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Abstract: In this paper, the problem of steady-state regulation of the magnetic flux profile in
a tokamak plasma using the lower hybrid current drive as actuator is considered. Based on a
simplified control-oriented model of the magnetic flux dynamics in a tokamak plasma a polytopic
control law was developed. Shape constraints on the actuator are considered and conditions to
derive a polytopic linear parameter-varying controller that guarantees stability of the closed-loop
system are given. Validation and implementation issues are discussed and numerical simulations
are presented.
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1. INTRODUCTION

Controlled thermonuclear fusion consists in the fusion of
two light nuclei to form a heavier one, releasing energy
in the process. Given current technical capabilities, these
light nuclei are usually hydrogen isotopes. The fusion of a
deuterium and a tritium nucleus is of particular interest
given its high power output. Since deuterium represents
a significant percentage of existing hydrogen, and tritium
can be easily bred from lithium, the amount of energy that
could be produced is almost unlimited. Considering the
potential environmental and safety benefits in comparison
with other energy production methods, nuclear fusion is a
very attractive prospect and an active research topic.

Although there are several experimental devices capable
of achieving nuclear fusion, the tokamak configuration is
interesting in light of the ITER program currently un-
der way, which aims to prove the technical feasibility of
constructing a power plant based on controlled thermonu-
clear fusion. This motivates the current international effort
to develop and refine the necessary control strategies to
sustain the difficult operating conditions required for the
fusion process inside a Tokamak to be carried out for long
enough and high energy shots. The ultimate goal is to
obtain an expected energy amplification factor of 10, see
ITER Organization (2010).

A detailed exposition of tokamak physics as well as an
overview of current and projected experimental facilities
can be found in Wesson (2004). As for existing challenges
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for tokamak operation, Walker et al. (2008) gives an inter-
esting overview. Also, advanced tokamak operation, which
allows high confinement and magnetohydrodynamic stabil-
ity is discussed in Taylor (1997), Gormezano (1999) and
Wolf (2003). Profile control in DIII-D and JET facilities is
detailed in Moreau et al. (2003), Laborde et al. (2005),
Moreau et al. (2008), Ou et al. (2007) and subsequent
works and Xu et al. (in press). Advances in Tore-Supra
can be found in Martin et al. (2000) and Giruzzi et al.
(2009).

To avoid using linear models identified around an op-
erating point, a control-oriented distributed model was
developed by Witrant et al. (2007) that takes into account
physically relevant dynamics and identified peripheral in-
puts and state couplings. Based on this model, our aim is
now to develop a suitable control law for the regulation
of the steady-state magnetic flux profile in the tokamak
that allows an easier closed-loop stability analysis than
the previous regulator developed by Bribiesca Argomedo
et al. (2010). In particular, it is based on a polytopic
approach similar to the one described in Briat (2008). For
some comprehensive surveys on linear parameter-varying
systems (LPV) control and gain scheduling controllers, see
Leith and Leithead (2000) and Rugh and Shamma (2000).
For some applications of LPV/LMI gain-scheduling con-
trols see Wassink et al. (2005) and Gilbert et al. (2010).
The actuation method under consideration is restricted to
the use of the non inductive lower hybrid current drive
(LHCD), which acts as a current and heat source on the
plasma.

The article is organized as follows: in Section 2.1, the
control model is introduced and the control problem is
stated. In Section 2.2, an overview of the reference model

Preprints of the 18th IFAC World Congress
Milano (Italy) August 28 - September 2, 2011

Copyright by the
International Federation of Automatic Control (IFAC)

6686



for the development of the control law is presented as well
as appropriate variable changes. In Section 3, sufficient
conditions for the derivation of a stabilizing control law
are presented. In Section 4, implementation issues and
simulation results are presented and discussed.

2. PROBLEM DESCRIPTION

2.1 Preliminaries

The main focus of this article is the control, by means
of three parameters of the LHCD deposit, of the poloidal
magnetic flux profile in a tokamak plasma. This variable
is defined as the flux per radian of the magnetic field
B(R,Z, t), at time t, passing through a surface S delimited
by a horizontal disk centered at the toroidal axis at height
Z, with radius R as shown in Fig. 1.

Figure 1. Toroidal plasma centered at R0, disc coordinates
(R,Z) and poloidal magnetic flux surface S.

The poloidal magnetic flux is denoted ψ and defined by:

ψ(R,Z, t)
.
=

1

2π

∫

S

B(R,Z, t) · dS

where B is the magnetic field with poloidal component Bθ

and toroidal component Bφ.

Using the Grad-Shafranov equilibrium equation, see Blum
(1989), Wesson (2004) and Witrant et al. (2007) the
magnetic flux ψ(R,Z, t) can be parametrized by time t,
and a spatial variable x, which indexes the equilibrium
magnetic surfaces.

2.2 From the physical to the LPV Model

The equation representing the time evolution of ψ(x, t) can
be spatially discretized as detailed in Witrant et al. (2007).
This yields:

ψ̇ = A(t)ψ +B(t)jni +W (t) (1)

where A(t) is an N×N matrix, B(t) is an N×3 matrix
and W (t) is a vector in R

N representing the evolution of
the boundary variables of the poloidal magnetic field. For
the rest of this article we may, whenever needed, refer to
ψ(xi, ·) simply as ψi(t).

Due to the characteristics of the distributed model, the
time-varying components of equation (1) can be factorized
as a positive definite, diagonal matrix M(t) as follows:

ψ̇ =M(t) (Actψ +Bctjni) +W (t) (2)

where Act and Bct are constant matrices of appropriate
dimensions. This specific architecture comes from the
original non-homogeneous transport PDE model, where a
single time and space-varying parameter (the resistivity)
multiplies both the diffusive operator and the distributed
exogeneous inputs.

New variables are defined around an operating point:

ψ̃
.
= ψ − ψ

j̃ni
.
= jni − jni

W̃
.
=W −W

where (ψ, jni,W ) is an equilibrium of the original system
(that can be obtained through experimental data or nu-
merical simulation).

Using the same hypotheses as in Bribiesca Argomedo et al.
(2010), in particular concerning the fact that the plasma
current is supposed to be almost constant during steady-
state operation of the tokamak, and considering the vari-
ations of the bootstrap current around the equilibrium as

disturbances, the term W̃ can be neglected. Furthermore,
jni is reduced to the LHCD current deposition jlh which
can be represented, see Witrant et al. (2007), as a function
of three parameters up

.
= [µlh, σlh, Alh]

T resulting in a
gaussian distribution:

jlh(up) = Alhe
−(x−µlh)

2/(2σ2

lh) (3)

where x is the spatial variable in the distributed system.

Linearizing (3) with respect to a variation of the param-
eters around up

.
= [µlh, σlh, Alh]

T corresponding to the

equilibrium condition jlh, and defining the variation of the
parameters around the equilibrium as ũp

.
= up − up, the

resulting equation is:
˙̃
ψ =M(t)

(
Actψ̃ +Bct∇up

jlh |up=up
ũp

)
(4)

Performing a change of variables ζ
.
=M−1(t)ψ̃ and renam-

ing the product Bct∇up
jlh |up=up

as Blin, the evolution of
the new variable ζ is given by:

ζ̇ =
(
ActM(t)−M−1(t)Ṁ(t)

)
ζ +Blinũp (5)

Since M(t) is diagonal and positive definite, M−1(t) al-
ways exists and is bounded. Imposing boundedness and
differentiability constraints on M(t), we have that the

matrix Aζ(t)
.
= ActM(t) −M−1(t)Ṁ(t) is also bounded.

Choosing a nonempty basis A = {Aζ0 , Aζ1 , ..., Aζnp
}, sub-

set of RN×N , we write:

Aζ(t) = Aζ0 +

np∑

i=1

λi(t)Aζi (6)

with np ≤ N2, λi(t) ∈ [0, 1] for all i ≤ np and all t ≥ 0.
Furthermore, it can be easily shown that, as a consequence
of the diagonal structure of M(t), an np ≤ 2N is enough
to exactly represent Aζ(t) (a basis of size N to represent

the diagonal elements of M−1(t)Ṁ(t) and another of size
N representing each of the columns of Act).

Using (6) in (5), we get:

ζ̇ =

(
Aζ0 +

np∑

i=1

λi(t)Aζi

)
ζ +Blinũp (7)
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In order to reject unmodelled nonlinearities, like the ones
represented by the bootstrap current in the system, it is
useful to extend this system to include an integrator of a
virtual error Ė = ε

.
= −Cζ, with C in R

Nc×N , as follows:

z
.
=

[
ζ
E

]
A0

.
=

[
Aζ0 0
−C 0

]

Ai
.
=

[
Aζi 0
0 0

]
∀i ≥ 1

Be
.
=

[
Blin

0

]

The extended system is:

ż =

(
A0 +

np∑

i=1

λi(t)Ai

)
z +Beũp (8)

Throughout the rest of the article, this will be the reference
model for the development of a control law and the
corresponding simulations. Ne = Nc + N will denote the
size of the vector z.

3. CONTROLLER SYNTHESIS RESULTS

Let us define the set of all partitions of Np
.
= {1, 2, ...np}

as Ω(Np)
.
= {(Cj ,Dj) | Cj ∩Dj = ∅, Cj ∪ Dj = Np}. It is

clear that card Ω(Np) = 2np . Based on this set, let
us consider a polytopic control law for a given set of
vertex controllers K1, ...,K2np ∈ R

3×N and time-varying
parameters λ1(t), ..., λnp

(t) ∈ [0, 1] as:

ũp =

2np∑

j=1

βj(t)Kjz (9)

where:

βj(t) =
∏

k∈Cj

(1− λk(t))
∏

l∈Dj

λl(t)

(Cj ,Dj) ∈ Ω(Np), ∀j ∈ Np

Remark 1. For all j in Np and all t ≥ 0: βj(t) ∈ [0, 1]. It
can also be shown, by induction on np for instance, that∑2np

j=1 βj(t) = 1 for all t ≥ 0.

Theorem 2. A polytopic control law, as defined in (9), that
quadratically stabilizes system (8) can be constructed by
setting K

.
= QjW

−1, with W ∈ R
Ne×Ne a positive definite

symmetric matrix and Qj ∈ R
3×Ne , j = 1, 2, 3, ..., 2np, full

matrices such that the following LMIs are verified 1 :

[
ε−1

INe
W

W −Mj

]
≻ 0

∀j ∈ {1, 2, 3, ..., 2np} (10)

where, ε is a positive constant and, for all j, Mj is defined
as:

Mj
.
=

(
A0 +

np∑

i=1

si,jAi

)
W +W

(
A0 +

np∑

i=1

si,jAi

)T

+BeQj +QT
j B

T
e

with, for all j, si,j = 0 if i ∈ Cj , and si,j = 1 otherwise.

1 Here · ≻ 0 means that a matrix is positive definite.

Proof. Using the Schur complement, (10) is equivalent to:

(
A0 +

np∑

i=1

si,jAi

)
W +W

(
A0 +

np∑

i=1

si,jAi

)T

+BeQj +QT
j B

T
e + εW 2 ≺ 0

∀j ∈ {1, 2, 3, ..., 2np} (11)

Set Qj = KjW and P = W−1. Substituting these in
equation (11) and pre- and post-multiplying by P we
obtain:

P

(
A0 +

np∑

i=1

si,jAi +BeKj

)

+

(
A0 +

np∑

i=1

si,jAi +BeKj

)T

P + εINe
≺ 0

∀j ∈ {1, 2, 3, ..., 2np} (12)

Multiplying each inequality by the corresponding βj and

adding them up (remembering that
∑2np

j=1 βj(t) = 1) we
obtain:

P




2np∑

j=1

βj

[
A0 +

np∑

i=1

si,jAi +BeKj

]
 (13)

+




2np∑

j=1

βj

[
A0 +

np∑

i=1

si,jAi +BeKj

]


T

P + εINe
≺ 0

Rearranging the order of the sums, it is easy to see that:

2np∑

j=1

βj

[ np∑

i=1

si,jAi

]
=

np∑

i=1

Ai




2np∑

j=1

βjsi,j


 (14)

And since ∀j, si,j = 0 if i ∈ Cj, and si,j = 1 otherwise, for
any given j, we have:

2np∑

j=1

βjsi,j = λi
∏

k∈C′
j

(1− λk(t))
∏

l∈D′
j

λl(t)

(C′
j ,D′

j) ∈ Ω(Np\{i}) , ∀j ∈ Np\{i} (15)

By an argument analogous to the one required to prove

that
∑2np

j=1 βj(t) = 1, it can be shown that
∑2np

j=1 βjsi,j =

λi. And using these two facts, equation (13) is equivalent
to:

P


A0 +

np∑

i=1

λiAi +Be

2np∑

j=1

βjKj


 (16)

+


A0 +

np∑

i=1

λiAi +Be

2np∑

j=1

βjKj




T

P + εINe
≺ 0

which, if pre-multiplied by zT and post-multiplied by z
is actually the time derivative of V (z) = zTPz for the
system (8) under the control law (9). This implies that V
is a Lyapunov function for the closed-loop system.
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2

It may also be desirable to constrain the gain of the
controller (particularly since the application under con-
sideration is based on a linearization around a given input
value). Let us denote by ‖ · ‖2 the L2-norm of a vector or
the respective induced norm of a matrix.

Proposition 3. Let W ∈ R
Ne×Ne be a positive definite

matrix, K ∈ R
3×Ne a full matrix and Q

.
= KW . A

sufficient condition to guarantee that ‖K‖2 < √
γ is that

the following LMIs are satisfied:

[−I3 Q

QT −γINe

]
≺ 0

W ≻ INe
(17)

where Il represents the l× l identity matrix.

Proof. Using the Schur complement, the first inequality is
clearly equivalent to QTQ−γINe

≺ 0 which in turn implies
zTQTQz < γzT INe

z, ∀z ∈ R
Ne . That is, ‖Q‖2 < √

γ. In
turn, the second LMI implies ‖W‖2 > 1. Since Q = KW ,
we have that ‖K‖2 < √

γ.

2

Combining Theorem 2 and Proposition 3, the following
corollary is directly obtained:

Corollary 4. Given γ > 0, a polytopic control law as
defined in (9) that quadratically stabilizes system (8) and
has an L2 gain between the state and control input strictly
less than

√
γ, can be computed by setting Kj

.
= QjW

−1,

with W ∈ R
Ne×Ne a positive definite symmetric matrix

and Qj ∈ R
3×Ne , j = 1, 2, 3, ..., 2np, full matrices such

that the following LMIs are verified:

[
ε−1

INe
W

W −Mj

]
≻ 0

[−I3 Qj

QT
j −γINe

]
≺ 0

W ≻ INe

∀j ∈ {1, 2, 3, ..., 2np} (18)

where Mj is defined as in Theorem 2.

4. VALIDATION

4.1 Implementation

In order to implement the discussed results, a suitable
value for np had to be determined that could provide a
sufficiently good approximation of the original function
while reducing the computational cost, particularly since
the number of decision variables and the size of the LMIs
grows exponentially with the number of parameters used.
Choosing an adequate basis, the number of parameters
was reduced to 5 while preserving a small approximation
error, in average under 1% for the ActM(t) term and with

a peak at around 10% for the M−1(t)Ṁ(t) term in a few
points. The data was fitted using a least squares method
with a positivity constraint on the coefficients, to prevent
the existence of aberrant vertices having, for instance, a
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Figure 2. Regulation around ψ with LMI controller with
intermediate gain (plain line: numerical simulation,
dashed line: the reference). (a) Evolution and refer-
ence of the state ψ1; (b) evolution and reference of
the state ψN/2; (c) evolution and reference of the state
ψN ; (d) applied jlh profile.
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Figure 3. Regulation around ψ with LMI controller with
a more restricted gain (plain line: numerical simula-
tion, dashed line: the reference). (a) Evolution and
reference of the state ψ1; (b) evolution and reference
of the state ψN/2; (c) evolution and reference of the
state ψN .

negative diffusion coefficient. As a further development a
recursive least-squares algorithm could be implemented.

The parameter ε ensures that the real part of all closed-
loop poles is less than −ε, indirectly allowing the controller
to be more robust with respect of modeling errors due, for
instance, to the use of only 5 parameters in the approxima-
tion of ActM(t) and M−1(t)Ṁ(t). The necessary systems
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Figure 4. Regulation around ψ for ψ1. The thin dashed
line is the reference, the solid line is the ARE-based
simulation and the others are polytopic regulators
with different γ values.

of LMIs were solved using YALMIP, see Löfberg (2004),
and SeDuMi (2011).

4.2 Simulation Results

In order to test the proposed method by numerical sim-
ulation, a reference was chosen at three points of the ψ
profile, taken from estimations based on Tore-Supra shot
TS-35109 and equal to the one used in Bribiesca Argomedo
et al. (2010). The global parameters of the simulation were
also taken from shot TS-35109 (Ip = 0.6 MA, power input
around 1.8 MW). The system was discretized in 8 points
for the controller calculation and in 22 for the simulation.
In all the simulations, the system is taken close to the
desired operating point by applying the open-loop control
sequence of the actual shot TS-35109, and then, at t = 8 s
activating the controller. A change of reference is then
applied at t = 20 s.

In Figure 2, a controller with medium gain γ = 2.75 ×
10−6 was chosen with a settling time comparable to that
presented in Bribiesca Argomedo et al. (2010). Figures
2(a), (b) and (c) show the evolution of the points ψ1, ψNe/2

and ψNe
, respectively; 2(d) shows the applied jlh profile.

It can be seen that jlh is a gaussian curve, the parameters
of which are calculated as u+ up.

To show the versatility of the proposed gain limit, another
controller was calculated with stricter gain limitations by
reducing the value of the γ parameter in the LMI system
to 2.5× 10−6. The results are shown in Figure 3: (a), (b)
and (c) show the evolution of the points ψ1, ψNe/2 and
ψNe

, respectively. The settling time is greater than in the
previous case, which is to be expected when restricting the
gain.

To further illustrate the interest of the proposed scheme,
Figure 4 shows a comparison of the behaviour of ψ1 for
three different polytopic controllers with different values
of γ and the online ARE approach used in Bribiesca
Argomedo et al. (2010). It should be noted that the tuning
of the LMI-based polytopic controllers is much easier
than finding appropriate weighting matrices for the LQR
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computation used in Bribiesca Argomedo et al. (2010). It
is also important to mention that the online computational
cost of the polytopic controller is much less than the ARE-
based one, since it only requires to estimate the current
values of the parameters λi whereas the latter requires to
solve an ARE at each sampling time. Nevertheless, the
polytopic approach does require the prior solution of the
system of LMIs which can be done offline and only needs
to be done once.

5. CONCLUSIONS AND PERSPECTIVES

In this paper, a polytopic controller was developed for
the regulation of the magnetic flux profile in a tokamak
plasma based on a physically relevant, distributed but
simplified model of the system. After discretization of the
model, a change of variables was performed that allowed
for the simple construction of a polytopic control law. The
theoretical results apply to the case of bounded parameters
with bounded time derivatives and are then tested under
simulation with a more complete model to test the robust-
ness of the approach with respect to unmodeled dynamics,
disturbances and approximation errors.

Further work will focus on avoiding the discretization when
computing the control and obtaining useful results in the
infinite-dimensional setting. Some work will address as well
the dependance of the control in the derivative of the
resistivity coefficients, thus removing the need for noise-
filtering. Experimental validation on Tore-Supra is also
expected.
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