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Abstract— A high gain non linear observer is implemented
to estimate the enclosed mass in the combustion chamber
of a spark ignited engine. The observer uses the cylinder
pressure measurement during the compression and combustion
strokes to estimate the enclosed mass. An engine model is
proposed and used as a virtual engine to build the observer.
The model is validated by comparison with real measurements,
obtained from experimental tests. The results of the observer
are compared with the virtual engine model.

I. INTRODUCTION

The estimation of the total mass enclosed in the combustion
chamber is an interesting and challenging task for the
engine control community. An accurate estimation of the
cylinder enclosed mass would permit a better control of
the associated fuel injection and a better treatment of the
pollutants residuals. The introduction of more complicated
features such as variable valve timing (VVT), cam profile
switching and variable geometry intake manifold in new
production engines require more advanced techniques to
estimate the cylinder enclosed mass [1]. When including
these features, one of the most common phenomenon is
the appearance of back flows. This phenomenon combined
with possible mass scavenging might induce a difference
between the actual mass and the measurement provided by
the mass flow meter in the intake manifold.

In automotive control, the variables in the air path are
typically used to compute the cylinder characteristics, such
as the in-cylinder load and residual mass fraction, (e.g.
see [2], [3], [4] and [5]). In this work, the objective is to
estimate the total enclosed mass in the combustion chamber
during the compression and combustion strokes. This mass
corresponds to the total air load plus the residual mass.
If the total enclosed mass in the combustion chamber is
accurately estimated, the air load can be computed by
subtracting the residual mass from the total enclosed mass.
Strategies as the ones proposed in [5] and [6] might be used
to compute the residual mass.

A considerable number of open loop techniques have
been proposed recently to compute the total enclosed
mass. Examples of this modeling technique are described
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in [7], [5] and [4]. In those models, a balance between
the total mass in the cylinder at the inlet valve closure
(IVC), the back flow and the trapped mass at exhaust
valve closure (EVC) are taken into account. Following
the open loop strategy, iterative approaches that use the
cylinder pressure measurement during the compression and
combustion strokes have also been proposed. For instance,
iterative methods to compute the enclosed mass during the
compression stroke are proposed in [8], [6] and [9].

Alternatively, closed loop observer schemes have also
been developed to estimate the engine load during the
admission stroke, thus constraining the estimated variables
with the online measurement. In [10], the uncertainties of
the measurements in the intake manifold are introduced and
an adaptative learning algorithm is used to track the error
between the measured pressure and the estimation. In [11],
a periodic observer for a class of non-linear models in the
discrete Takagi-Sugeno form is designed, using the variables
on the engine intake manifold. Both works propose suitable
methods for computing the enclosed mass in the combustion
chamber, by computing the in-cylinder mass in the intake
manifold before the valves closure.

The aim of this paper is to present an estimation method
for the total mass of all the species in the compression
and combustion strokes, during the valves closure, using
the cylinder pressure measurement. This strategy does not
need many engine cycle computations to achieve the mass
estimation. A high gain non linear observer of the cylinder
temperature during the valves closure is built and the
enclosed mass is computed using the observed temperature
and the cylinder pressure measurement.

This paper is structured as follows: in Section II, a physical
model of the engine used as a virtual engine is presented. A
reduced model for the compression and combustion strokes
when the valves are closed is developed in Section III.
In Section IV the reduced model is transformed into an
equivalent system in additive triangular form, where the
high gain observer is implemented: the cylinder enclosed
mass is computed in this stage. Simulations of the observed
variables are compared with the validated virtual engine to
support the results of the observer.



II. SYSTEM MODELING

The 0D engine model proposed in [12] is implemented
and used as virtual engine. This model provides, among
others, the cylinder pressure, the cylinder temperature, the
clearance volume and the mass dynamics. The whole engine
cycle is captured by this model.

The cylinder pressure dynamics is:

dp(t) =
r

V (t)cv
Qhin(t)− r

V (t)cv
Qhout(t)

− r

V (t)cv
p(t)dV (t)− p(t)dV (t)

V (t)

+
r

V (t)cv
LHV Qmcomb(t)

− r

V (t)cv
Qth(t)

(1)

and the cylinder temperature dynamics is:

dT (t) =
1

m(t)cv

(
− p(t)dV (t)−Qth(t) +

(
Qhin(t)

−Qhout(t) + LHV Qmcomb

)
− T (t)cvdm(t)

) (2)

where p(t) is the cylinder pressure, T (t) is the cylinder
temperature and V (t) is the gas volume. Qhin and Qhout
represent the enthalpy flow between the inlet and outlet ports
of the system, respectively, and dm(t) is the mass balance
in the combustion chamber. r is the ideal gas constant and
cv is the specific heat at constant volume. The wall losses
Qth are expressed as:

Qth(t) = hc(t)Aw(t)(T (t)− Tw) (3)

where Aw(t) is the wall transfer area, T (t) − Tw(t) is the
temperature difference between the gases and the cylinder
walls, and hc(t) is the heat transfer coefficient computed
from Woschni’s empirical law [13]:

hc(t) =αD−0.2p(t)0.8T (t)−0.53
(
C1Vp+

C2
VsT1

p1V1
(p(t)− p0(t))

) (4)

where D is the cylinder bore, C1 and C2 are calibration
constants, p1 and T1 represent the known state of the working
gas related to the instantaneous cylinder volume V1, i.e. at
IV C, and p0 is the pressure reference in the absence of
combustion. LHV Qmcomb(t) is the enthalpy supplied by
the combustion process. LHV is the lower heat value: for
gasoline engines it is approximately 4.15×107MJkg−1 and
Qmcomb is the burning rate which is commonly defined with
a burned mass fraction curve provided by a Wiebe’s law [14]:

Qmcomb(θ, u) =moae
−a

(
θ

∆θ

)(mw+1)

· (mw + 1)

(
θ

∆θ

)mw 2Nπ

60∆θ

(5)

where N is the engine speed in rev/s, mo is the injected
fuel and a, mw and ∆θ are calibration parameters.

The engine model is tested taking as reference the
measurements of a 1.2 liters spark ignited engine,
characterized by a four-valve chamber. The data to fit
the model is the cylinder pressure. The results shown in
Figure 1a correspond to a test performed at N = 1200 rpm
and IMEP = 10.68 bar, the cylinder pressure curves are
normalized with respect to the IMEP. In the Figures, the
measurement is presented in solid lines and the model in
dashed lines.
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(a) Cylinder pressure. IMEP=10.68 bar,
N=1200 rpm.
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Fig. 1: Model validation results

The model error is validated by computing the absolute
value of the difference between the mean effective pressure
(IMEP) of the model and the IMEP measurement. This
difference is transformed to percentage with respect to the
IMEP measurement. In Figure 1b the model error with
respect to the engine speed is depicted. The system has less
than 10% of error using this criterion. Those results are
accurate enough for the purpose of this work because the
aim is not to provide an engine model but to illustrate a



methodology to estimate the wall losses when the valves are
closed. More complex modeling strategies can be consulted
in [15], where a two zones thermodynamical model with
flame wall interaction has been proposed.

III. MODEL REDUCTION

A reduced model for the compression and combustion
strokes when the valves are closed is proposed in this
section.

During the valves closure, the unique energy components are
the enthalpy due to the combustion Qhcomb, the wall losses
Qth and the work delivered by the piston. The enthalpy due
to the valves flows Qhin/out is zero. Thus from (1) and
(2) (changing the notation by x1 = p and x2 = T ), the
dynamics of the system during the valves closure is (the
time dependence is omitted from this point to simplify the
notations):

ẋ1 =−
(
r

cv
+ 1

)
dV

V
x1 −

r

cvV
δQth +

r

cvV
Qhcomb

ẋ2 =
rx2

V cvx1

(
− x1dV − δQw +Qhcomb

)
y =x1, u = IT

(6)

where the system input u is the ignition timing and the
measured output y is the cylinder pressure x1. The wall
losses Qth are first modeled using Wochni’s approximation
in (4). Even if this approximation is widely used in 0D
engine modeling, it contains strong nonlinearities that are
hard to handle from the observation point of view. For this
reason, a reduced model for the compression and combustion
strokes of the wall losses has been created. The proposed
approximation keeps the convection principle from (3) but
replaces the convection coefficient hc for a simpler structure:

hc = ωex1 (7)

Similarly to Wochni’s principle, the new Qth proposal as-
sumes that the convection coefficient is proportional to the
engine speed and the cylinder pressure and two calibration
parameters k1 and k0 are introduced. Thus, the engine wall
losses are computed as:

Qth = Awωex1(k1x2 − k0Tw) (8)

The wall losses model reduction is calibrated with respect to
Wochni’s approximation and a satisfactory result is obtained.
The reduced model of the wall losses is also included in
the 0D virtual engine model with good results. In Figure
2a, two examples for different operation conditions of the
validation of the wall losses reduction model are presented.
The relative error between equations (3) and (8) is plotted
in Figure 2b. The error was computed as the norm of the

250 300 350 400 450 500
-3500

-3000

-2500

-2000

-1500

-1000

-500

0

500

Crank angle, [deg]

W
al

l l
os

se
s,

 [J
/s

]

Wochni s approximation, N=4000 rpm, BMEP=1.02 bar
Reduced approximation
Wochni s approximation, N=1200 rpm, BMEP=8 bar
Reduced approximation

(a) Wall losses reduced model results

1000 2000 3000 4000 5000 6000
1

1.5

2

2.5

3

3.5

4

4.5

E
rr

or

Engine speed

(b) Wall losses reduced model error

Fig. 2: Wall losses reduced model results

models difference divided by the reference maximum.

Including the reduced wall losses model and grouping the
system parameters as:

a1 = −
( r
cv

+ 1
)dV
V
, a2 = − r

cvV

a3 = −rdV
cvV

, a4 = − r

cvV
Awωe

(9)

system (6) yields

ẋ1 =a1x1 + a4x1(k1x2 − k0Tw)− a2Qhcomb

ẋ2 =a3x2 + a4x2(k1x2 − k0Tw)− a2
x2

x1
Qhcomb

(10)

The enclosed mass is then estimated using the ideal gas law
as:

m =
x1V

rx2
(11)

The cylinder pressure x1 is a known measurement but it is
necessary to estimate the cylinder temperature x2 from (10)
to deduce the mass using (11).

IV. HIGH GAIN OBSERVER STRUCTURE

Consider a system with an additive triangular nonlinearity
form that writes as:

ẋ = A0x+ φ(x, u)

y = C0x
(12)

where



A0 =

 0 1 0
0 ... 1
0 0 0

 , C0 =
[

1 0 ...0
]

(13)

The nonlinear observer is designed according to the
following theorem.

Theorem 1 [16]. If φ(x, u) is globally Lipschitz in x and u
and such that ∂φi(x, u)/∂xj = 0, for j ≥ i+1, 1 ≤ i, j ≤ n,
then the system (12) admits an observer of the form:

˙̂x = A0x̂+ φ(x̂, u) + ΛK0(C0x̂− y) (14)

where

Λ =

 λ 0 0
0 ...
0 0 λn

 (15)

with K0 such that A0 − K0C0 is stable and λ, ...λn large
enough.

The idea of this observer is to use the uniform observability
to weight a gain based on the linear part, in order to make
the linear dynamics of the observer error dominating the non
linear one [17]. The stability of the observer is analyzed next.

a) Stability Analysis: To prove stability, the auxiliary vari-
able z = Λ−1x is introduced. When Λ is chosen as λ2 =
λ2, λ3 = λ3, ..., λn = λn, and considering the triangular
structure of (13) and the fact that C0 = [1 0...0], the error
ε = z − ẑ dynamics is:

ε̇ = λ(A0 −K0C0)ε+ Λ−1δε (16)

Given the Lyapunov function V = εTPε, where P is
symmetric and P > 0, the following stability condition must
be satisfied to guarantee that the error ε converges to 0:

λεT [(A0 −K0C0)TP + P (A0 −K0C0)]ε (17)
+2εTPΛ−1(φ(z)− φ(ẑ)) < 0

As it was stated in Theorem 1, φ(z) is Lipschitz, thus ‖φ(z)−
φ(ẑ)‖ < δ‖z − ẑ‖ and condition (17) becomes:

λεT [(A0 −K0C0)TP + P (A0 −K0C0)]ε (18)
+2εTPλ−1δε < 0

K0 is chosen such that A0 − K0C0 < −αv||e||2, where
αv is a positive constant. Bounding the last therm on the
left of (18) using λ−1δε < β

λmax(P ) ||ε||
2, (λmax denotes the

maximum eigenvalue)where β > 0 is a tuning parameter
depending on φ(z), it yields:

λεT [(A0 −K0C0)TP + P (A0 −K0C0)]ε (19)
+2δεTPΛ−1ε < −λα||ε||2 + β

eigmax(P ) ||ε||
2

for some constant values α > 0. Taking λ > β
λmax(P )α is

sufficient to guarantee (19).

V. HIGH GAIN NONLINEAR OBSERVER APPLICATION

In order to use a high gain nonlinear observer like (14) for
system (10), the state space system must be transformed to
fit the triangular additive form structure of system (12). An
equivalent transformation is performed to obtain this result.

Definition 1. A system described by:

ẋ = f(x, u) = fu(x), y = h(x) (20)

for all x ∈ Rn, u ∈ Rm, y ∈ Rp is said equivalent to the
system

ż = F (z, u) = Fu(z), y = H(z) (21)

If there exists a diffeomorphism z = Φ(x) defined on Rn

such that:

∀u ∈ Rm, ∂Φ
∂x fu(x)|x=Φ−1(z) = Fu(Z) and h ◦ Φ−1 = H

System (20) and system (21) are said to be equivalent by
z = Φ−1 and if an observer o2 is an observer for (21) then
o2 is as well an observer for (20)[16]. ♦

Using this definition, the following equivalence transforma-
tion for system (10) is performed:

z = [x1, a4k1x1x2]T (22)

giving the following system:

[
ż1

ż2

]
=

[
0 1
0 0

] [
z1

z2

]
+ φ(z) (23)

where

φ(z) =


(a1 − a4k0Tw)z1 − a2Qhcomb(

ȧ4

a4
+ a3 − a1 − 2a4koTw

)
z2 + 2

z2
2

z1
−

2a2Qhcomb
z2
2

z1

 (24)

System (23) is in triangular additive form and it admits an
observer of the form (14). Besides it has been verified that the
transformation (22) fulfills the conditions in Definition 1. It
is consequently possible to implement a high gain nonlinear
observer to estimate z2 using the known measurement z1 =
x1 = p:

˙̂z = A0ẑ + φ(ẑ, u) +

[
λ1 0
0 λ2

]
K0(C0ẑ − z1) (25)

The linear dynamics is represented in the gain K0, deduced
from a Kalman filter [18] to ensure the stability of



A0 −K0C0 as it is required for the high gain observer. The
parameters λ1 and λ2 are chosen large enough to guarantee
the system convergence.

To recover the original state space variables of system (10),
the inverse of the transformation (22) is performed and
provides the states:

x̂1 = ẑ1, x̂2 =
ẑ2

a4k1ẑ1
(26)

A. Simulation results

Using the gases law in (11), the enclosed mass is obtained
as:

m̂ =
x̂1V

rx̂2
(27)

Figures 3, 4 and 5 show the results for the operating
conditions N = 2000 rpm and IMEP = 10 bar. Figures
3 and 4 show the cylinder pressure and the temperature
estimations during the compression and combustion strokes
when the valves are closed. Figure 5 shows an augmented
view of the mass estimation to better observe the transitory
stabilization. The second simulation case is shown in Figures
6, 7 and 8 where the operating conditions are changed to
N = 4000 rpm and IMEP = 1.02 bar.

The virtual engine model is presented in solid line and
the estimation is presented in dashed lines. The estimation
appears cut between two bars in the extremes because the
observer is valid only when the valves are closed. In the
remaining parts of the cycle the observer is disabled and
reseat. One combustion cycle is enough to accurately observe
the variables of interest x̂1 and x̂2.
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Fig. 3: Case 1: cylinder pressure estimation, N = 2000 rpm
IMEP = 10 bar, IT = 355 CA.

B. Simulation analysis

The simulation shows satisfactory results of the enclosed
mass estimation during the compression and combustion
strokes when the valves are closed. One engine cycle is
enough for the observer convergence.

The valves closure has a limited occurrence during the
whole engine cycle, consequently limiting the available
time for estimation. In this work, the interest is to compute
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Fig. 6: Case 2: cylinder pressure estimation, N = 4000 rpm
IMEP = 1.02 bar, IT = 335 CA
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Fig. 7: Case 2: cylinder temperature estimation, N = 4000 rpm
IMEP = 1.02 bar, IT = 335 CA

the enclosed mass before the valves opening. Even if the
transient behavior of the observation presents an elevated
overestimation, the observation is stabilized soon enough
before the engine valves opening. The mass estimation
is achieved thus before the ignition timing in most
operating conditions and the combustion modeling would
not be necessary. It might not be the case at high engine
speed conditions (4500 rpm up to 5500 rpm), where the
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compression stroke might be too short. For this reason, the
estimation algorithm is computed during the compression
and combustion strokes. The observer settling time is
0.1 ms. At 1200 rpm the valves closure lasts around
0.68 ms, at 5500 rpm the valves closure lasts 0.145 ms.

The simulation time steep is 50 µs. For this reason, the
current work might only be used for benchmark purposes.
The adaptation of a similar strategy to be used in the engine
control unit will be considered in future research.

VI. CONCLUSION

This work presents a new method to estimate the cylin-
der enclosed mass during the combustion and compression
strokes when the engine valves are closed. A high gain non
linear observer of the cylinder temperature during the valves
closure is built and the enclosed mass is computed using the
observed temperature and the cylinder pressure measurement
through the ideal gases law. This approach has shown to be
effective to handle the strong non linearities of a combustion
model. One engine cycle computation is enough to obtain the
mass estimation.
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NOMENCLATURE

α, C1, C2: Calibration constants
ωe: Engine speed (rad/s)
θ: Crank angle degree (rad)
Aw: Heat transfer wall area
IMEP : Mean effective pressure (bar)
CAD: Crank angle degrees
cv: Specific heat at constant volume
D: Cylinder bore
EV C, EV O: Exhaust Valve Closure, Opening
h: Enthalpy
hc: Heat transfer coefficient for wall looses
Hp: Piston height
IV C, IV O: Inlet Valve Closure, Opening
IT : Ignition timing
k0, k1: Calibration constants
N : Engine speed (rpm)
m: Total mass in the combustion chamber
m0: Fuel mass
p: Pressure
Qth: Wall losses
r: Specific gases constant
T : Temperature
Tw: Wall temperature
V : Cylinder volume


