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Abstract

In this paper, a strict Lyapunov function is developed inesrd show the exponential stability and
input-to-state stability (ISS) properties of a diffusioguation for nonhomogeneous media. Such media
can involve rapidly time-varying distributed diffusivityoefficients. Based on this Lyapunov function,
a control law is derived to preserve the ISS properties ofsfygtem and improve its performance. A
robustness analysis with respect to disturbances andagiimerrors in the distributed parameters is
performed on the system, precisely showing the impact ofcthreroller on the rate of convergence
and ISS gains. This is important in light of a possible impdatation of the control since, in most
cases, diffusion coefficient estimates involve a high degrfeuncertainty. An application to the safety
factor profile control for the Tore Supra tokamak illustsatend motivates the theoretical results. A
constrained control law (incorporating nonlinear shapestm@ints in the actuation profiles) is designed
to behave as closely as possible to the unconstrained mesioeit with the equivalent of a variable
gain. Finally, the proposed control laws are tested undeulgition, first in the nominal case and then
using a model of Tore Supra dynamics, where they show adeq@eformance and robustness with

respect to disturbances.

F. Bribiesca Argomedo, C. Prieur and E. Witrant are with @msité de Grenoble / UJF / CNRS, GIPSA-lab UMR 5216, BP
46, F-38402 St. Martin D’'Heres, France. Emdif:ederi co. bri bi esca- ar gonedo, chri st ophe. pri eur,
emmanuel . wi trant }@i psa-| ab. grenobl e-inp. fr

S. Brémond is with CEA, IRFM F-13108, Saint Paul-lez-Dusn€rance. Emailsyl vai n. br enond@ea. fr

February 24, 2012 DRAFT



I. INTRODUCTION

Theoretical Contribution

Parabolic partial differential equations (PDESs), and irtipalar diffusion or diffusion-convection
equations, are used to model a wide array of physical phemamsnging from heat conduction
to the distribution of species in biological systems. Whihe diffusivity coefficients can be
assumed to be constant throughout the spatial domain for appdéications, spatially-distributed
coefficients are needed when treating nonhomogeneous eotaipic (direction-dependent)
media. Unfortunately, extending existing results from loenogeneous to the nonhomogeneous
case is not straightforward, particularly when the tramspoefficients are time-varying.

In this article, the concept ahput-to-state stability(ISS) will be the chosen framework to
study the stability and robustness of a diffusion equatioa circular domain under a revolution
symmetry condition with symmetric initial conditions. Theerest of studying such an equation
is illustrated and motivated by the proposed applicatidmerg a similar equation arises from the
averaging of a 2-D physical equation (representing theutiaol of the toroidal magnetic flux
in a tokamak) over the angle at fixed radius (nested toromugidhses). A comprehensive survey
of ISS concepts, in the finite-dimensional case, can be faond]. ISS essentially implies
guaranteeing some bounded gain between disturbancesoos emd the states of the system.
ISS-like properties in the infinite dimensional frameworing a frequency-domain approach
can be found for example in [2]. Nevertheless, we have faldhe use of a Lyapunov-based
approach to allow for an easier treatment of very generalidiances and errors in the system.

Although the use of Lyapunov functions in an infinite dimemsil setting is not new, see for
example [3], it is still an active research topic. Some ieséing results for parabolic PDEs can
be mentioned: [4], where a Lyapunov function is used to ptbeeexistence of a global solution
to the heat equation; [5], where a Lyapunov function is aueséd for the heat equation with
unknown destabilizing parameters (and subsequent coextehsions [6] and [7]). Lyapunov
based approaches are not limited to parabolic PDEs: Lyapfumztions are used in [8] for the
stabilization of a rotating beam; in [9] for the stabilityadysis of quasilinear hyperbolic systems
and in [10] for the construction of stabilizing boundary trofs for a system of conservation
laws. In particular, in [11] and [12] the interest of using tacs-Lyapunov function to obtain

ISS-like properties is discussed in the parabolic and Hygl&r cases, respectively. The use of
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weighted L? norms (or similar quadratic expressions with a weight) aspiunov functions is
not new and a few examples can be found in [13] (for time delstesns) and [14] (where a
vanishing weight is also used for the control of the magniéitiic equation in a tokamak but not
its gradient).

Some previous works on reaction-diffusion equations inndylcal 2-D domains are, for
instance, [15] and [16] in which boundary control laws areead@ped for the stabilization of
thermal convection loops. However, in both of these adidlee domain considered does not
include the point- = 0, which implies that none of the coefficients in the equatioe singular.

In this article, we develop a strict Lyapunov function foettiffusion equation for a certain
set of diffusivity coefficient profiles. Our main contriboii is that the coefficients are allowed
to be space and time dependent without imposing any conttran the rate of variation of
the coefficients with respect to time. This is an improvema&rér other works that consider
diffusivity coefficients as being space-dependent or tiralgsng but not both simultaneously.
Examples of such approaches are provided by [17], wheretaindiffusion coefficients and
distributed convection coefficients are considered; [iBlere the case of non-constant diffusion
coefficients is treated (for continuous, time-invariangfficients); or [19], where distributed and
time-varying convection coefficients are taken into ac¢quith a constant diffusion coefficient).
Also, stability and robustness of the system under a simptonstrained feedback law (that
includes the open-loop system as a limiting case) were el@rfitom the Lyapunov function,
with results addressing most sources of errors and unogesithat may be present in a real
system. In particular, the following sources of error weoasidered:

« state disturbancesaccounting for example for unmodeled dynamics;

« actuation errors accounting mainly for errors in the actuator models (samib the concept

of controller fragility);

« estimation errors in the state and diffusivity coefficier#scounting for instance for dis-

cretized measurements or uncertain models, as well as ne@asot noise.

Application to the Control of a Tokamak Safety Factor

The motivating application for the theoretical resultsgarged in this article is the development
of a strict Lyapunov function and control laws for the polalidnagnetic flux profile in the Tore

Supra tokamak. This application is particularly intemnegtifor the method developed in this
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article since the diffusivity coefficient profiles dependinia on the temperature profile inside

the plasma, which is rapidly time-varying (more than tenesiaster than the magnetic flux
dynamics), and also on other physical quantities (like iglartdensity and effective electric

charge) that induce large model uncertainties and unmeastisturbances. Furthermore, ne-
glected inputs and unmodeled dynamics provide other sswtelisturbances. The robustness
results obtained from our theoretical contribution allosvta construct a constrained control law
that will preserve ISS properties while taking into accostnbng nonlinear shape constraints in
the distributed control action.

A tokamak is a toroidal chamber lined with magnetic coild thenerate a very strong magnetic
field with both a toroidal and a poloidal component. In thiaiber, a plasma (generally consti-
tuted of Hydrogen isotopes) is confined by strong magnetidsfiso that the fusion reaction can
take place. The relation between the two components of theceged magnetic flux determines
what is known as theafety factor profileor g-profile This important physical quantity has been
found to be related to several phenomena in the plasma, ticygar magnetohydrodynamic
(MHD) instabilities. Having an adequate safety factor peo particularly important to achieve
advanced tokamak operation, providing high confinementMH® stability. A detailed account
of tokamak physics can be found in [20]. An overview of chadles of tokamak plasma control
is given in [21] and [22].

The problem of poloidal magnetic flux profile control is clyseelated, via the Maxwell
equations, to the control of current profiles in the plasnoan& previous results in this areas can
be found in [23], where experimentally identified linear ralsdbased on a Galerkin projection
are used to control multiple profiles in JET; [24], where auest-order linear model is used
to control some points in the safety factor profile; and in][@Bhong other papers, where an
infinite-dimensional model is used to construct an optinegldback controller for the current
profile, albeit considering a fixed form profile for the cutreleposit from the actuators and a
good knowledge of the diffusivity profile.

In particular, some works related to Tore Supra are: [26§h&n overview of control achieve-
ments; [27], where a polytopic LPV approach is used to builcbenmon Lyapunov function
guaranteeing stability of the discretized system with twaeying coefficients; [14], where sum-
of-square polynomials are used to construct a Lyapunouvifmconsidering constant diffusivity

coefficients and [28], where a sliding-mode controller isigeed on the infinite-dimensional
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system, considering constant diffusivity coefficients.

For the application, the method proposed in this articlethasadvantage of not only consider-
ing the diffusivity coefficients as uncertain, but also of bounding their rate of time-variation,
thus reflecting the actual plasma physics in which the teaiper evolves in a much faster
timescale than that of the flux diffusion. A deep robustnessysis has been carried out with
respect to different sources of error that have a prime itapge in the physical system. Finally,
nonlinear constraints in the actuators (representing tmptex coupling between the plasma
and the input wave generated by the radiofrequency antethaf)do not assume a constant
Lower Hybrid current source deposit profile (contrarily t@yous works) are introduced.

This paper is organized as follows. In Section Il, the rafeesdiffusion equation is presented
and the existence and uniqueness of sufficiently regulatisak with time-varying coefficients is
stated. Next, in Section Il the main result is presentedhelg the strict Lyapunov function and
sufficient conditions for exponential stability of the systin anL? sense. In Section IV results
are obtained regarding the robustness of the system wipfeceto several sources of errors
and disturbances. In Section V the results are applied tacdomérol of the poloidal magnetic
flux profile in the Tore Supra tokamak and actuator conssaame added in such a way as
to preserve ISS properties and to maximize the convergesteeof the system within some

admissible limits.

Il. PROBLEM STATEMENT AND EXISTENCE RESULTS

The diffusion equation considered in this article, in itdgoaepresentation with a revolution

symmetry (angle independence) constraift is

n(r,t)

Ct <T7 t) =

[rGe(r, )], + n(r, tu(r,t), V(rt) € (0,1) x [0,T) (1)
with Neumann boundary conditions:

CT(07t) = 07 Vt 6 [07T)

¢(1,t) = 0, Vte[0,T) 2

In this article, for any functioré¢ depending on- and/ort, & and &, are used to denotg’;g and 3%255' respectively;¢

d ! d
representsz ¢ and &’ representsg:-&.
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and initial condition:

C(T7 0) = CO(T>7 Vr € (07 1) (3)

wheren stands for the diffusivity coefficien,(-, ¢) is the state of the system at timeu(-, ) is a
distributed input which can be either a control, a distudegror the sum of both) < 7" < 400
is the time horizon. Hereafter, the dependenceg,af andn on (r, t) will be implicit and omitted
in most equations.

The following properties are assumed to hold in (1):
Pi: n(r,t) >k >0 forall (r,t) € [0,1] x [0,T).
P,: The two-dimensional Cartesian representations aind v are it C'+e=</2(Q) x [0, T1]),

0 < a. <1, whereQ = {(z;,73) € R? | 23 + 23 < 1} as shown in Fig. 1.

Figure 1. Coordinateéz1, z2), (r,6) and domain2 used to define the diffusion equation.

The set of equilibria of (1)-(2) is given by = {Z(r) = K|K € R} (the origin plus a constant).
Since we are only interested in the convergence of the solsittowardS, we will consider
hereafter the evolution of the variable= V(¢ - 7 (where 7 is the unit vector in the radial
direction andV the gradient operator), as defined by:

a=[202] + bl ¥0u0) € 0,1) x 0,7) @)

T

2Here C°<(Q x [0,T]) denotes the space of functions which areHolder continuous irt2, .-Hélder continuous in
[0,T]. P> can be strengthened by assuming thandw are inC>'(Q x [0, T]) which is the case for the physical application
in SectionV'.
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with Dirichlet boundary conditions:

2(0,t) =0, YVt € [0,T)

2(1,t) =0, Vt € [0,7T) (5)

and initial condition:

z(r,0) = z(r), Vr € (0,1) (6)

wherez, = V(- 7.

The objectives of this paper are:

« To guarantee the exponential stability, in the topology fe# £2 norm?, of solutions of
equation (4) to zero, both in open-loop (with = 0) and by closing the loop with a
controlled inputu(-, t);

. to be able to adjust (in particular, to accelerate) the ramovergence of the system using
the controlled input;

« to determine the impact of a controller in the ISS gain in eneg of a large class of
errors. In particular actuation errors, estimation/measient errors and state disturbances
are considered.

To tackle this problem, a strict Lyapunov function will befided in Section Ill. Let us state
first an existence result assuming propertigsand P:

Theorem 2.1: For everyz, : [0,1] — R in C?**<([0,1]), 0 < a. < 1, such thatz(0) =
2(1) = 0, the evolution equation§4)-(6) have a unique solution € C'*eel+ec/2([0, 1] x
[0, 7)) N C%raeltec/2([0,1] x [0, T]).

The proof of this result is given in Appendix A.

IIl. CONTROL LYAPUNOV FUNCTION AND NOMINAL STABILITY

In this section, the input: is considered to be perfectly controlled (without constis) and
a strict control Lyapunov function is developed, allowing to construct a feedback law that
ensures exponential convergence to the origin, at anyetksate, of the solutions of (4)-(6) in

an ? sense.

*The L? norm of ¢ on a domaint, will be denoted agi¢|[r = ( fde)l/p for 1 <p< oo
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A. Candidate Control Lyapunov Function

Given f : [0,1] — (0, 00), a positive function with bounded second derivative, letossider
a candidate control Lyapunov function for the system (4hvabundary condition (5) and initial

condition (6) defined, for alt in L?([0,1]), b
/ (e ™)

Remark 3.1: Since f(r) is positive and continuous o, 1], the weighted nornfjz(-)||; =

V(z(-)) is equivalent to the usuadl? norm. In particular, it verifies:

fmzn fmax

12z < M=)l < 12l 2 (8)

where fr,q; = max,cjo,1) f(r) and fr;, = min,cjo,1) f(r).
Theorem 3.2: If there exist a positive functiorf : [0,1] — (0, c0) with bounded second

derivative, and a positive constantsuch that the following inequality is verified:

P+ 70) o =] +10) [0t 0] < —ago) Ve e D x 0T @

7’2
then the time derivativé” of the functionV defined by(7) verifies:

V < —aV(z( / f(r) nu], z(r,t)dr, ¥t € [0,T) (10)

along the solutions of4), (5), (6).
Proof: Since Theorem 2.1 guarantees the existence of solutior®) teu¢h thatl’(z(-,¢))
is differentiable with respect to time, the derivativelofalong those trajectories is:

V- /O )

= T+ T+ Ty (11)
with:
fo= [ b
T, = /lf()(nr[zr+1z}z+n[1 %z}z)dr
T, — / P nzzmdr
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Term T, can be rewritten as:

1 1
toe [ 10 o] s [ sima

Integrating by parts we get:
1 1 1 1 1 1 1

Ty = = f(r)nz* ‘1/QWUM—XW“‘/)f@ﬁ%ﬂ%m“+/)fUMM%dr
r o Jo r 0 r 0

and, using the boundary conditions (5), implies:

Ty = — /0 1 ff(r)n%fdr— /O 1 f(r)n%zzrder / () 22 dr

1
0
Integrating by partds, the following equation is obtained:
1 1
Ty = fomzzly = [+ ) zadr = [z
0 0

which, considering again the boundary conditions (5), bexs

T, = - / P+ Fr)m) zdr — / £ (r)nz2dr

From (12) and (13), (11) can thus be written as:

1 1
V=T Ti- [ o [ pemsr
0 r 0
with:
! 1
1= [~ = Fom]
0

Integrating by partd}, the following equation is obtained:

T, = 5£<—f&ﬁéi—f%ﬂn)zz

1

2

0

5 [ (570 = om + £ = om0 )

and the boundary conditions (5) imply that:

1
1= [ (POt + 10t = Fen s+ £+ Fom.)

Using (15), (14) is equivalent to:
1 1
Vo= / f(r) [m-u + nu,] zdr —/ f(r)nz2dr
0 0

1
b3 [ (=@ + e = o+ P+ £on,) 2
0
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10
From (9) and the definition of the Lyapunov candidate funtctid6) provides the inequality:

V < —aV(z(-,1) —i—/o f(r) [nul,. zdr —/O f(rynzidr, ¥t €10,7T) 17)

which implies the inequality (10), thus concluding the @grob Theorem 3.2. [ |

Remark 3.3: The last term in equatiofll7) can be bounded in order to obtain exponential
stability of the system with a rate+ ¢, wheree is a positive constant given by the application
of Poincaré’s inequality, the lower bound gf and some bounds oh However, for the physical
application described in Section V, the rate of converganutained adding this term is almost
the same as the value ofthat can be obtained by adequately solving the differemieduality
in Theorem 3.2.

Remark 3.4: For a large class of diffusivity profiles, the differentiadeiquality in Theorem
3.2 has easily computable solutions: wheneygr — 5 < —k for somek > 0 and all (r,¢) €
[0,1] x [0,T") (for example, if the spatial derivative of the diffusivityedficient remains non-
positive), a constanj satisfies(9). For our motivating application however, this condition is
not satisfied. Section V presents a suitable numericallypcted weight satisfyingl0) for the
application. A heuristic method to compute such weightgherparticular case of exponential

diffusivity coefficient profiles is provided in [29].

B. Some Implications

Corollary 3.5: [Global Exponential Stability] If the conditions of Theone3.2 are verified,
and ifu(r,t) = 0 for all (r,¢) in [0,1] x [0,7"), then the origin of the syste(d) with boundary
conditions(5) and initial condition(6) is globally exponentially stable. The rate of convergence
is —a/2 in the topology of the norni?, i.e.: ||z(-, )|z < ce™2!||z|| .2 for a positive constant
c= ’;n—“n where f,.... and f,,;, are defined as in Remark 3.1, and for ak& [0, 7).

Proof: From Theorem 3.2, and settingr, ¢) = 0 for all (r,¢) in [0, 1] x [0, T"), the following
inequality is obtained:

V < —aV(z(-,t), Yte [0,T)

Therefore, considering the functian— V' (z(-,t)) and integrating the previous inequality over

time implies that:

Vi(z(+, 1) < e *V(z(r)), Vt €[0,T)
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11

and consequently:
12, 0)lls < e %|zolly, VE € [0,T)

Since the nornj|- || is equivalent to the usudl* nornt as shown in Remark 3.1, Corollary 3.5
follows. [ |

Corollary 3.6: [Convergence rate control] If the conditions of Theorem &2 verified, and
consideringu = u.,; Whereu.,, is chosen, for all(r,t) € (0,1) x [0,T), as:

uctrl(rv t) = _% Ar Z(pv t)dp (18)

with v > 0 a tuning parameter, then the systdd) with boundary conditiong5) and initial
condition (6) is globally exponentially stable. Its convergence rate-i8/2 = —(a + v)/2, in
the topology of the norni.?.

The proof of this corollary is similar to that of Corollary53.using Theorem 3.2 and the fact
that [ u] = —7yz for all (r,t) € [0,1] x [0,T).

V. INPUT-TO-STATE STABILITY AND ROBUSTNESS

Let us first consider the effect of disturbing equation (4)itgluding a termw as follows:

2 = [g [rz]r] + [nu], +w, Y(r,t) € (0,1) x [0,T) (19)

T

wherew is a function of(r, ¢) and the following property is assumed to hold:

P3: The two-dimensional Cartesian representationvdbelongs toC<</2(Q) x [0,T7),

0<a. < 1.

Proposition 4.1: [Disturbed version of Theorem 3.2] Let the conditions of drieen 3.2 hold.
Then, along the solution t(19), (5), (6), the following inequality holds:

V < —aV(z(-,1) +/0 f(r) [nu], zdr —i—/o f(r)ywzdr, ¥t € [0,T) (20)

This fact follows from Theorem 3.2, by using (7) and notingttﬁﬁ(lg) = V|(4) + fol f(rwzdr
whereV|(19) and 1'/‘(4) stand for the derivative of along the solution of (19) and (4), respectively,

with boundary conditions (5) and initial conditions (6).

“For generality purposes, results in this article are statedrms of usual norms. It should be noted, however, thatéhalts

stated in|| - ||; norm are less conservative.
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Theorem 4.2: [ISS] Let the conditions of Proposition 4.1 be verified anshgider u = .,
as defined in Corollary 3.6. The following inequality holds the evolution of the syste(i9)
with boundary conditior(5) and initial condition(6), for all ¢ € [0,7):

t
(. B)llze < ce™ 20112 + C/ 2 (-, 7) |2 (21)
0

with ¢ = J}:‘” Jmaz = max,cpo] f(r) and frm = min.epoq) f(r).
Proof: From Proposition 4.1 and Corollary 3.6 we have, along thaetsmi of (19), (5), (6):

V< -BV(z /\f )2(r,t)|dr, ¥t € [0,T)

The function f being positive and using the Cauchy-Schwarz inequalityftlewing upper

bound is obtained:

Vo< =BV EEE) + IV GV Fol D) e
= =BV 1)+ 20200 pllwl Dl VE€[0,T)
Defining X (2(-,t)) = /V(2(-,t)) = ||2(-, t)||; > 0 this inequality implies:
2X (2( )X < =BX(2(, 1) + 2X (2(-, 1)) [lw(-, )|, ¥t €[0,T)
where X = £ X (z(-,1)).
If X(z) =0, thenV(z) =0 andV = 0. Otherwise we may divide both sides of the previous
inequality by2X (z(-,¢)) to get:
X < DX 0) + 0y, Ve 0.7)
From the last equation, by easy calculations, we get:

l2C8)lly < ezl + /Ot e 20D (-, )| (22)
which in turn implies the desired result. [ ]
Corollary 4.3: [Actuation errors] In addition to the conditions in Theore®2, we consider
U = Uge — (1, t), With uy,., as defined in Corollary 3.6 ane(r,t) a distributed actuation
error verifying the regularity conditions stated i,. Then, withw = 0, the following inequality
holds:

t
HZ('vt>HL2 < C€_§t||ZO||L2 + cmax{nmamnr,max}/ e_g(t_T)H‘gu("T)HHldT? vt € [07T> (23)
0

®The H' norm of ¢ on [0, 1], will be denoted agié|| ;1 = [|€]| 12 + || 25 |2
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With ez = SUP (. ye0.11x0,) | 1 s Mrmaz = SUP(pepayx 0.1 | 1 |-
The proof of Corollary 4.3 is directly obtained by replacingby [n"], in Theorem 4.2.
Corollary 4.4: [Estimation errors in thez profile] Assume that the conditions of Theorem 3.2
are verified and consider the control defined in Corollary Bl substituting: by an estimate,
Z(r,t) = z(r,t)—e*(r,t) for all (r,t) € [0,1] x[0,T"), with *(r, ) being a distributed estimation

error verifying the regularity conditions stated i;. The following inequality is then verified:
t
12, )2 < ce™ 2ol 2 + e / 20| 7) | pedr, Vit € [0,T) (24)
0

Corollary 4.4 follows readily by replacing by ~¢* in Theorem 4.2.

Proposition 4.5: [Estimation errors in they profile] Assume that the conditions of Theorem
3.2 are verified and consider the control defined in Corollaiy but substituting by an estimate,
n(r,t) =n(r,t)—e"(r,t) forall (r,t) € [0,1] x[0,T), with"(r, t) being a distributed estimation
error verifying the regularity conditions stated i,. The following inequality is then verified:

I2(- 8|2 < ce™ 2"zl 2, ¥t € [0,T) (25)
where ' = 8+ infeio.or) (5 ) = 29¢5uDyeior 1) 12
Proof: Since the conditions of Theorem 3.2 are assumed to be vetdiegply Corollary

3.6, inequality (10) holds. The contralin Corollary 3.6 withn) becomes:
u= —z/ z(p, t)dp
0
This implies:

77 T
o = —77/ z(p, t)dp
nJo
n+en ["
= —7— /Z(/),t)d/)
n 0

T 877 T
= —v/ Z(m)dp—vf/ z(p, t)dp
0 n Jo

Differentiating with respect to the spatial variable:
e el "
ml, = =12 =527 | 5| [ Ao (26)
n nirJo
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Substituting (26) in (10) the following inequalities aretained for allt € [0,7):

V < —aV(z) /f 2dr—/f

[ ([ o)

: _(ajW)V(Z)_ert)e[énufxoT <€">}/ f)tdr
= ) H ( |+ t)dp) sdr

<

- (5 7 Lr,we[él,lufx 0.1) (%)D Vi)
i [ [2] ([ totran) -
B (ﬁ o [(rt)e@rhfxw @) D Vi)
[l ([ 14
B (5 o [(m)e[énufx[ 01) (?) D Vi)

1 n
oyl / £ H :

dr

IA

IN

dr

Applying the Cauchy-Schwarz inequality on the integrahteand on theL! norm of z it
implies that, for allt € [0, T):

. ) en

V<= (57| i o (5)]) VGG 20

(rt)€0,1]x[0,7) \ 7 [?L || ( )Hf
Using the equivalence betwedn ||; and the usual? norm, the previous inequality can be

i,
5,

) V(z(-,t)), vt € [0,T)

rewritten as:

5 (551 bt ()] e S

which in turn implies:

. e
< — inf - : 2 )12
Ve (sr| it (5)]) ety st

g
/f/ r

. n
vV < - 5—|—7[ inf (67)] — 2y¢ sup
(T’,t)E[O,l] X [OvT) n tG[O,T)
February 24, 2012 DRAFT
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and using the same arguments as in the proof of Corollaryt3rbplies the desired result.m
Remark 4.6: Although finding a stabilizing control law for systef#)-(6) considering un-
constrained in-domain actuation is quite simple, the maitenest of Sections Ill and IV lies
in the fact that the stability of the open-loop system is gusged while giving a precise
characterization of the impact of the control action in tHesed-loop behaviour of the system,
both in terms of rate of convergence and ISS gains. Furthexntloe fact that the ISS inequalities
hold for the open-loop system is crucial for the applicatiopesented in Section V, since it
also implies that stabilizing control laws can be fouddspite strong shape constraints on the
admissible control actioimposed by the physical actuators (represented in Sectitnby a
nonlinear function of the two available engineering paraenge in the LH antennas that can

only take values in bounded sets).

V. APPLICATION TO THE CONTROL OF THEPOLOIDAL MAGNETIC FLUX PROFILE IN A

TOKAMAK PLASMA
A. Physical Model

Inside the toroidal chamber of a tokamak, the poloidal magrikix in the plasma, denoted
Y(R, Z), is defined as the flux per radian of the magnetic figldk, Z) through a disc centered
on the toroidal axis at height, having a radius? and surfaceS, as depicted in Fig. 2. As the
safety factor scales basically as the ratio of the normélraglius to poloidal magnetic gradient,
controlling the latter allows controlling the safety facfwofile, which is an important physical
heuristic that relates to the plasma Magnetohydrodynalkhitd) stability and possible enhanced
energy confinement. For a discussion on advanced tokamalkrsag, refer for instance to [30],
[31], [32].

In order to apply our analytical results, a simplified moaelthe magnetic flux profile in its
one-dimensional representation is considered. Its dycgarie given by the following equation
[33]:

U

T]HCQ 77Hp <0203) T}||VpB¢O .
= —5 + ——=Jni 27
#oCs " oC3 \ p pwp FCy 7 @7

where p = 1/7”;7; (¢ being the toroidal magnetic flux an8,;, the toroidal magnetic field
0

at the center of the vacuum vessel) is an equivalent radidexing the magnetic surfaces,
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S (R.Z)

~

By

Figure 2. Coordinate$R, Z) and surfaces used to define the poloidal magnetic fluxR, Z2).

n is the parallel resistivity of the plasma, the source tggnrepresents the current density
profile generated by non-inductive current sourgesjs the permeability of free spacé; is
the diamagnetic functiorn’, and C; are geometric coefficients;, is the spatial derivative of
the plasma volume anf,, is the toroidal magnetic field at the geometric center of tasmpa.
Some important variable definitions are given in Table I.

Neglecting the diamagnetic effect caused by poloidal eusrand using a cylindrical approxi-
mation of the plasma geometry €< Ry, whereR, is the major plasma radius) the coefficients

in (27) simplify as follows:

F ~ RyBy,, Cy=Cy= 47T2R#, V, = 4r2pR,
0

Defining a normalized spatial variabte= p/a, wherea (assumed constant) is the equivalent
(minor) radius of the last closed magnetic surface, the Hieg model is obtained as in [34],

[35]:
n(r,?)
foa?

wt (Ta t) =

with the boundary conditions:

(1 + 700 ) 4 ) a0 28)

¥,(0,8) =0
and [
un(1,1) = —To2 L) (29)
where, is the total plasma current, and with the initial condition:
¥(r,to) = to(r) (30)
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Variables Description Units
P Poloidal magnetic flux profile Tm?
10} Toroidal magnetic flux profile Tm?
q Safety factor profile; = d¢/dy
Ro Location of the magnetic center m
By, Toroidal magnetic field at the center T

P Equivalent radius of the magnetic surfaces m

a Location of the last closed magnetic surface m

r Normalized spatial variable = p/a

t Time s
1% Plasma Volume m?
F Diamagnetic Function Tm

Ca, Cs Geometric coefficients

ull Parallel resistivity Qm

n Normalized diffusivity coefficienty; /(p0a”)

1o Permeability of free spacetr x 1077 Hm™!
Jni Non-inductive effective current density Am =2

j Normalized non-inductive effective current densitya®Rojn

Jo Effective current density Am~?2
oo Inductive current density Am ™2
Jeced ECCD current density Am ™2
Jin LHCD current density Am ™2
Jbs Bootstrap current density Am ™2
I, Total plasma current A
P, Lower Hybrid antenna power w
Ny Hybrid wave parallel refractive index

Table |

VARIABLE DEFINITION

For the purposes of this articlg,; is considered as having one main component, which is the
LHCD (Lower Hybrid Current Drivg current depositj;,. The extension to other non-inductive
actuators is possible with minor modifications. Considgtime evolution of the system around
an equilibrium(@, j) and assuming an ideal tracking of the total plasma curréetetolution
of ¢ is given by (1)-(3). Defining: = V- 7, n = n/(0a?) andu = j, wherey = ¢ — 1)
andj = j — j, propertiesP;, P, and P; hold, and thus the results of sections Il and IV apply.
Furthermore, the implementation of a state-feedback isiplesdue to the online availability of
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the magnetic flux profiles using the Equinox code, see [36].

B. lllustration of Stability: Numerical computation of thgapunov function

0.25¢

0.2

0.15f

Weighting function f(r)

0.1p

0.051

0 0.2 0.4 0.6 0.8 1
Radius (normalized)

Figure 3. Functiory verifying the conditions of Theorem 3.2 for an exponentjalith time-varying parameterg.,:, = 0.001,
frmaz = 0.2823.

In order to test the proposed control law in Corollary 3.6tfee nominal system, we consider
an identified estimate of the normalized plasma resistiyity, t) = A(t)e*®”, with A(t) =
0.0107 — 0.0014 cos 407t and A\(t) = 6.1 4 0.8 sin 20t for all ¢ € [0, 7). In particular0.0093 <
A(t) <0.0121 and4.3 < A(t) < 6.9 for all t € [0, 7). The limits for the variations were chosen
from data extracted from Tore Supra shot 35109, describe@4h A function f satisfying
the conditions of Theorem 3.2 for these valuesnohas been numerically computed using
Mathematica. It is depicted in Fig. 3. It should be noted,thrapractice, the knowledge of these
coefficients does not need to be exact. It is enough to find ammmweighting function/ valid
on a rich enough set of profiles (and thus on convex combimgiid those profiles). Moreover,
sincecx in (9) is positive, it provides a robustness margin with eztgo small numerical errors.

Using this f, the time-evolution of equation (4) with boundary condisd5), initial condition
(6) and of the associated Lyapunov functigrwithout control action4.;,, = 0), for an arbitrary
numerical value of the initial condition, is shown in Fig. Phe guaranteed convergence rate
is indeed respected but is conservative. This is not ungéggesince inequality (9) holds for all
values ofr and the central and edge diffusivities vary considerabllm@at by a factor 1000).

Finally, the response of the system using the control defin&gbrollary 3.6, withy = 1.6 is

shown in Fig. 5. Comparing Fig. 4 (c) and Fig. 5 (d) we can vettiiat the exponential decrease
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0.5[Tm]

0.5¢

0.4r

0.3f

0.2

dius (normalized)
Distributed state z [Tm]

01 |

0 0.2 0.4 0.6 0.8 1
Time Radius (normalized)

(a) Contour plot of the solution to the PDE. (b) Time-slices of the solution to the PDE.

1

15 2 25
Time

(c) Normalized evolution of the Lyapunov function.

Figure 4. Response of the nominal system without contrabact

of V' with the control defined in Corollary 3.6 is indeed increabgdht least=="¢, in agreement
with the theoretical results.

C. lllustration of ISS property: Tokamak Simulation withddnstrained Controller

In order to test the controller defined in Corollary 3.6 in arencealistic setting, not only
considering the evolution of the diffusion equation butoatee dynamics of the diffusivity
coefficients and other system parameters, the simulat@epted in [34] was used to test the
behaviour of the system under the effect of disturbancesnagtected inputs. In particular, the
effect of the variation of the so-called bootstrap currenplasma self-generated current source
proportional to the inverse of the magnetic flux gradient ih&roduces a nonlinearity in the
system dynamics) around the equilibrium and the Electronld@yon Current Drive (ECCD)

input, turned on foR s< ¢ < 20 s, act as unknown exogeneous current sources in the evolutio
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0.4[Tm]

adius (normalized)
Distributed state z [Tm]

0 0.2 0.4 0.6 0.8 1

Time Radius (normalized)
(a) Contour plot of the solution to the PDE. (b) Time-slices of the solution to the PDE.
1
1 0.9
0.8
€ Loz
; é 0.6
= ._% 0.5/
= >
8 2 0.4r
g 0.3¢
0.2f
0.1
0 0.5 1 15 2 25
Radius (normalized) Time Time
(c) Evolution of the controk.. (d) Normalized evolution of the Lyapunov function.

Figure 5. Response of the nominal system with unconstraioettol action { = 1.6).

equation. For a rigorous treatment, they can be consideyetisturbances both in the state and
input (as in Theorem 4.2 and Corollary 4.3). The variatiothef resistivity coefficients is caused
mainly by variations in the temperature profile, which iseatéd by the LH antenna.

The original equilibrium was chosen from experimental ddtawn from Tore Supra shot
35109. The effect of the ECCD antennas was overemphasizeddar to better illustrate its
action on the state and the Lyapunov function (the power énsimulation was chosen as three
times the actual capacity of these actuators). A contrgierametery = 0.75 was found to
yield acceptable results (both in terms of the amplitudehefdontrol and the effect of the noisy
measurements in the system). The results are shown in Figitl®,control action starting at
t = 16 s and the corresponding values of the physical variableal{golute terms) can be seen
in Fig. 7. While a steady-state error remains when the ECCHurised on, it is significantly

reduced by the feedback action. The convergence speedisa@iliceably improved.
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(c) Normalized evolution of the Lyapunov function.

Figure 6. Response of the disturbed system, disturbandeedai ¢
action beginning at = 16 s (y = 0.75).
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(a) Evolution of the physicaVy profile.

LHCD input , [A/m®)

= 8 s and removed at= 20 s with unconstrained control
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(b) 7i» input equivalent to the contral.

Figure 7. Response of the disturbed system, disturbandedmit = 8 s and removed at= 20 s with unconstrained control

action beginning at = 16 s (y = 0.75).
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D. Exploiting the Lyapunov Approach: Tokamak Simulatiothv@onstrained Controller

In view of a possible implementation of the control law in alreokamak experiment, strict
constraints have to be imposed on the control action. Feraplication, the actuator considered
is the current current density generated by the lower hyedes. This current deposit profile
Jin(r, t) depends on two main physical parameters: the power detil®réhe antennas), (t) and
the parallel refractive indexV(¢). In Tore Supra two LH antennas exist and their parameters
may vary in the following mannerP;,; < 1.5 MW, Py, < 3 MW, N, € [1.43,2.37] and
Ny € [1.67,2.33]. However, in this paper only one set of parametefs,, V) is used to
derive a controller that illustrates the usefulness of thietrol Lyapunov function, as defined in
Proposition 4.1, from a practical standpoint.

Based on Proposition 4.1, we propose to choose, at each tepe & couple(P;;,NlT) as

follows:

1
(Pﬁl,Nﬁ) =arg min /0 f(r) [nu(Plh, NII)]T zdr (32)

(Pin,N)eU

subject to the constraints:

1
0= [ 1) [t P N, 2 = =V ) (32)

whereld = [P mins Pihymaz] X [N);min, Njmaz] @ndu : U — C*([0, 1]) is a nonlinear function
representing the relation between the engineering paeasand the variations in thg, profile
as presented in [34].

Remark 5.1: The inequality in the left-hand side dB2) guarantees that the worst case
of the optimization scheme j)%l flr) [nu(P;;L, Nﬁ*)der = 0. In other words, the closed-loop
system verifies the ISS inequalities of Theorem 4.2 and I@oyal.3 for a value of3 > «. The
inequality in the right-hand side of32) is not necessary for the stability of systé#)-(6), but
aims to limit the contribution of the controller on the raté @onvergence of the closed-loop
system. If, for all time, there existy;,, N|) € U such that the control proposed in Corollary 3.6
is exactlyu(Py,, Ny), then it is a solution to the constrained optimization peshl

Since solving this optimization problem analytically istguifficult, a numerical method using
a gradient-descent algorithm on the discretized paransgi@ce was implemented in practice.
As the state dynamics describe the system deviation fromgaitil@ium, choosingu = 0 (i.e.

(P, Nj) = (Pu,, Ny)) always gives a feasible starting point. In general, we migt find a
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solution of the proposed problem (31), and we could have lpnod facing local-minima, but
under simulation with data taken from Tore Supra shots 35t 31463 (the first generated
by modulating the LH power, the second including also ECCiioag the results are satisfying.
The values of: andu, for the different vertices of the parameter grid were caltad off-line
to allow real-time control. In this case, the mean time takgrthe algorithm to determine the

control values wag32 ps using a Matla® function running on a processor at64 GHz.

B i S i ]
N o
2 215t
o £
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2E g
3 B 1
° z
&)
0.5f — P, IMW] |
- NII
X 0 L L L L L
Time 30 1 Radius (normalized) 0 5 10 Timgs 20 25
(a) Evolution of the z profile in time. (b) Antenna parameters used to calculate the control
input.
1 T T
1 1
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- 7 3 1 1 1
05 $.0.31 1 R 1
30 - 1 R 1
1 0.2F ! ! 1
1 ! !
S - 06 01k 1 ' 1
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(c) Evolution of the actuaj;, applied to the system(d) Normalized evolution of the Lyapunov function.

Figure 8. Response of the disturbed system, disturbandeedpgi¢ = 8 s and removed at = 20 s with constrained control

action beginning at = 16 s (y = 0.6).

For the first simulation, using an equilibrium point takeonfr Tore Supra shot 35109, we
introduce a disturbance as in the previous section, casrelpg to three times the maximum
ECCD power for8 s< t < 20 s and then activate the control fat 16 s to attenuate its effect.

Results are shown in Fig. 8. It can be seen that, despite th&traimnts, the attenuation of the
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disturbance is very effective, with the value of the Lyapufnction rapidly reduced once the
feedback control is activated. The control value was ugbtletery0.1 s, which is much greater
than the required computing time.

The second proposed scenario is a change of operating pduere both equilibria were
drawn from Tore Supra shot 35109. Control action starts-att s and the change of reference
is applied att = 17 s. The results can be seen in Fig. 9. It is interesting to seddhaviour of
the Lyapunov function under the constrained control: eveugh an exponentially decreasing
upper bound exists, the actual shape is more irregular thémei unconstrained case (similar to

a time-varying gain guaranteeing at all times a negativevatre for the Lyapunov function).

=
o

[Tm]
N

Distributed state z
Control parameters

0.5¢ — P, IMW]
- NH
0 ‘ ‘ ‘ ‘ ‘
Time 30 1 Radius (normalized) 0 5 10 Tim;s 20 25
(a) Evolution of the z profile in time. (b) Antenna parameters used to calculate the control
input.

LHCD input j, [A/m?]
8o o 3
b
Lyapunov Function V(z)
© © o o o o o
= N w B & (2] ~

0 5 10 15 20 25

Time (] Radius (normalized)

(c) Evolution of the actuaj;, applied to the system(d) Normalized evolution of the Lyapunov function.

Figure 9. Response of the system, change of reference dmilie= 17 s with constrained control action beginningtat 4 s

(y = 0.6).

Finally, a more complicated tracking scenario is proposdtkre a time-varying reference is
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generated from Tore Supra shot 31463 (which involves botlabh&i ECCD action). Furthermore,
only one equilibrium point is calculated, correspondingthe mean value of the parameters
applied during the shot instead of one for each point of thgd¢tory. Fig. 10 represents (a) the
mean tracking error, (b) the values for the engineering rpatars of the LH antenna, (c) the
LH current deposit profile, (d) the safety factor profile ahd turrent profiles at two different
times (e) and (f). This result illustrates the robustnesthefcontroller with respect to deviations

from the calculated equilibrium (used in the computatiorinef feedback).

VI. CONCLUSION

In this paper, a strict Lyapunov function was found for awfbn equation with time-varying
distributed coefficients. This function guarantees song p&perties for the system and allows
for the construction of simple control laws that maintairesld properties and improve the
performance of the system. A particularly important cdmition was a robustness study of
the system with respect to disturbances and errors in theehadl measurements, since for
most physical applications the exact values and behavibtieodiffusivity coefficients is not
well known. Another contribution is the consideration oé tthistributed and time-varying nature
of these coefficients in the nominal scenario without c@msing their rate of variation. Finally,
the proposed Lyapunov function design was applied to th&rabof the gradient of the poloidal
magnetic flux profile in the Tore Supra tokamak, with the ofdyecof safety factor regulation.

Future work will be devoted to the implementation and tegtif the proposed constrained
control law with a more complex simulation code, METIS amd@RONOS, see [37], [35]
respectively. These codes include energy and momentunecat®n laws as well as refined
plasma/wave interaction descriptions for the antennameSeffort will also be devoted to the
estimation of the diffusivity coefficients in view of an expeental implementation on Tore

Supra.

APPENDIX

Proof of Theorem 2.1:This proof is organized as follows:

(@) First, an auxiliary problem in two-dimensional Carégscoordinates under symmetry con-

ditions is formulated.
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(b) Next, the existence and uniqueness of solutions to thxdiany problem is shown using
Theorem 5.1.21 and Corollary 5.1.22 in [38] (pages 206-20@)ich in turn imply the
existence and uniqueness of solutions to the problem {4)-(6

(a): Consider the following two-dimensional Cartesianibamy system:
C(xy, xa,t) = n(xy, 2, ) A (21, 22, t) + F (21, 29, 1), V(21,29,t) € Q x [0,T) (33)
with symmetric boundary condition:
Gy, m9,t) = 0, V(xy,29,t) €002 x[0,T) (34)

where(, is the derivative of, in the outward normal direction t@(2, and with symmetric initial
condition¢, € C3t*<(Q), 0 < a, < 1:

C(Jfl,l’g, O) = Co(l’l,l’g), V(Jfl,l’g) cN (35)

whereA is the LaplacianF'(z1, xo,t) = n(z1, e, t)u(zy, o, t). This system is equivalent, when
imposing a central symmetry condition and sufficient regtyl@f the initial condition, to (1)-(3).
(b): To apply Theorem 5.1.21 and Corollary 5.1.22 in [38]g@s 206-208) it must be shown
first that the diffusive operators verify a uniform elligticcondition in€2. This is trivially verified
as a direct consequence Bf and therefore Theorem 5.1.21 gives the existence and umegse
of solutions and Corollary 5.1.22 establishes the desiegdlarity (such that the gradient is in
C?reeltac/2(Qx [0, T1)). This degree of regularity is sufficient to ensure thatredl integrals used
for the definition of the Lyapunov function and its time deative are well defined. This concludes
the proof of Theorem 2.1. |
Existence, uniqueness and regularity results are alsd wdden the control input is of the form
proposed in Corollary 3.6 (which amounts to a feedback invidréable (). and can extend to
certain forms of non-homogeneous boundary conditionskih#m the structure of the operators

considered in [38].

REFERENCES

[1] E. D. Sontag, “Input to state stability: Basic concepigl aesults,” inNonlinear and Optimal Control Theory Berlin:
Springer-Verlag, 2007, pp. 163-220.
[2] B. Jayawardhana, H. Logemann, and E. P. Ryan, “Infiniteetisional feedback systems: the circle criterion andtitgu

state stability,"Communications in Information and Systemal. 8, no. 4, pp. 413-444, 2008.

February 24, 2012 DRAFT



(3]

(4]
(5]

(6]

(7]

(8]

9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

28

R. A. Baker and A. R. Bergen, “Lyapunov stability and Lympv functions of infinite dimensional systemd$EEE
Transactions on Automatic Contyolol. 14, no. 4, pp. 325-334, August 1969.
T. Cazenave and A. HarauAn introduction to semilinear evolution equationsOxford University Press, 1998.

M. Krstic and A. Smyshlyaev, “Adaptive boundary contfor unstable parabolic PDEs—part |: Lyapunov desidBEE
Transactions on Automatic Contyolol. 53, no. 7, pp. 1575-1591, August 2008.

A. Smyshlyaev and M. Krstic, “Adaptive boundary contfol unstable parabolic PDEs—part |I: Estimation-basedgtess’
Automatica vol. 43, no. 9, pp. 1543-1556, 2007.

——, “Adaptive boundary control for unstable paraboli®Ps—part Ill: Output feedback examples with swapping
identifiers,” Automatica vol. 43, no. 9, pp. 1557-1564, 2007.

J.-M. Coron and B. d’Andréa Novel, “Stabilization of atating body beam without dampinglEEE Transactions on
Automatic Contralvol. 43, no. 5, pp. 608-618, May 1998.

J.-M. Coron, G. Bastin, and B. d’Andréa Novel, “Dissipatboundary conditions for one-dimensional nonlineardrplic
systems,”SIAM Journal on Control and Optimizatipwol. 47, no. 3, pp. 1460-1498, 2008.

J.-M. Coron, B. d’Andréa Novel, and G. Bastin, “A stricyapunov function for boundary control of hyperbolic syste
of conservation laws,JEEE Transactions on Automatic Contralol. 52, no. 1, pp. 2-11, January 2007.

F. Mazenc and C. Prieur, “Strict Lyapunov functions gamilinear parabolic partial differential equationsfathematical
Control and Related Fieldsvol. 1, pp. 231-250, 2011.

C. Prieur and F. Mazenc, “ISS-Lyapunov functions fongi-varying hyperbolic partial differential equationsfath. Control
Signals Systems, to appe&012.

M. M. Peet, A. Papachristodoulou, and S. Lall, “Positforms and stability of linear time-delay systemSJ/AM Journal
on Control and Optimizationvol. 47, no. 6, pp. 3237-3258, 2009.

A. Gahlawat, M. M. Peet, and E. Witrant, “Control and ifieation of the safety-factor profile in tokamaks using safn-
squares polynomials,” iProceedings of the 18th IFAC World Congress. Milan, Italyigust, 2011.

R. Vazquez and M. Krstic, “Explicit integral operataefdback for local stabilization of nonlinear thermal catign loop
PDEs,” Systems & Control Lettersol. 55, pp. 624-632, 2006.

——, “Boundary observer for output-feedback stabtiiiaa of thermal-fluid convection loop/EEE Transactions on Control
Systems Technologyol. 18, no. 4, pp. 789-797, 2010.

A. Smyshlyaev and M. Krstic, “Closed-form boundary tetdeedback for a class of 1-D partial integro-differential
equations,"IEEE Transactions on Automatic Contralol. 49, no. 12, pp. 2185-2201, 2004.

——, “On control design for PDEs with space-dependeffifludivity or time-dependent reactivityAutomatica vol. 41,

pp. 1601-1608, 2005.

R. Vazquez and M. KrsticControl of Turbulent and Magnetohydrodynamic Channel Rddoundary Stabilization and
State Estimationser. Systems & Control: Foundations & Applications. Biikker, 2008.

J. Wesson;Tokamaks3rd ed., ser. International Series of Monographs on Phykl8. Oxford University Press, 2004.
A. Pironti and M. Walker, “Control of tokamak plasmas$EZEE Control System Magazine, 25(5) 2005.

M. Walker, D. Humphreys, D. Mazon, D. Moreau, M. Okabslyia T. Osborne, and E. Schuster, “Emerging applications
in tokamak plasma controlfEEE Control Systems Magazineol. 26, no. 2, pp. 35-63, 2006.

L. Labordeet al, “A model-based technique for integrated real-time profibatrol in the JET tokamak,Plasma Phys.
Control. Fusion vol. 47, pp. 155-183, 2005.

February 24, 2012 DRAFT



[24]

[25]

[26]
[27]

(28]

[29]

[30]
[31]

[32]
[33]

[34]

[35]
[36]

[37]
[38]

29

D. Moreauet al,, “Real-time control of the g-profile in JET for steady stattvanced tokamak operationNucl. Fusion
vol. 43, pp. 870-882, 2003.

Y. Ou, C. Xu, E. Schuster, T. C. Luce, J. R. Ferron, M. L.Ikga and D. A. Humphreys, “Optimal tracking control of
current profile in tokamaksJEEE Transactions on Control Systems Technalegy. 19, no. 2, pp. 432—-441, March 2011.
P. Moreauet al., “Plasma control in Tore SupralPusion Science and Technologyol. 56, pp. 1284-1299, October 2009.
F. Bribiesca Argomedo, C. Prieur, E. Witrant, and S.rBoéd, “Polytopic control of the magnetic flux profile in a tokak
plasma,” inProceedings of the 18th IFAC World Congress. Milan, Itayigust, 2011.

0. Gaye, E. Moulay, S. Brémond, L. Autrique, R. Nouddks and Y. Orlov, “Robust stabilization of the current deofn
tokamak plasmas,” iRroceedings of the 50th IEEE Conference on Decision andr@land European Control Conference
2011.

F. Bribiesca Argomedo, E. Witrant, and C. Prieur, “Ityporstate stability of a time-varying nonhomogeneousudife
equation subject to boundary disturbances,Pimnceedings of the American Control Conference, Montr€ahada 2012.

T. S. Taylor, “Physics of advanced tokamakBjasma Phys. Control. Fusigwol. 39, pp. B47-73, 1997.

C. Gormezano, “High performance tokamak operatiorimeg,” Plasma Phys. Control. Fusiorvol. 41, pp. B367-80,
1999.

R. C. Wolf, “Internal transport barriers in tokamak gfaas,”Plasma Phys. Control. Fusigwol. 45, pp. R1-91, 2003.

J. Blum, Numerical Simulation and Optimal Control in Plasma Physissr. Wiley/Gauthier-Villars Series in Modern
Applied Mathematics. Gauthier-Villars, John Wiley & Sori€89.

E. Witrant, E. Joffrin, S. Brémond, G. Giruzzi, D. MazoD. Barana, and P. Moreau, “A control-oriented model of the
current control profile in tokamak plasma&lasma Phys. Control. Fusiowol. 49, pp. 1075-1105, 2007.

J. F. Artaudet al,, “The CRONOS suite of codes for integrated tokamak modglliNucl. Fusion vol. 50, 043001, 2010.
J. Blum, C. Boulbe, and B. Faugeras, “Reconstructiothefequilibrium of the plasma in a tokamak and identificatién
the current density profile in real timeJournal of Computational Physicsol. In Press, 2011.

J. F. Artaud METIS user’s guideCEA/IRFM/PHY/NTT-2008.001, 2008.

A. Lunardi, Analytic Semigroups and Optimal Regularity in ParaboliooBlems ser. Progress in nonlinear differential

equations and their applications, H. Brezis, Ed. Birkhaus@95, vol. 16.

February 24, 2012 DRAFT



