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ABSTRACT

This paper describes an innovative method
to estimate the energy wall losses during the
compression and combustion strokes of a gasoline
engine using the cylinder pressure measurement. The
estimation during the compression and combustion
strokes allows to better represent the system during
the combustion. A sliding mode observer is derived
from a 0-d physical engine model and its convergence
and stability are proved. The complete system is
validated by comparing simulated cylinder pressure
with measurements.

INTRODUCTION

Through the years, the research of convective heat
transfer modeling in internal combustion engines
has been a hard task due to the difficult prediction
of this phenomenon. Most of research has been
focused on empirical laws which try to predict the
heat transfer coefficient between the gases and the
cylinder walls. One of the first laws was proposed
by Annand [1], where an empirical law based on the
thermal conductivity and the engine temperature is
used to calculate the thermal coefficient of the walls
heat transfer. Then, in the work of Woschni [2], a new
empirical law is proposed, where the heat transfer
coefficient depends on the pressure, temperature and
engine speed. Woschni’s law has been adopted for
almost all the 0d engine models, and many works
based on this law have been published, such as
Hohenberg [3], Han and al.[4] and more recent Alizon
[5]. Alternately, Shayler [6] takes into account the
Woshni’s correlation and adds a heat flow distribution
depending on the surface of the chamber.

Parallel to those works, the law of the wall works
have tried to explain the heat transfer phenomena:
in Yang and Martin [7], the unsteadiness of turbulent
heat transfer in piston engines depend on the flow
properties, the gas conductivity and the viscosity. In
Boust [8] a physical approach for wall heat transfer
based on the kinetic theory of gases is proposed.

The instantaneous heat flow during the engine cycle
is a necessary input for realistic cycle calculations [9],
even if the existent empirical laws approximate the
wall losses phenomenon, the current heat transfer
models are not universally applicable and many tuning
parameters remain undefined. This situation opens
the perspective to the use of a different strategy than
the empirical approximations.

The purpose of this work is to give an alternative
method to estimate the heat wall losses. The heat
wall transfer makes part of the whole enthalpy flow
during the engine cycle. The whole enthalpy flow
modeling requires the use of discontinuous terms to
represent its dynamics. The use of an sliding mode
observer is a suitable strategy for observation in these
kind of systems; this technique is based on the choice
of a sliding surface of the state space according to the
desired dynamical specifications of the closed-loop
system. The sliding choices are designed so that the
state trajectories reach the surface and remain [10].
The sliding mode technique has been used by many
researchers for estimation of non measurable and/or
uncertain parameters in space state system. The
sliding model method has been popularized thanks
to the work of Utkin [11]. The main advantages of
this method are its robustness against a large class
of perturbations or model uncertainties, the need of
a reduced amount of information and the possibility
of stabilizing some nonlinear system which are not
stabilizable by continuous state feedback laws.
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In this work, an innovative method to estimate the
wall losses during the compression and combustion
stroke of a gasoline engine is proposed. To develop
the observer, a 0d one zone thermodynamical model
of a gasoline engine has been developed.

In the first part of this paper the one zone
thermodynamical model and the combustion model
are described. The result of this model is validated
with cylinder pressure measurements. This model
is reduced to design the sliding model observer. In
the next sections, the complete observer system is
developed and the estimation is compared to the
cylinder pressure and the wall losses empirical model.
As a result, the sliding mode strategy allows to well
predict the enthalpy flow due to the gases interaction
with the cylinder wall during the compression and
combustion strokes using the cylinder pressure
measurement.

0D ENGINE MODEL

The thermodynamical model describes the energy
balance inside the combustion chamber. The
0d virtual engine model is divided into two main
elements: a one zone thermodynamical model that
describes the energy balance inside the combustion
chamber and the combustion model.

ONE ZONE THERMODYNAMICAL MODEL

In the one zone thermodynamical model, the
combustion chamber is considered as a unique
open system and a uniform in-cylinder pressure is
assumed. The mass flow rate in the cylinder is
deduced from a balance equation corresponding to
the mass transfer through intake and exhaust valves.

The energy equation for the cylinder is inferred from
the first thermodynamical principle:

dU = −δQth − pdV +
(∑

j

hjdmj

)
(1)

where the subscript j denotes energy getting into
or out of the combustion chamber, U is the internal
energy of the cylinder gas mixture, δQth expresses
the heat transfer of the cylinder contents to the
surroundings, pdV corresponds to the work delivered
by the piston,

∑
j hjdmj is the total energy flowing into

or out of the cylinder and h is the specific enthalpy.

Assuming that the specific heat constant cv is
constant, the left hand side of (1) can be written as:

dU = T (t)cvdm(t) +m(t)cvdT (t) (2)

where m(t) is the total mass of all the species in the
cylinder and T (t) corresponds to the temperature of
the gases.

Solving (1) and (2) for dT (t), an ordinary differential
equation is implemented as the governing equation for
the system temperature dynamics:

dT (t) =
1

m(t)cv

(
− p(t)dV (t)− δQth(t)

+

∑
j

hj(t)dmj(t)

− T (t)cvdm(t)

) (3)

where V (t) is the gases volume. The heat losses from
the gases in the combustion chamber to the cylinder
walls are given by:

δQth(t) = hc(t)Aw(t)(T (t)− Tw) (4)

where Aw(t) is the wall transfer area, T (t) − Tw(t) is
the temperature difference between the gases and the
cylinder walls, and hc is the heat transfer coefficient
computed from Woschni’s empirical law [2]:

hc(t) =αD−0.2p(t)0.8T (t)−0.53
(
C1Vp+

C2
VsT1
p1V1

(p(t)− p0(t))
) (5)

whereD is the cylinder bore, C1 and C2 are calibration
constants, p1 and T1 represent the known state of
the working gas related to the instantaneous cylinder
volume V1, i.e. at IV C, and p0 is the pressure
reference in the absences of combustion.

The total energy flowing into or out of the cylinder is
considered as the enthalpy flow from the breathing
process and the combustion:

∑
j

hj(t)dmj(t) =Qhin(t)−Qhout(t) +Qhcomb(t) (6)

To find the dynamics of p(t), the ideal gases law is
used:

p(t)V (t) = rm(t)T (t) (7)

Taking the derivative of (7) and solving for dp(t):
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dp(t) =
rT (t)dm(t)

V (t)
+
rm(t)dT (t)

V (t)

− rT (t)m(t)dV (t)

V (t)

(8)

where dm(t) = dmin − dmout is the mass balance
through the cylinder valves. Finally, putting together
equations (3), (6) and (8) and solving for dp(t), the
in-cylinder pressure dynamics is modeled as:

dp(t) =
r

V (t)cv
Qhin(t)− r

V (t)cv
Qhout(t)

− r

V (t)cv
p(t)dV (t)− p(t)dV (t)

V (t)

+
r

V (t)cv
Qhinj (t) +

r

V (t)cv
LHV Qmcomb(t)

− r

V (t)cv
Qth(t)

(9)

where Qhcomb(t) has been replaced by Qhinj +
LHV Qmcomb(t), the sum of the enthalpy supplied by
the injection and the combustion process. LHV is
the lower heat value: for gasoline engines it can be
approximated to 4.15x107MJkg−1. Qhinj supplies a
small amount of energy during few time (less than 3
CAD), in this model, its value is obtained from a map.

COMBUSTION MODEL

The combustion process is commonly defined with a
burned mass fraction curve, provided by a Wiebe’s law
[12]:

Qmcomb(θ, u) =moae
−a

(
θ

∆θ

)(m+1)

· (m+ 1)

(
θ

∆θ

)m
2Nπ

60∆θ

(10)

where N is the engine speed in rev/s, mo is
the injected fuel and a, m and ∆θ are calibration
parameters.

ENGINE MODEL VALIDATION

The engine model is tested taking as reference the
measurements of a 1.2 liters engine. The data to fit the
model is the cylinder pressure. The results presented
in this paper correspond to a test performed at N =
2000 rpm and BMEP = 10 bar.

Results of the validated model are shown in Figure 1.
Complementary results are shown in Figure 2, where
the percentage of error between the measurements
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Figure 1: Cylinder pressure. BMEP=10 bar,
N=2000rpm.
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Figure 2: Cylinder pressure error for 90 operating
points. BMEP=1-20 bar, N=1200-5500rpm.

and the model carried out in a data base of 90
operating points are shown. The model has less than
10% of error in the cylinder pressure prediction. Those
results are accurate enough for the purpose of this
work.

MODEL REDUCTION

The cylinder pressure dynamics depends on the
energy balance in the combustion chamber. The
enthalpy flows represent a different physical
phenomenon depending on the the crank angle
position (engine stroke). Figure 3 shows how are
given the energy exchanges on the combustion
chamber depending on the combustion stroke. In the
figure:

• Inlet valve opening (IV O) - Inlet valve closure
(IV C): Admission stroke
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• Exhaust valve opening (EV O) - Exhaust valve
closure (EV C): Exhaust stroke

• IV C - IT where IT is the ignition timing:
Compression stroke

• IT -EV O: Combustion
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Figure 3: Engine cycles representation

As it was presented in the last sections, four main
enthalpy flows are considered in the system: The
enthalpy due to the valves flows Qhin/out(t), the
enthalpy due to combustion Qhcomb(t) and the
enthalpy due to the wall losses Qth(t), the remaining
energy component is the work delivered by the
piston and the gases moving which depend on the
cylinder pressure. Table 1 explains how the enthalpy
dynamics are taken into account depending on
the engine stroke (from here the time dependence
notation is omitted to simplify the notations).

Admission: Qhcomb = 0, (Qhin , Qhout , δQth) 6= 0
Exhaust: Qhcomb = 0, (Qhin , Qhout , δQth) 6= 0

Compression: (Qhin , Qhout , Qhcomb) = 0, δQth 6= 0
Combustion: Qhin = 0,Qhout = 0, δQth 6= 0

Table 1: Engine strokes and enthalpy flows
A transformed two states system is designed.
In this system, two states are presented: The
cylinder pressure x1 = p and the enthalpy flow
x2 = Qhin +Qhout +Qth:

ẋ1 =−
(
r

cv
+ 1

)
dV

V
x1 +

r

cvV
Qhcomb

+
r

cvV
x2

ẋ2 =0

(11)

The state x2 groups all the enthalpy flows in the
system, different from the heat supplied by the

combustion and the work delivered by the piston. The
dynamics of x2 is assumed to be unknown. Whit
this model, during the compression and combustion
strokes, the state x2 represents only the wall losses,
according to Table 1.

SLIDING MODE OBSERVER

Consider a system in additive triangular nonlinearity
form:

ż = A0x+ φ(z, u)

y = C0z
(12)

where

A0 =

 0 1 0
0 ... 1
0 0 0


C0 =

[
1 0 0

] (13)

The nonlinear observer is designed according to the
following theorem:

Theorem 1 [13]. If φ(z, u) is globally Lipschitz in z
and u and such that ∂φi(z, u)/∂zj = 0, for j ≥ i + 1,
1 ≤ i, j ≤ n, then the system (12) admits an observer
of the form [10]:

˙̂z1 = ẑ2 + φ1(z1, u) + λ1sgn(z1 − ẑ1)

˙̂z2 = ẑ3 + φ2(z1, z̃2, u) + λ2sgn(z̃2 − ẑ2)

˙̂zn = f(z1, z̃2.., z̃n) + λnsgn(z̃n − ẑn)

(14)

where

z̃ =ẑ + λsign(z − ẑ) (15)

To analyze the observer stability, the first state space
variable is analyzed:

Considering e1 = z1 − ẑ1 6= 0 and the Lyapunov
function V = 1

2e
2
1. To guaranty the stability, the

condition V̇1(x) < 0 must be full filled. Considering
the dynamics of e1:

ė1 = e2 − λ1sgn(e1) (16)

and

V̇ = e1ė1 = e1e2 − λ1sgn(e1) (17)
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which verifies V̇ < 0 when λ > |e2|max. As the function
sgn is used, and the Lyapunov function decreases,
the convergence to the sliding surface S = e1 in a
finite time t0 is obtained. Thus, for λ1 > |e2|max, ẑ1
converges to z1 in finite time t0 and remains equal to
z1 for t > t0.

Moreover, ė1 = 0 for t > t0, so from (16):

e2 = λ1sgn(e1) (18)

and

z̃2 = ẑ2 + λ1sgn(e1) (19)

is equal to z2 for t > t0.

The same procedure if followed for the states z2, ..., zn
and the stability is shown. Refer to [10] for the
complete demonstration.

SLIDING MODE OBSERVER APPLICATION

Using the sliding mode observer (14) in system (11) it
yields:

˙̂x1 =−
(
r

cv
+ 1

)
dV

V
x̂1 +

r

cvV
Qhcomb

+
r

cvV
x̂2 +

r

cvV
λ1sgn(x1 − x̂1)

˙̂x2 =
r

cvV
λ2sgn(x̃2 − x̂2)

x̃2 =x̂2 +
r

cvV
λ1sgn(x1 − x̂1)

(20)

Where λ1 and λ2 are the observer gains to be chosen
to ensure the system stability. Differently from (12), in
System (20) the first non zero component in matrix A0

is different than 1. It is possible to use an equivalent
transformation through a diphemorfism to obtain the
exact form, however, in this work the effect of this
component has been added to the observer inputs
multiplying it by r/(cvV ).

The Lyapunov stability theorem [14] is used to bound
the choice of λ1 and λ1. In a first place, the bounds for
λ1 are chosen:

Consider the Lyapunov function V1 = 1
2e

2
1, where e1 =

x1 − x̂1. The condition V̇1(x) < 0 must be full filled:

V̇1(x) = e1(x)ė1(x) (21)

V̇1(x) = e1

( r

cvV
e2 −

r

cvV
λ1sign(e1)

)
(22)

r/(cvV ) > 0, then keeping λ1 > |e2| ensures V̇1(x) <
0. The same procedure is applied to chose the second
parameter λ2.

Consider the second Lyapunov function V2 = 1
2e

2
2,

where

e2 = x2 − x̂2 (23)

The conditions V̇2(x) < 0 must be fulfilled:

V̇2(x) < 0 = e2(x)ė2(x) (24)

V̇2(x) < 0 = e = −e2
r

cvV
λ2sign(e2) (25)

Keeping λ2 > 0 ensures V̇2(x) < 0. The results of the
implemented observer are presented next.

OBSERVER RESULTS

Figures 4a and 4b show the observation results of
the system in equations (20), compared to the model
in equations (4) and (9). For the cylinder pressure (x1),
the initial condition is the measured pressure at IV C,
for the enthalpy flows, the initial condition is taken as
−0.4J/s. The observer is efficient and effective in
successive engine cycles.

Using the measured pressure p = x1, the observer is
able to estimate the second state x2 that represents
the enthalpy flow. When the observation is made
overall the whole engine cycle, the estimated enthalpy
flow represents different physical phenomena
depending on the engine stroke, as it is presented
in Table 1. Taking the portion corresponding to the
compression and combustion strokes of one engine
cycle from Figures 4a and 4b, Figure 5 is obtained.
In this figure, the estimation during the admission
stroke represents the enthalpy flow due to the valves
flows and the wall losses, similarly during the exhaust
stroke.

The remain portion of the engine cycle is extracted
in Figure 6, which corresponds to the compression
and the combustion strokes. In this stage of the
engine cycle, besides the enthalpy flow supplied by
the combustion which is represented in the model by
the Wiebe’s law and the work delivered by the piston,
the only remaining enthalpy flow is the heat transfer
to the walls. Then, the enthalpy flow shown in Figure
6b corresponds to the heat wall losses.
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(a) Cylinder pressure estimation
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Figure 4: Cylinder pressure and heat flow estimation
5 engine cycles. BMEP=10 bar, N=1200rpm.

Figures 7a and 7b show the normalized observation
error for variables x̂1 and x̂2 corresponding to the
cylinder pressure and the enthalpy flow for a data base
of 90 operating points. The results are satisfactory
as the cylinder pressure error observation remains
below 0.05% while the enthalpy flow observation error
remains below 3%.

CONCLUSIONS

A sliding mode observer to estimate the heat wall
losses during the compression and combustion
strokes has been implemented. The observer is able
to estimate the wall losses even if its dynamics is
unknown for the system.

The model has been validated using the validated 0d
model of a park ignited engine against experimental
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(a) Cylinder pressure estimation
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Figure 5: Cylinder pressure and heat flow estimation
1 engine cycle. BMEP=10 bar, N=1200rpm.

measurements. The observer performs accurately in
a large data base of operating points.

Using a sliding mode observer allows to have a
simple design and implementation structure, which is
robust against modeling error and perturbations due
to parametric variations [15].
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NOMENCLATURE

All variables are in S.I Metric Units.

α Calibration constant
ωe Engine speed (rad/s)
IT Ignition timing
Aw Heat transfer wall area
CAD Crank angle degrees
cv Specific heat at constant volume
C1 Calibration constant
C2 Calibration constant
D Cylinder bore
EV C Exhaust Valve Closure
EV O Exhaust Valve Opening
h Enthalpy
hc Heat transfer coefficient for wall looses
Hp Piston height
IV C Inlet Valve Closure
IV O Inlet Valve Opening
k0 Calibration constant
k1 Calibration constant
N Engine speed (rpm)
m Total mass in the combustion chamber
p Pressure
r Specific gases constant
T Temperature
Tw Wall temperature
U Energy
V Cylinder volume
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