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LUNAM Université, Ecole Centrale de Nantes

Copyright c© xxx Society of Automotive Engineers, Inc.

ABSTRACT

A complete non-homentropic boundary resolution
method for a flow upstream and downstream an intra-
pipe restriction is considered in this article. The method
is capable of introducing more predictable quasi-steady
restriction models into the boundary problem resolution
without adding artificial discharge coefficients. The
traditional hypothesis of isentropic contraction, typically
considered for the boundary resolution, is replaced
by an entropy corrected method of characteristics
(MOC) in order to be consistent with a non-homentropic
formulation. The boundary resolution method is
designed independently of the quasi-steady restriction
models which allows obtaining a greater modeling
flexibility when compared with traditional methods.
An experimental validation at unsteady conditions
is presented using different restriction quasi-steady
models to illustrate the effectiveness of the proposed
boundary resolution method in terms of predictability as
well as flexibility.

INTRODUCTION

In the recent years, Diesel engine emissions regulations
have become stricter and achieving simultaneously the
emissions legislations and the demanded engine
drivability has become a very challenging issue.
Although significant improvements have been made
over the past years, there are still many challenges
to address in order to meet the future emissions
regulations. The introduction of sophisticated
alternative combustion modes such as homogeneous
charge compression ignition (HCCI), low temperature
combustion (LTC) and premixed controlled compression

ignition (PCCI) offer a great potential to reduce the
engine emissions levels [1] [2] [15]. However, these
new modes require different fueling strategies and
in-cylinder conditions, thus creating the need for more
complex, reliable and precise control systems and
technologies.

Dual-loop exhaust gas recirculation (EGR) with both
high and low-pressure recirculations, is one of the
new strategies proposed to achieve the appropriate
conditions to implement multiple combustion modes
[13]. However, ensuring the adequate in-cylinder
conditions is still a very difficult task, as the introduction
of the EGR brings many control challenges due
to the lack of EGR flow rates and mass fraction
measurements. An efficient control of the in-cylinder
combustion and engine-out emissions not only involves
the total in-cylinder EGR amount, but also the ratio
between the high-pressure EGR (HP-EGR) and the
low-pressure EGR (LP-EGR). Indeed, this ratio is
crucial as the gas temperature and composition are
significantly affected. The HP-EGR gas is used during
the beginning of a cycle in order to obtain combustions
with elevated temperatures and therefore heating up as
fast as possible the exhaust post-treatment systems. As
LP-EGR is cooler, it has a higher density and therefore,
it allows introducing more mass and more EGR into
the cylinders. The LP-EGR reduces the engine-out
NOx emission without excessive smoke as it is filtered
by the particle filter. Controlling the air fractions in
the intake manifold is an efficient approach to control
the in-cylinder EGR amount [3] [10]. For engines with
dual EGR systems, the air fraction upstream of the
compressor indicates the LP-EGR rate and the air
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fraction in the intake manifold indicates the total EGR
rate. Therefore, if the air fractions in each section
are controlled, then the HP and LP-EGR can also be
controlled efficiently.

Controlling the air mass fraction is a difficult task,
because direct measurement of the air fraction is not
available on the production engines and the dynamics
of the admission air-path can be highly complex. One
of the actual problems to control the air mass fraction
in the intake manifold is the EGR mass transport
time. This phenomenon is much more significant
in the LP-EGR as the distance that the gas travels
in the engine air-path is much longer than the one
associated with HP-EGR. Indeed, this phenomenon
causes a degradation of the overall engine emission
performance during the strong transients. Several
air mass fraction/EGR rate estimation methods have
been proposed in the literature to overcome some of
the actual limitations [10] [17] [14]. However, most of
these estimation techniques are based on 0-D engine
modeling, which does not permit to take into account
the mass transport time.

One dimensional modeling (1-D) allows estimating the
mass transport time in the air path of the engine, but
at the price of dealing with more complex problems
such as boundary conditions resolution. One of
the boundary conditions to take into account is the
intra-pipe restriction boundary, which is the focus
of this study. The classical restriction boundary
problem resolution methods are generally based
on an isentropic flow assumption, which simplifies
the boundary problem significantly. However, this
hypothesis in not verified experimentally as higher flow
rates are systematically obtained through the restriction.
Therefore, experimental discharge coefficients are
generally introduced to deal with this issue artificially
[8] [9] [16]. Nevertheless, the drawback of this strategy
is that experimental measurements must be performed,
which increases the costs of the model calibration.
Additionally, in the case where no experimental data
are available to determine the discharge coefficients,
simulation results can be in total disagreement with
bench measurements. An other technique consists
on using a computational fluid dynamics code as a
numerical test bench [7] [16]. However, this technique
is time consuming and experimental results are
necessary in order to validate the numerical bench.
This motivates the search for restriction models and
intra-pipe restriction boundary resolution methods
capable of offering a greater predictability and more
flexibility in terms of modeling capabilities.

In [12], this issue has been considered for the non-
homentropic inflow boundary problem and in [6], the

same has been done for the outflow boundary. In
this paper, an innovative, non-hometropic consistent,
intra-pipe restriction boundary resolution method
independent of the quasi-steady restriction models
is developed with the purpose of increasing the
predictability and the flexibility of the 1-D modeling
platforms for control purposes. In other words, this
proposal allows the introduction of more predictable
quasi-steady restriction models into the boundary
problem resolution without the need of adding artificial
discharge coefficients. A 1-D aerodynamics modeling
platform is developed in order to provide an accurate
white box model to perform control and estimation on
the mass transport phenomenon. For example, fresh
mass fraction estimators that take into account the
mass transport time. The study detailed in this paper
has a practical application on EGR and admission
throttle flow modeling, among many others. To solve
the restriction boundary condition, a specific resolution
of Euler’s equations needs to be implemented. In this
work, a method of characteristics, modified to take into
account the non-homentropic flows across a restriction
is considered due to its satisfactory robustness and
accuracy.

The paper is organized as follows. First, the equations
and hypothesis introduced to build quasi-steady
restriction models are described. Then, a modified
method of characteristics (MOC) is proposed to
develop an innovative non-homentropic restriction
boundary resolution methodology. This allows
implementing different restriction models without
modifying the boundary resolution scheme, while
always being physically consistent with a non-
homentropic formulation. Additionally, a Newton-
Raphson algorithm is introduced in the scheme, along
with an extrapolation to initialize the resolution method.
It increases the efficiency of the numerical method in
terms of required iterations as well as the accuracy
of the solution. The predictability, flexibility and the
unsteady performance of the proposed boundary
resolution method are compared and validated using
experimental measurements as a reference.

QUASI-STEADY INTRA-PIPE RESTRICTION
MODELS

In this section, some of the equations and assumptions
on quasi-steady restriction models given in the literature
are presented as well as how put these models into data-
maps. Let us introduce an illustrative schematic of the
restriction to present the boundary problem.

As depicted in Figure 1, the plane 3 is located upstream
the restriction, just before the gas contraction, the
plane 2 is located at the restriction throat and the
plane 1 is found downstream the restriction after the
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Figure 1: Intra-pipe Restriction Schematic

gas expansion. The gas comes from a pipe of cross-
sectional area C3 and passes through the restriction
throat as a jet of cross-sectional area C2. Then, the
gas expands in a pipe of cross-sectional area C1. At
the time when quasi-steady models were developed,
desktop computers memory did not allow the solutions
to be pre-calculated into data-maps. Indeed, Newton-
Raphson algorithms were used to solve the boundary
problem, introducing an iterative problem at each
time step. The main issue of this approach is that
the convergence algorithm had to be modified for
each specific model. Pre-processed data-maps at
the interface between the quasi-steady model and the
1-D in pipe numerical scheme are thus advantageous.
Therefore, all the models developed in this section are
put into data-maps. These data-maps are then used in
the proposed boundary resolution method presented in
the following sections.

As proposed in [11], the restriction boundary problem
can be considered as an outflow boundary problem
together with an inflow boundary problem. Most of the
approaches assume to have an isentropic contraction
between planes 3 and 2 and a momentum conservation
between planes 2 and 1 (e.g see Benson’s proposal
[4]). However, there have been other propositions such
as in [6], where a momentum formulation has been
used to model the outflow boundary (planes 3 and
2), which has shown to exhibit a better performance
in terms of predictability than the traditional isentropic
contraction approach. In [12], different inflow quasi-
steady models have been considered and it has been
shown that a pressure constant inflow model presents
better predictability than a momentum-based one. This
motivates the search for a non-homentropic formulation
for the restriction boundary resolution, capable of using
alternative modeling strategies.

Consider the following hypotheses in order to formulate
the intra-pipe restriction models:

H-1: the states are quasi-steady over the three planes;

H-2: the energy is conserved in all three planes;

H-3: the conservation of mass applies at all planes;

H-4: no change of the gas heat ratio with respect to the
temperature and EGR percentage is considered
for the data-map generation.

The hypothesis H-4 is reasonable for an engine air-path
operating with EGR because the effect of the heat
ratio variation on the data-maps is much smaller than
the effect of the quasi-steady model formulation as
detailed in Appendix I. Thus, the variation of the heat
ratio is not critical for control and estimation purposes.
Nevertheless, if the impact of this variation is required,
it can be considered by adding a supplementary input
to the quasi-steady model data-map.

According to Figure 1, the conservation of energy can
be written as [18]:

a2
tot = a2

1 +
γ − 1

2
u2

1 = a2
2 +

γ − 1

2
u2

2 = a2
3 +

γ − 1

2
u2

3

(1)

where a is the speed of the sound, u is the particle
speed and γ is the specific heat ratio. The total speed
of the sound is defined as:

atot =

√
a2 +

γ − 1

2
u2 (2)

The mass conservation can be expressed as:

C1p1u1

a2
1

=
C2p2u2

a2
2

=
C3p3u3

a2
3

(3)

Let us review some of the outflow and inflow models
considered in this work.

INFLOW MODELS

The procedure to obtain the inflow quasi-steady models
is not detailed in this work, only the main results of
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a pressure constant and a momentum-based inflow
models are presented. For more details on these
models, see [11] and [12]. Equations (4) and (5)
present the model obtained using the constant pressure
model:

U2
1 +

(
2A2

2

Φ1(γ − 1)U2

)
U1 −

2

γ − 1
= 0 (4)

p1

p2
= 1 (5)

where Φ1 = C2/C1, U = u/atot is the non-dimensional
particle speed and A = a/atot is the non-dimensional
speed of the sound. From equation (1), the non-
dimensional speed of the sound can be defined
in terms of the non-dimensional particle speed as

A =
√

1− γ−1
2 U2. The momentum-based inflow model

is described as follows:

U2
1 +

(
2

γ + 1

)(
A2

2

Φ1U2
+ γU2

)
U1 +

2

γ + 1
= 0 (6)

p1

p2
=

1 + γΦ1

(
U2

A2

)2

1 + γ
(
U1

A1

)2 (7)

These models allow establishing a quadratic relationship
between the throat and the downstream non-
dimensional particle speed. Also, an expression
for the pressure ratio p1/p2 is obtained. In [12], it
has been shown that the constant pressure inflow
model (4) presents a better predictability than the
momentum-based model (6).

OUTFLOW MODELS

Similar to the inflow case, only the main results of
two outflow models are considered: an isentropic
contraction and a momentum-based models. For
further details on the models see [6]. The following
presents the outflow isentropic model:

U3 = Φ3U2

[(
1

A2

)2

− γ − 1

2

(
U3

A2

)2
] −1
γ−1

(8)

p3

p2
=

(
a3

a2

) 2γ
γ−1

(9)

where Φ3 = C2/C3. The momentum-based approach is
given as follows:

(
γ − Φ3

γ − 1

2

)
U2

3 +

(
A2

2

U2
+ γU2

)
U3 + Φ3 = 0 (10)

p3

p2
=

1 + γ
(
U2

A2

)2

1 + γ
Φ3

(
U3

A3

)2 (11)

In [6], it has been shown that the momentum-based
model has a better predictability than the isentropic
based one. To obtain the models under sonic flow at
the throat, meaning that U2 = A2, the non-dimensional
speeds U2 and A2 are replaced in (4) - (11) by
U2 = A2 =

√
2

γ+1 (energy conservation (1)).

RESTRICTION MODELS AND DATA-MAP
GENERATION

As previously mentioned, the restriction model can
be considered as a combination of an inflow and an
outflow models. Therefore, four different quasi-steady
restriction models can be obtained from models given
by (4), (6), (8) and (10). To illustrate an example
of how the restriction model is formulated, both
momentum-based approaches ((6) and (10)) are
considered. The link between the models is done by
the non-dimensional speeds U2 and A2 as well as with
the pressure p2. These quantities are shared by both
quasi-steady models. Taking this into account, the
following restriction model is obtained:

(
γ − Φ3

γ − 1

2

)
U2

3 +

(
A2

2

U2
+ γU2

)
U3 + Φ3 = 0

U2
1 +

(
2

γ + 1

)(
A2

2

Φ1U2
+ γU2

)
U1 +

2

γ + 1
= 0

(12)

p1

p3
=

1 + γΦ1

(
U2

A2

)2

1 + γ
(
U1

A1

)2

1 + γ
Φ3

(
U3

A3

)2

1 + γ
(
U2

A2

)2 (13)
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This model gives for every U2, a respective U1, U3 and
p1/p3. With the purpose of avoiding the solution of
(12) every time step, a data-map is generated to store
the solution which then can be easily re-calculated by
using look-up table techniques along with a trilinear
interpolation. These data-maps can be configured to
solve p1/p3 and U1 as follows:

p1

p3
= Datamapp(U3,Φ1,Φ3) (14)

and

U1 = DatamapU (U3,Φ1,Φ3) (15)

where U3, Φ1 and Φ3 are the data-map’s inputs. In order
to obtain these data-maps, the following procedure is
proposed:

1. set a range of U2 equal to
[
0,
√

2
γ+1

]
(Subsonic

range), A2 is found using (1);

2. with U2 and A2, (12) is solved numerically (or
analytically depending on the model) to get U1

and U3. To find A1 and A3 use the energy
conservation equation once again;

3. using U1 and U3 and the pressure ratio equation
(for example (13)), the values of p1/p3 can be
found;

4. to include the sonic solution in the data-map, solve
the model equations with U2 = A2 =

√
2

γ+1

Figure 2 presents two data-maps obtained using both
momentum-based models and the outflow isentropic
model along with the constant pressure inflow model.

As depicted in Figure 2, there are important differences
between both approaches. The isentropic constant-
pressure model presents greater particle speeds than
the momentum-based strategy. Later in the validation
section, it is shown how this affects the predictability
of the restriction modeling. Restrictions with different
geometries, such as control valves for example, can
create different data-maps from the ones obtained with
simple orifices. However, as previously mentioned,
the boundary resolution method presented in the next
section is independent of the quasi-steady models,
implying that any control valve model can be used
without modifying the boundary resolution method. In
this work, for sake of simplicity, the simple orifices are

Mom-Mom Model

Isen-CP Model

Mom-Mom Sonic Flow

Isen-CP Sonic Flowϕ=0.1

ϕ=1

Figure 2: Intra-pipe restriction data-maps comparison (see
page 7 for details on the notation)

used to illustrate the benefits of using the proposed non-
homentropic formulation for the boundary resolution.
Using a model independent boundary resolution
method will allow creating control laws independently of
the restriction model which is of great interest for control
applications.

INTRA-PIPE RESTRICTION BOUNDARY PROBLEM
RESOLUTION

With the restriction quasi-steady model available in data-
maps, now it is required to create an interaction between
these data-maps and the in-pipe resolution scheme
(MacCormack + Total Variation Diminishing (TVD)
has been considered in this work). This interaction is
commonly known as the boundary resolution method.
A modified method of characteristics (MOC), that takes
into account the change of entropy level, has proved to
be a versatile method to create this interaction [6] [18]
[12]. However, in most approaches seen in the literature,
an isentropic contraction is systematically considered
to solve the boundary problem. The main contribution
of this work is to formulate a restriction boundary
resolution method that does not take into account the
isentropic contraction assumption. Moreover, a method
capable of integrating any quasi-steady model in the
form of (14) and (15) is considered. Additionally, some
other improvements are brought to the method such
as a more efficient numerical method and speed of the
sound and pressure reference free formulation.

PROPOSED METHOD

Figure 3 shows the schematic of the MOC approach
used in this study to solve the boundary problem. The
index D represents the value of a variable upstream
the boundary, the index F represents the value of
a variable at the downstream boundary, the index L
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represents the interpolated point between D and D − 1
where the trajectory u + a crosses at time n and the
index R represents the interpolated point between F
and F + 1 where the trajectory a − u crosses at time
n. The index S is associated to the trajectory u at time n.

n+1

n
L S

u+
a

u

DD-1D-2

R

F+1

βRC

βR

F

Δ
t

λL

λLC

δX δXL

δXS δXR

u-a

B
oundary

Figure 3: Characteristics Restriction Boundary

Along the trajectories u + a, u − a and u, the following
conditions are satisfied (called Riemann invariants) for
homentropic flow [18]:

λ = an+1
D +

γ − 1

2
un+1
D = anL +

γ − 1

2
unL (16)

β = an+1
F − γ − 1

2
un+1
F = anR −

γ − 1

2
unR (17)

sn+1
D = snS (18)

where sS is the entropy at the point S of Figure 3.
Equation (18) implies that:

pn+1
D(

ρn+1
D

)γ =
pnS

(ρnS)
γ (19)

However, in many cases the homentropic assumption
is not satisfied and the MOC has to be modified to
take into account the difference of entropy across
the restriction. The changes of entropy due to heat
transfer and friction at the boundaries are neglected
as the change over one finite element is small in
comparison with the change along the whole tube.
In [6], a modification of (16) is developed with the
purpose of taking into account the change of entropy
level at the boundary, removing the need for defining
the traditionally used pressure and speed of the sound
references. This allows the entropy correction to be

written directly in terms of the available quantities at
time n. The same can also be done with (17), which
gives:

un+1
D =

2

γ − 1

λnL − anL(pn+1
D

pnL

) γ−1
2γ

 (20)

un+1
F =

2

γ − 1

βnR − anR(pn+1
F

pnR

) γ−1
2γ

 (21)

For the solution of the boundary problem, six unknowns
have to be solved (un+1

D , an+1
D , pn+1

D , un+1
F , an+1

F and
pn+1
F ). Therefore, six equations have to be available. In

this work, the replacement of the traditionally isentropic
contraction equation by a modification of the Riemann
invariant (18) is proposed in order to be consistent with
the non-homentropic formulation. The procedure to
modify (18) is well detailed in [6]. The following equation
is obtained:

aD =

√
γs

1
γ

S p
γ−1
2γ

D (22)

Note that (22) relates directly the speed of the sound
with the pressure upstream the restriction. The
energy and the mass conservation, (15) (20), (21)
and (22) correspond to the six equations required for
the boundary resolution. The solution of this system,
however, is not analytically possible to find. Thus, a
numerical procedure is required to solve the boundary
problem. Different numerical methods could be used to
achieve this, such as the ones proposed in [4] and in
[6]. The numerical procedure presented in [6], which is
a Newton-Raphson-based algorithm implemented with
finite differences along with an initialization using an
extrapolation, is considered in this work as it has shown
good results in terms of accuracy as well as number of
iterations. Consider the following initialization for the
numerical method:

pitD = 2pD−1 − pD−2 (23)

where pitD is the initial pressure for the iterative algorithm
at the boundary. Equation (23) is a linear extrapolation
of the pressure at the boundary using the two closest
finite elements in the tube. This extrapolation can
be very close to the solution, specially during the
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steady-state conditions, avoiding the use of the iterative
algorithm, which decreases the calculation time. With
pitD available, is it possible to calculate with (20) and
(22), uitD and aitD respectively. The total speed of the
sound aittot is calculated with (2) to find U itD .

With (14), the downstream pressure is found. Then it
is used to calculate U itF with (21). However, in order to
check the consistency of the solution, in other words to
see whether pitD is a solution, the following function is
defined:

f =| U itF − datamapU (U itD ,Φ1,Φ3) |< ε (24)

where ε > 0 sets the convergence accuracy. However,
nothing guaranties that (23) satisfies the criterion
(24). That is why an iterative procedure has to be
implemented until (24) is satisfied. Consider the
numerical method proposed in [6] to update pitD:

pit+1
D = pitD −

f
(
pitD
)

f(pitD+∆p)−f(pitD)
∆p

(25)

where ∆p is a small differential to approximate
numerically the derivative df

dp . When ∆p in (25) is small,
a better approximation to the analytic Newton-Raphson
algorithm is obtained. (25) will be calculated until the
condition (24) is satisfied. The same algorithm has
to be considered under sonic flow with the difference
that the data-maps are built in this case considering
U2 = A2 =

√
2

γ+1 .

Method implementation

To implement the proposed method, consider the
following steps:

1. calculate λnL, snS and βnR: use (16), (19) and (17),
respectively;

2. initialize pitD = 2pn+1
D−1 − pn+1

D−2. This is the linear
extrapolation using the two closest nodes inside
the pipe where pn+1

D−1 and pn+1
D−2 are obtained by

the in-pipe numerical scheme,

3. use (22) to calculate aitD and (20) to compute uitD

4. calculate the total speed of the sound with (2) and
compute the non-dimensional speeds U itD and AitD;

5. compute pD/pF = datamapP (U itD ,Φ1,Φ3) using
any of the restriction models;

6. calculate U itF using (21) and the total speed of the
sound. Use the energy conservation equation to
find AitF ;

7. compute (24). If f < ε, then return pn+1
D = pitD,

an+1
D = aitD, un+1

D = uitD, pn+1
F = pitF , an+1

F = aitF
and un+1

F = uitF . Otherwise, use (25) to update pitD
and return to the step 3;

EXPERIMENTAL VALIDATION OF THE PROPOSED
RESOLUTION METHOD

In this section, an experimental validation of the
proposed restriction boundary resolution method is
performed. Four different quasi-steady restriction
models are considered to illustrate the gain in
predictability and flexibility of the proposed non-
homentropic formulation. The following models are
considered:

• Isentropic outflow and constant pressure inflow
model (Isen-CP Model);

• Isentropic outflow and momentum inflow model
(Isen-Mom Model);

• Momentum outflow and constant pressure inflow
model (Mom-CP Model);

• Momentum outflow and momentum inflow model
(Mom-Mom Model);

Figure 5 presents the schematic that describes the
experimental setup conceived for the experimental
validation of the boundary resolution method. Figure 4
depicts an actual picture of the experimental setup.

The experimental setup consists on a thermally isolated
reservoir of volume Vtank, a guillotine at the entrance
of the tube in order to introduce a shock wave and two
pipes connected by a restriction. In order to introduce
a change of the entropy level, it is necessary to heat
up the gas inside the reservoir. Prior to the guillotine
opening, the desired initial gas temperature is set by
operating an inlet and an outlet valve connected to
the reservoir. These valves are installed in a parallel
air heating system not detailed in this work. After the
warm-up phase, the valves are closed and remain in
this position during the tests. The guillotine position is
measured in order to approximate the area ratio of the
input restriction during its unsteady conditions.

Three different experiments are presented. Three
restriction area ratios are used (Φ1 = Φ3 = 0.1,
Φ1 = Φ3 = 0.2 and Φ1 = Φ3 = 0.5) with different
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Figure 4: Picture of the experimental setup

initial ptank and Ttank. The reservoir pressure and
temperature dynamics are modeled using a classical
0-D thermodynamical model which is initialized
at ptank(t = 0) and Ttank(t = 0). As the reservoir is
thermally isolated, no heat wall transfers are considered.
The in-pipe numerical scheme is a MacCormack + TVD.
The pipes friction and thermal exchanges coefficients
have been identified with the setup operating with no
restriction. The inflow restriction boundary resolution
method presented in [12] with a constant pressure
quasi-steady model is considered to model the flow
across the guillotine.

Figures 6, 7 and 8 show the results obtained for three
different experimental conditions. In Figure 6, Φ1 =
Φ3 = 0.1 and ptank(t = 0) ≈ 1.4 × 105 [Pa]. In Figure 7,
Φ1 = Φ3 = 0.2 and ptank(t = 0) ≈ 1.2 × 105 [Pa] and in
Figure 8, Φ1 = Φ3 = 0.5 and ptank(t = 0) ≈ 1.1×105 [Pa].
The initial reservoir temperature for all the experiments
is Ttank(t = 0) ≈ 500K.

The pressure decrease of the reservoir depends
directly on the mass flow rate through the guillotine,
which is a good indicator for identifying the accuracy
of each modeling approach (see pressure @ 202mm
of Figures 6, 7 and 8). It is important to take into
account that the time responses of the sensors have
to be taken into account for the results analysis, for all

Model/Variable Model p1 p2

Φ1 = Φ3 = 0.1

Isen-CP 13.1 % 20.2 %
Mom-CP 5.6 % 15.3 %
Isen-Mom 18.5 % 24.6 %
Mom-Mom 3.1 % 14.0 %

Φ1 = Φ3 = 0.2

Isen-CP 13.2 % 15.5 %
Mom-CP 2.5 % 8.3 %
Isen-Mom 21.5% 23.7 %
Mom-Mom 4.9 % 8.7 %

Φ1 = Φ3 = 0.5

Isen-CP 11.6 % 9.7%
Mom-CP 5.2 % 6.4 %
Isen-Mom 25.7 % 30.6 %
Mom-Mom 15.7 % 15.5%

Table 1: Root-mean-square percentage error for the intra-
pipe restriction boundary resolution methods

the temperature measurements. The instantaneous
pressures are measured with Kistler 4049A10SP22
piezoresistive sensors. The temperatures are measured
with thermosensors of type K with a diameter of 0.075
mm.

As depicted in Figures 6, 7 and 8 and Table 1, the
restriction model with momentum outflow and constant
pressure inflow exhibits the best predictability. This
result is very interesting as these two models had
already shown to have a better predictability than
the other models considered in this work when used
separately. It is curious that the traditionally used
quasi-steady model of the restriction (isentropic
contraction + momentum) presents the lowest
predictability. The experimental results confirm that the
isentropic contraction assumption systematically over-
estimates the flow speed which results in a significant
disagreement with respect to the measurements. The
temperature behavior of Figures 6, 7 and 8 shows
that the rise of the temperature appears too early for
the models with combinations using the isentropic
contraction. This is because the isentropic contraction
does not take into account the increase of entropy
through the restriction, which allows greater flow
speeds to be obtained. As the area ratio increases,
the less separated the temperature curves are, as
depicted in Figure 8. Two explanations are found for
this behavior: first, as the area ratio increases, the
faster the gas travels inside the pipe and therefore, the
smaller the gap between the curves (with respect to
time). A second explanation comes from the fact that as
the area ratio increases, the momentum outflow model
loses predictability as presented in [6].

All four simulations were carried out using the same
boundary resolution method, which, as seen in the
results, has effectively solved the boundary problem
independently of the quasi-steady model formulation.
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Figure 5: Schematic of the experimental setup

Figure 6: Validation Results for Φ1 = Φ3 = 0.1 and initial pressure 1.4 × 105 [Pa]

The method has successfully introduced a completely
non-homentropic intra-pipe boundary resolution that
performs much better (see Table 1) in terms of
predictability. This illustrates the interest of using a non-
homentropic formulation for the boundary resolution.

CONCLUSIONS

This paper was concerned with an intra-pipe
non-homentropic boundary resolution method. A
methodology for constructing restriction quasi-steady
models from outflow and inflow models has been
given. Building data-maps of this quasi-steady models
results advantageous as no numerical method has
to be introduced for solving the equation associated
with the quasi-steady models. A boundary resolution
method that does not take an isentropic contraction
as an assumption to solve the boundary problem

has been developed in order to be consistent with
the non-homentropic formulation. This method is
more flexible than the traditional method as different
restriction quasi-steady models can be considered
without changing the boundary resolution method. An
experimental validation has been done with 4 different
restriction quasi-steady models in order to illustrate
the effectiveness of the proposed method and the gain
in predictability that can be achieved without adding
artificial discharge coefficients. The restriction model
with momentum outflow model and constant pressure
inflow model has shown to be more predictive than the
order approaches considered in this work.

Due to the time response of the temperature sensors,
an upgrade on the experimental setup temperature
sensors is planned in order to reduce the temperature

9



Figure 7: Validation Results for Φ1 = Φ3 = 0.2 and initial pressure 1.2 × 105 [Pa]

Figure 8: Validation Results for Φ1 = Φ3 = 0.5 and initial pressure 1.1 × 105 [Pa]

measurement time response. A numerical 3D-CFD
validation could complement this work along with an
experimental validation using a control valve and a

variation of gas composition. The proposed boundary
resolution method has been used successfully used to
validate and design boundary observers and controllers
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for hyperbolic systems [5]. A natural extension of
this work seems to be the development of similar
boundary resolution methods for other intra-pipe
boundary conditions such as volumes, compressors
and turbines. There are still many open questions.
Creating restriction model independent boundary
resolution methods capable of taking into account the
dynamics at the boundaries seems to be a challenging
issue.
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APPENDIX I

EFFECT OF THE VARIATION OF THE HEAT RATIO
ON THE INTRA-PIPE RESTRICTION MODELS

In order to illustrate the effect of the variation of the heat
ratio on the intra-pipe restriction quasi-steady models,
a comparison between the data-maps generated with
different heat ratios is performed. As presented in
Figure 2, two of the quasi-steady restriction models are
used to illustrate the impact of the heat ratio variation.
As this work is focused on the modeling of the EGR
and admission throttles, the variation of the heat ratio is
considered between 1.4 and 1.32 (heat ratios of fresh
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air at 300K and EGR gas at 770K and with fresh mass
fraction of 40%, respectively).
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Figure 9: Intra-pipe restriction model data-map comparison
for different heat ratios

As depicted in Figure 9, the effect of the variation of the
heat ratio on the quasi-steady model is much smaller
than the effect of the change of modeling formulation.
This implies that the impact of the variation of the
heat ratio on the quasi-steady models is not significant
when compared with the impact of the modeling
formulation (for the application considered in this work).
The model variation with respect to the heat ratio is
thus not considered for control and estimation purposes.

However, if the variation of the heat ratio is required, the
data-map presented in (14) can be extended to take into
account this variation as follows:

p1

p3
= Datamapp(U3,Φ1,Φ3, γ) (26)

This increases the usage of memory as well as the
calculation load to solve the boundary problem, which
is undesirable for control and estimation purposes.
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