satisfying:

ϑ∗ = argmin
ϑ
J(ϑ, t)

This optimization problem can be solved with a descent algorithm, using the sensitiv-
ity of p(x, t) with respect to ϑ, expressed as S(ϑ, x, t)

.
= ∂p/∂ϑ. The gradient writes

as:

∇J(ϑ, t) = −

∫ x

0

[pmeas(θ, t)− p(ϑ, θ, t)]
T
S(ϑ, θ, t)dθ

and the optimal parameter ϑ∗ is obtained by moving along the steepest slope −∇J
with a step α, which has to be small enough to ensure that ϑ̇ = −α∇J(ϑ) converges
to ϑ∗. This step is chosen according to Newton’s method and writes as α

.
= (ΨJ(ϑ) +

υI)−1, where υ is a positive constant introduced to ensure strict positiveness and
ΨJ(ϑ) is the pseudo-Hessian, derived with the Gauss-Newton approximation as:

ΨJ(ϑ, t) =

∫ x

0

S(ϑ, θ, t)TS(ϑ, θ, t)dθ

The sensitivity function evolution is computed with the ODE method by noticing
that:

d

dt

[

∂p

∂ϑ

]

=
∂

∂p
[c(t)px + d(t)pxx + r(t)p ]

∂p

∂ϑ
+ [px pxx p pext] (5)

Remark 1. The convergence speed of the algorithm is inversely proportional to the
design parameter υ but choosing this parameter too small may create some oscillations
in the algorithm (numerical instabilities).

3.2 Observer-based estimation

The parameter estimation problem can also be solved thanks to the observer-based
approach described in [8], where it is supposed that the distributed dynamics is affine
in the identified parameter ϑ. The main result of this work is synthesized in the
following theorem.

Theorem 1 ([9]). Consider the general class of systems described by:







pt = A(p, px, pxx, u, ϑ)ϑ
a1px(0, t) + a2p(0, t) = a3
a4px(L, t) + a5p(L, t) = a6

(6)

where p is the state, u a known exogenous input, ϑ ∈ R
M denotes a set of time-varying

parameters, A(p, px, pxx, u, ϑ) ∈ R
1×M sets the input-to-state relationship and ai are

scalar real coefficients. The estimated state p̂(x, t) converges exponentially to p(x, t)
in the L2 sense and:
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||p(x, t)− p̂(x, t)||22 = e−2(γ+λ)t||p(x, 0)− p̂(x, 0)||22

where || · ||2 denotes the L2 norm and γ, λ are positive scalar parameters, if:















p̂t = A(p̂, p̂x, p̂xx, u, ϑ̂)ϑ̂+ γ(p− p̂)
a1p̂x(0, t) + a2p̂(0, t) = a3
a4p̂x(L, t) + a5p̂(L, t) = a6
ϑ̂ = A(p̂, p̂x, p̂xx, u, ϑ̂)

†[pt + λ(p− p̂)]

(7)

where A† is the Moore-Penrose inverse of A.

Example 1. The accuracy of the proposed estimation methods is evaluated on a model
where the transport parameters only depend on time. More precisely, consider (4) with
the inputs (p0(t) and pext(x, t)) depicted in Figure 1 and L = 1000. The transport
parameters (real and estimated) are presented in Figure 2 for both estimation meth-
ods.
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Fig. 1 Boundary condition and distributed pressure losses for the ideal case (4).

It can be noticed that the gradient-based approach may have some difficulties
to decouple the variations associated with each transport phenomena (impact of the
convection on the other terms) but provides a satisfying mean estimate. The observer-
based method is more tractable and efficient in terms of decoupling the parameters
effects but should be coupled with an appropriate filter to remove the impulses (in-
duced by the inputs steps and re-appearing with a memory effect). This approach is
more suited for real-time objectives as the number of discretized dynamics to compute
p̂ is the same as p (while the sensitivity computation necessitates the square of the
dimension of p).
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Fig. 2 Transport parameters estimation for the ideal case (4).

4 TIME-DELAY FORMULATION

While diffusion tends to stabilize the system, the convective effect is the main source
of instability and/or poor closed-loop performance. Achieving a boundary control of
the distributed model would involve large computation capabilities. This motivates
the specific modeling approach presented in this section, where it is shown that a
convective-resistive process can be associated with a time-delay model that do not
involve the resolution of the initial PDE.

4.1 PDE model

Consider some generic (density, concentration, pressure) variable p( ·, ·) depending
on two independent variables t (time) and x (space) described by the PDE:

pt(x, t)− c(t)px(x, t) = r(t)p(x, t), (8)

where c(t) and r(t) denote appropriate speed and rate, respectively. It is assumed
that these variables depend only on the (time-) variable t (volume-averaged model).

If this PDE is used to describe the evolution of some physical quantity inside some
generic compartment, then the boundary condition (BC) can be given by:

p(0, t)
.
= u(t),

where u denotes some control (law) at the “input” (“entry”) of the compartment.
The initial condition (IC) can be given by:

p(x, 0)
.
= ψ(x),

where ψ is an appropriate (differentiable) function and x ∈ [0, L]. Here L > 0 denotes
a generic length of the (still generic) compartment.
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4.2 Method of characteristics

Define a new variable ξ by integrating p(x, t) over the interval [0, L]. The variable ξ
can describe, for instance, an average behavior of the generic p( ·, ·), that is:

ξ(t)
.
=

∫ L

0

p(η, t)dη.

Thus, (8) rewrites as:

d

dt
ξ(t)

.
= −c(t) [u(t)− p(x, t)] + r(t)ξ(t), (9)

which is nothing else than an ODE in the new variable ξ. However, we need to rewrite
this last ODE by avoiding the use of p(x, t) and this can be done by using the method

of characteristics.
Introduce now a new independent variable θ such that p(θ)

.
= p(x(θ), t(θ)). It is

easy to see that:

dp

dθ

.
=
∂p

∂t
·
dt

dθ
+
∂p

∂x
·
dx

dθ
,

and by identifying:

dt

dθ

.
= 1,

dx

dθ

.
= −c(t)

it follows that p(·) is described by the ODE (in the new variable θ):

dp

dθ

.
= r(t)p.

Simple integrations lead to:

t(θ)
.
= t0 + θ (t0 = t(0)), (10)

x(θ)
.
= x0 −

∫ θ

0

c(η)dη (x0 = x(0)), (11)

p(θ)
.
= p0 · exp

(

∫ θ

0

r(t(η))dη

)

(p0 = p(0)). (12)

Now the plane defined by the variables t and x can be separated in two regions by the
curve, assumed sufficiently regular, corresponding to the system’s evolution starting
from the origin O = (0, 0) 7→ CO and parameterized as follows:

CO
.
=

{

(t, x) : t(θ) = θ, x(θ) = −

∫ θ

0

c(η)dη, ∀θ ∈ [0, θf ]

}

,

where θf corresponds to:

L
.
= −

∫ θf

0

c(η)dη.
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Denote R+ (R−) the region situated above (below) the curve CO in the parameter
space defined by (x, t). Thus, it seems clear that the solutions have different forms if
located in R+ or R−. Based on the form of (12), we need to find some expression of
p0 as a function of the corresponding parameters in order to define properly p(L, t).

• 1st case – (x0, t0) ∈ R+: Based on the definition of the partition, it makes sense
to consider t0 = 0, and thus t(θ) = θ and x(θ) given by (11) with 0 < x(0) < L.
Using the IC, this leads to:

x0 = ψ

(

x+

∫ t

0

c(η)dη

)

,

and thus:

p(L, t)
.
= ψ

(

L+

∫ t

0

c(η)dη

)

exp

(
∫ t

0

r(η)dη

)

,

where we used the dependence of r on the parameter η as shown by (11).
• 2nd case – (x0, t0) ∈ R−: By similarity to the previous case study, x0 = 0, and

t(θ) = t0 + θ. From the BC, p0 = u(t − θ). Now, we need to find θ. This can
be done, implicitly, by using x(θ) and an appropriate change of variables as, for
example:

x(θ) = −

∫ θ

0

c(t(η))dη = −

∫ θ

0

c(t0 + η)dη = −

∫ t0+θ

t0

c(η)dη

Using the standard heterogeneity assumption:

L = −

∫ θf

0

c(η)dη = −

∫ t

t−θf

c(η)dη,

we have:

p(L, t)
.
= u(t− θf )exp

(

∫ θf

0

r(η)dη

)

.

In conclusion, the method of characteristics leads to:

p(L, t)
.
=







ψ
(

L+
∫ t

0 c(η)dη
)

exp
(

∫ t

0 r(η)dη
)

, if (t, x) ∈ R+,

u(t− θf )exp
(

∫ θf
0
r(η)dη

)

, if (t, x) ∈ R−.
(13)

Since our main interest is related to long time behavior (stability, etc.), it seems clear
that we are concentrating only on the region R−, as it includes the “time”-axis. Note
that this expression directly expresses the fact that a given input is delayed by θf
(convection effect) and attenuated by r (resistive effect).

4.3 Delay differential equation

A simple substitution of the corresponding p(L, t) in (9) leads to the following ODE:
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d

dt
ξ = −c(t)

[

u(t)− u(t− θf )exp

(

∫ θf

0

r(η)dη

)]

+ r(t)ξ(t). (14)

Under the “strong” assumption that r is constant, we get:

ξ̇(t) = −c(t)
[

u(t)− u(t− θf )e
rθf
]

+ rξ(t),

that can be easily interpreted as a DDE. Finally, in the case when c(t) is also constant,
some straightforward manipulations lead to a simpler DDE of the form:

ξ̇(t) = −c
[

u(t)− u(t+ L/c)e−rL/c
]

+ rξ(t). (15)

It is interesting to observe the way the parameter c “enters” in the DDE (15). More
precisely, we will have the delay θ = −L/c depending on some parameter.

Example 2. In order to investigate the efficiency of the time-delay model, consider
Example 1 with:

c(t) = −10 + cos(0.1t)

r(t) = −0.007 if 0 ≤ t ≤ 300, r(t) = −0.1 if t > 300

d(t) = s(t) = 0.001

The accuracy of the time-delay model is investigated by comparing the actual value
of p(L, t) with its estimate (supposing a slow variation of the transport parameters):

θf (t) ≈ −L/c(t)

p̂(L, t) = p(0, t− θf )e
I(t,θf)

where I(t, θf ) is the numerical approximation of
∫ t

t−θf
r(η)dη. Note that the com-

putation of I necessitates specific care when set in a feedback control setup [10]. It
is simply implemented here using the trapezoidal rule with one and two intervals,
denoted respectively as I1 and I2. The simulation results are presented on Figure 3.

After an initialization time approximately equal to θf (≈ 100 s) the time-delay
model provides a satisfying averaged approximation of p(L, t). The variations in the
convective term appear more strongly in p̂(L, t) than in p(L, t). As expected, a differ-
ence between the responses obtained with I1 and I2 can be observed during a time θf
after a variation of r(t). A precise discretization of the integral term may be necessary
if r(t) has large variations (i.e. if the sinks are considered as resistive dissipation).

5 FEEDBACK CONTROL

Consider the reference tracking problem for the average distributed pressure:

p̄(t) =
1

L

∫ L

0

p(x, t)dx
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Fig. 3 Approximation of the end value thanks to the time-delay approach.

Denoting as p̄r(t) the reference average pressure, the control problem can be formu-
lated as finding p(0, t) = u(t) such that (fixed point theorem):

˙̄p(t)− ˙̄pr(t) + λ(p̄(t)− p̄r(t)) = 0 (16)

where λ > 0 is a control tuning parameter. For simplicity, a step reference trajectory is
chosen (constant p̄r), which implicitly means that a trajectory of a first order system
is supposed to be achievable for p̄. This is motivated by the first order nature of the
PDE and may be refined depending on the application. Considering that convection
and friction are the main flow effects that need to be compensated and according to
(14), the following FDE is obtained:

˙̄p(t) = −
c(t)

L

[

u(t)− u(t− θf )exp

(

∫ θf

0

r(η)dη

)]

+ r(t)p̄(t).

Substituting in (16) provides the definition of the control law as:

−
c(t)

L

[

u(t)− u(t− θf )exp

(

∫ θf

0

r(η)dη

)]

+ r(t)p̄(t) + λ(p̄(t)− p̄r) = 0

⇔ u(t) =
L

c(t)
[r(t)p̄(t) + λ(p̄(t)− p̄r)] + u(t− θf )exp

(

∫ θf

0

r(η)dη

)

⇔ u(t) =
L

c(t)
[r(t)p̄(t) + λ(p̄(t)− p̄r)] + p(L, t) (17)

where the last equality is obtained from (13). The feedback control law is then set
according to (17) using the averaged distributed measurements p̄ and the end pres-
sure measurement p(L, t). The averaged distributed pressure converges exponentially
towards p̄r according to (16) as:
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|p̄(t)− p̄r| = |p̄(0)− p̄r|e
−λt

Example 3. Setting the proposed control law with p̄r = 1 on the test case considered
in Example 2, we obtain the controlled input and tracking error depicted on Figure 4.
This result illustrates the efficiency of the proposed approach and its ability to com-
pensate the transport properties variations for the regulation objective. The input
oscillations are induced by the supposed first order trajectory for p̄(t) that is not fully
met, but the tracking error is nevertheless rather satisfying.
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Fig. 4 Controlled input and tracking error.

6 APPLICATION TO MINING VENTILATION

Mining ventilation is an example of a large scale system with high environmental im-
pact where a model-based control strategy can be of prime industrial interest. Indeed,
as much as 50 % of the energy consumed by ore extraction goes into ventilation. The
proposed model-based control strategy is now applied to this illustrative problem.

6.1 Process overview

The mine ventilation topology is depicted in Figure 5. It is achieved by a turbine
and a heater connected on the surface to a deep pit (vertical shaft) that conducts
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Fig. 5 Airflows in an underground mine.

the airflow to the extraction levels. The heater is introduced (in winter time at least)
to avoid freezing in the upper part of the shaft and the air is cooled down at high
depths (more than 1000 meters) because of the geothermal heating effect. From the
deep pit, fans located at each extraction level pump fresh air to the extraction rooms
via tarpaulin tubes. Bad quality air is naturally driven by the pressure gradient and
flows from the extraction rooms back to the exhaust ventilation shaft (similar but
separate from the inflow ventilation shaft).

From a control point of view, the regulation problem can be divided in two parts:

1. air quality regulation in the extraction rooms thanks to the fans and chemical
sensors located in the rooms;

2. pressure regulation in the deep pit thanks to the ground turbine control and
distributed sensors within the shaft.

The mine automation, communication network, historical background on real-time
control and closed-loop control strategies for the second problem are detailed in [8].
The efficiency of these control strategies strongly depends on the available pressure
in the vertical shaft (first problem), which is where the present results apply.

6.2 Simulation results

The proposed control approach is tested on the simulator presented in [4], where a non-
dimensional (volume-averaged) model was derived thanks to a bond graph approach.
This mine ventilation simulator is constructed based on the flow description and the
fans models proposed in [11]. The deep pits (inflow and exhaust) are both discretized
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with 28 control volumes and we consider three extraction levels. Airflow sinks are
induced by the fans located at each level: the 1st level fan is not used (natural airflow),
the 2nd one is operated at 1000 s (150 rpm) and the 3rd runs continuously (200 rpm).
The turbine and fans regulation is done by setting their rotational speed. Flow speed,
pressure and temperature can be measured in each control volume. This simulator is
used in the next sections to illustrate the estimation and control strategies. It may
also be considered in the futur to develop virtual sensing capabilities in real-time
operation schemes.

The control algorithm is set as follows. First, the convective and resistive behaviors
are estimated thanks to the observer-based approach with the dynamics:







p̂t = A(p̂, p̂x, ϑ̂)ϑ̂+ γ(p− p̂)
p̂(0, t) = u(t)

ϑ̂ = A(p̂, p̂x, ϑ̂)
†[pt + λ(p− p̂)]

where ϑ̂(t)
.
= [ĉ(t), r̂(t)] and p(t) is a vector containing the pressures in the 28 control

volumes (the previous equation is discretized at the measurements locations with a
Lax-Wendroff scheme).

Secondly, the control law (17) is set as:

u(t) =
L

ĉ(t)
[r̂(t)p̄(t) + λ(p̄(t)− p̄r)] + p(L, t)

where ĉ(t) and r̂(t) are obtained according to the previous estimation, p̄(t) is the
averaged distributed measurements and p(L, t) is the pressure measured at the bottom
of the shaft. The turbine rotation speed is regulated according to a PI control law
that tracks the turbine output pressure p(0, t) according to the reference u(t).

Setting the desired average pressure p̄r = 1.1 hPa, p(0, t) and u(t) are obtained as
presented on Figure 6. The pressures in the tarpaulin tubes are depicted in Figure 7,
for each exhaust level. While the closed-loop system tends to have an oscillatory be-
havior and is sensible to the initial conditions (this could be reduced by tuning the
estimator parameters more precisely), the objectives in terms of exponential conver-
gence of the tracking error are clearly met. The good compensation of the unplanned
exhausts illustrates the robustness of the approach with respect to the modeling er-
rors. Considering the pressures in the tarpaulin tubes, the proposed approach ensures
an appropriate pressure (larger than the atmospheric one) for the extraction rooms.

CONCLUSIONS

The problem of modeling large convective flows was considered in this work. A physical
analysis of these particular flows was first used to derive a space-averaged model,
which has the structure of a convective-resistive transport system. Supposing that
distributed measurements of the flow properties are available, estimation methods
allowing for the online identification of time-varying parameters were proposed and
compared. Some mathematical analysis was then introduced to propose a time-delay
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Fig. 6 Reference and effective turbine output pressure (top) and feedback tracking error
(bottom).

model (FDE) from the initial PDE dynamics. A model-based feedback control strategy
that fulfils a reference tracking objective on the FDE was finally set. Simulation results
and application to a mining ventilation control benchmark illustrate the performances
and limitations of the theoretical results.
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