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Abstract— The goal is to develop a controller for a common
rail injection system where the calibration process for the
implementation is systematic and simpler. A 0D nonlinear
model of the common rail system is designed. The common
rail model contains strong nonlinearities which might be hard
to handle from the control point of view. In order to overcome
this constraint, an input-to-state linearization is applied to the
common rail nonlinear model. This procedure yields with a
virtual linear system, where two optimal Linear Quadratic
Regulator LQR strategies are applied. Very good results are
obtained, the calibration process is significantly simplified and
the controller stability is ensured.

I. INTRODUCTION

In the common rail systems, a high-pressure pump allows
storing fuel in a distribution rail at high pressure and the goal
is to control the injection advance, duration and pressure, in
order to manage accurately the combustion depending on
the engine operating conditions. Very advanced controllers
for the common rail system are presented by Gauthier in his
PhD dissertation and in several publications: [5], [6], [8],
[7] and [9]. As well, the works of [2], [1], [3] and [4] are
very representative approaches for the common rail injection
system.
In spite of the existence of such complex and complete
common rail control strategies, a proportional-integrative (PI)
controller is traditionally used to control the common rail
system in the industry. A main problem of this strategy is
that it is difficult to find the PI parameters for the whole
operating range, such process requires on an expensive and
non systematic calibration process. Besides, the PI does not
guarantee the robustness and stability of the common rail
system which implies that it might not be reliable in some
operating conditions.
With the aim to develop a common rail controller to be
implemented in the current industry, where the calibration
process is simplified and the stability can be ensured, a
model based control strategies are proposed. This strategy
is based in a nonlinear common rail system model, which is
transformed with an input-to-state linearization into a virtual
linear system, where two LQR controllers are synthesized.
This strategy leads to an advanced control law which has the
advantage to be simple to implement. To validate the results,
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an industrial-like methodology is used, thus the pressure
reference obtained through data maps is used.

II. COMMON RAIL INJECTION SYSTEM

A common rail system is composed by several devices
arranged in two main circuits: a low pressure (LP) circuit
(4−10 bar) and a high pressure (HP) circuit (300−1600 bar
for diesel engines and 20 − 200 bar for gasoline engines).
Figure 1 presents the common rail system scheme used in
this work.

Fig. 1: Scheme of the common rail system.

The HP pump boosts the fuel from the LP circuit to the HP
circuit. The fuel flow passing through the inlet metering valve
IMV is the variable that controls the pressure in the rail. The
rail is a distribution pipe where the fuel is stocked before the
injection. The injectors provide the amount of fuel required
per cycle to the engine depending on the injection timing and
the actual rail pressure prail. Two leakages are associated
to the injectors; static leakage and dynamic leakage. The
static leakage is used to overcome functioning failures and/or
to regulate the rail during the slow driving, it guarantees
a minimum prail when the flow through the IMV is too
low to drive the HP pump. The dynamic leakage guarantees
the functioning of the injector needle. Those leakages are
modeled through static data maps, which do not depend on
the system control inputs.
The problem to handle is to ensure the appropriate rail
pressure prail to get the accurate amount of fuel injected into
the engine in all the operating conditions. The pressure that
ensures such performance is given by a pressure reference
pref , which is mapped with respect to several parameters,
where the most relevant are the engine speed N and the
torque demand.

A. 0D common rail injection model

Based on the architecture shown in Figure 1, a model
for the common rail injection system is proposed. The
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model has one state that is prail and one control in-
put fqpump

(N, prail, Iimv), which is the mass flow passing
through the IMV and the HP pump, which is driven by the
IMV control electric current Iimv and also depends on the
engine speed N in r.p.m. The dynamics of the rail pressure
is obtained through a mass balance in the rail and is given
by:

dprail

dt = Γrail
βf

Vrail

(
fqpump

(N, prail, Iimv)

−fldyna
(N, prail, Tinj)− flstat(N, prail, Tinj)

−fqinj (N, prail, Tinj)
)

(1)

where Vrail is the rail volume in m3 and Γrail is a unit
conversion constant. βf is the fuel compressibility coefficient
in Pa. This coefficient depends on the pressure and tem-
perature of the rail. However, this parameter is considered
as constant to simplify the model, and the deviations due
to this assumption are mitigated with the LQR controller,
which is intrinsically robust against model uncertainties.
fldyna

(N, prail(t), Tinj(t)) is the volumetric flow of the dy-
namic leakage, flstat

(N, prail(t), Tinj(t)) is the volumetric
flow of the static leakage and fqinj

(N, prail(t), Tinj(t)) is
the volumetric injected fuel flow. All the volumetric flows
are in m3/s. Tinj(t) = fTinj (prail(t),minj) is the injection
timing, where minj is the fuel mass to be injected per
cycle. All these functions are data maps that represent the
physical behavior of the different devices in the common rail
system. All the data maps are bijective statical function. The
data maps are obtained from the information of the devices
supplier and experimental calibration.

III. INPUT-TO-STATE LINEARIZATION TRANSFORMATION

Because of the inherent complexity and nonlinear character
of system (1), the control synthesis is not easy and may be
involved. A transformation of the nonlinear system into a
virtual linear system is used, allowing the design of a linear
control strategy. Indeed an input-to-state linearization is used
to cancel out the nonlinearities of the system dynamics which
results in a virtual linear controllable system.

A. Brief background on Input-to-state linearization [10]

Definition 1: A nonlinear system:

ẋ = f(x) +G(x)u (2)

where f : Dx → Rn and G : D → Rn×p are sufficiently
smooth on a domain Dx ⊂ Rn, is said to be input-state
linearizable if there exists a diffeomorphism T : Dx → Rn

such that Dz = T (Dx) contains the origin and the change
of variables z = T (x) transforms System (2) into the form

ż = Az +Bβ−1(x)(u− α(x)) (3)

where A ∈ Rn×n, B ∈ Rn×p, and such that the pair (A,B)
is controllable, and the functions α(x) : Rn → Rp and
β(x) : Rn → Rp×p are defined in a domain Dx ⊂ Rn

that contains the origin. The matrix β(x) is assumed to be
non-singular for every x ∈ Dx. Notice that β−1 denotes the
inverse of the matrix β(x) for every x, and not the inverse
map of the function β(x).
The basic idea behind using the input-state linearization is to
find a control input u such that the system nonlinearities are
compensated for, resulting in a controllable linear system.
Indeed, for system (3) a state feedback is chosen as:

u = α(x) + β(x)v, (4)

then system (2) is rewritten as the linear system:

ẋ = Ax+Bv (5)

B. Common rail model transformation

As seen in section II, the dynamics of prail is controlled
varying the mass flow through the IMV, thus the system input
can be defined as:

u = fqpump
(N, prail, Iimv) (6)

One can define the nonlinear function α(prail) such that:

α(prail) = fldyna
(N, prail, Tinj) (7)

+flstat(N, prail, Tinj) + fqinj (N, prail, Tinj)

and using the following equivalences, which match the
components of Equation (3):

z = prail, B = Γrail
βf
Vrail

β(x) = 1, A = 0 (8)

System (1) becomes:

dprail
dt

= Γrail
βf

Vrail

(
u− α(prail)

)
(9)

which presents the same form specified in Definition 1 in
Equation (3). Thus, according to Equation (4), the system
state feedback is:

u = α(prail) + v (10)

and the transformed linear system is:

dprail
dt

= Γrail
βf
Vrail

v (11)

where v is the system virtual input. In this work it is assumed
that the fuel compressibility coefficient βf is constant. Under
this assumption, System (11) is linear time invariant.
The common rail system is controlled with the mass flow
passing through the IMV and therefore through the HP pump
fqpump

(Equation (6)). Indeed, the mass flow itself cannot be
set directly and the HP pump is actually controlled through
the IMV control electric current Iimv . To obtain an analytical
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expression for Iimv it can be assumed the existence of the
function f−1

qpump
(N, prail, fqpump

) such that:

Iimv = f−1
qpump

(N, prail, fqpump
) (12)

This assumption is realistic while a bijetive relation between
the Iimv current and qpump exists and the data map is statical.
From equations (7) and (10), the virtual input v is:

v = fqpump
− fldyna

(N, prail, Tinj) (13)
−flstat

(N, prail, Tinj)− fqinj
(N, prail, Tinj)

thus, using Equation (13), a relation between the virtual
control input v and the system actual input Iimv is obtained
as:

Iimv = f−1
qpump

(
N, prail, v + fldyna

(N, prail, Tinj)

+flstat
(N, prail, Tinj) + fqinj

(N, prail, Tinj)
)

(14)

Thanks to the input-to-state linearization, the linear system
(11) is designed and different linear control strategies can
be used to find v to control prail. The actual system input
Iimv can be obtained from the virtual input v through the
transformation (14). In this work, two optimal LQR control
approaches are developed.

IV. COMMON RAIL CONTROLLER: LINEAR QUADRATIC
REGULATOR (LQR) APPLICATION

The common rail control problem is that prail should track
pref . Two LQR controllers have been considered: an LQR
tracking controller (feedforward) with integral action referred
to as the LQR tracking and an LQR with integral action re-
ferred to as the LQR. The main difference on both controllers
lies on the feedforward:

• In the LQR tracking, the pressure reference pref is con-
sidered as an exogenous input for the system, referred
to as the feedforward. Thus, the controller follows the
changes in the reference tracking the trajectory of the
error and of the reference itself.

• In the LQR, the feedback is the error between the
pressure reference and the rail pressure prail − pref ,
thus the controller follows the changes in the reference
only tracking the trajectory of the error.

Remark 1: The development and proof of these controllers
have been extensively reported in the literature, thus only the
application results of these controllers are presented.

A. LQR controllers application

The interest is that prail reaches the pressure reference pref
according to the specifications in Table I, through a controller
which guarantees the stability in all operating conditions and
which has a simpler calibration process.

zero steady-state prail(∞) = pref
error

overshoot < 5%
prailmax 1600 bar

settling time < 1 s
prail − pref +25 bar transitory

tolerance (after the rise time), +8 bar stable

TABLE I: Dynamics specifications for the common rail
system controller.

1) LQR tracking with integral action: Given the common
rail system (11), the new state e =

∫
(pref−prail) is defined.

The goal of this term is to add an integral action to the
controller to obtain zero steady state error. Including the new
state, the extended state space system is:

ẋe = Aexe +Bev + Ωepref , xe =

[
prail
e

]
(15)

where Ae =

[
0 0
−1 0

]
, Be =

[
Γrail

βf

Vrail

0

]
and Ωe =[

0 1
]T

.
The cost function to minimize is:

J =
1

2

∫
(xTe Qxe +Rv2)dt (16)

Q and R are parameters of the controller. In this case, these
parameters are chosen such that the weight is on the extended
state e in order to decrease the error between prail and
pref , and giving the necessary weight to v such that the
feedforward term has the desired effect on the controller.
The problem of finding a feedback controller v for system
(15) subject to the cost function (16) has the solution:

v = −Kxe −Krpref (17)

K :=
[
Kp Ki

]T
= R−1BTe P,

Kr = R−1BTe

(
ATe − PBeR−1BTe

)−1

PΩe

where P = PT > 0 is the solution of the Control Algebraic
Riccati Equation for the system. The closed loop controller
is:

ẋe = (Ae −BeK)xe +Krpref , xe(0) = xe0 (18)

The virtual controller v is the control input for system (11),
thus the transformation in Equation (14) is performed to
obtain Iimv that is used in the common rail system control
input u = fqpump

(N, prail, Iimv).
The controller architecture is displayed in Figure 2. In
the figure, two main elements are distinguished. Enclosed
in dotted lines the LQR tracking which gives the virtual
input v. This input is transformed through the input-to-state
linearization block into the input u = fqpump(N, prail, Iimv),
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which is used to obtain the actual system input Iimv . The
feedforward term is observed as an exogenous input in the
system, controlled by the gain Kr.

Fig. 2: Optimal tracking control with integral action.

2) LQR with integral action: Similarly to the previous case,
the new state e =

∫
(pref−prail) is defined. Given the system

(11) and the new state e, the extended state space system is:

ẋe = Aexe +Beve, xe =

[
prail
e

]
, (19)

ve =

[
v
pref

]
where Ae =

[
0 0
−1 0

]
and Be =

[
Γrail

βf

Vrail
0

0 1

]
and v is defined in equation (13). In theory, a feedforward
term exists as long as pref is included in ve. However, the
cost function is designed as:

J =

∫
1

2
(xTe Qxe + vTe Rve) (20)

R is chosen such that the weight of pref in ve is large enough
so that the feedback gain of the input pref in the controller
is almost 0 and can be neglected. Thus, only a gain for v
must be defined for the system virtual input instead of a gain
for ve.
Taking into account these precisions, the problem of finding
a feedback controller for (19) subject to the cost function
(20) has the solution:

v = −R−1BTe Pxe = −Kxe, (21)

K =:
[
Kp Ki

]T
= R−1BTe P

where P = PT > 0 is the solution of the Control Algebraic
Riccati Equation for the system. The control input v is
defined similarly to (21) and the closed loop controller is:

ẋe = (Ae −BeK)xe, xe(0) = xe0 (22)

The virtual controller v is the control input for system (11),
thus the transformation in Equation (14) is performed to
obtain Iimv that is used in the common rail system control
input u = fqpump

(N, prail, Iimv).
The controller architecture is similar to the displayed in
figure 2, but the main difference is that in the case of the
LQR tracking controller, there is an additional term Kr in
the feedback, which is the feedforward term that multiplies
the controller v.

V. LQR CONTROLLER SIMULATION RESULTS

Using the model presented in II-A, the common rail injec-
tion system (1) is simulated, with the two developed LQR
controllers and a traditional PI. The parameters Q and R are
calibrated as a trade-off between the system requirements
and the controller response, and are chosen according to
the specifications mentioned in Section IV-A. For the LQR
tracking:

Q =

[
10000 0

0 25× 103

]
, R = 10 (23)

and for the LQR controller:

R =

[
1× 10−3 0

0 1000

]
Q =

[
0.1 0
0 10

]
(24)

First, the step response of the controllers is analyzed and
presented in Figure 3 together with the error. The results
with respect to the controller requirements presented in Table
I are presented in Table II.
The three approaches achieve an adequate response with sim-
ilar characteristics. Some differences are presented between
the three approaches. The LQR controller has a slower rise
time for abrupt changes in pref than the other two controllers
during the transitory, thus the maximum error with respect to
the reference is bigger as depicted in Figure 3b. This is due to
the fact that the LQR controller has a smother response when
compared to the other two methods. However, the mean error
in this approach remains below 0.2% which corresponds to
the same mean error range than the other two approaches.
Besides, the settling time of the PI strategy is longer than
the LQR strategies.

Overshoot prailmax
Settling

time
Specification < 5% 1600 bar 6 1 s

LQR tracking 4% 1608 bar 1 s
LQR 0 1600 bar 1 s

PI 0 1600 bar 7 s

pref − prail tolerance mean
error

Specification Transitory Stable
(+25 bar) (+8 bar)

LQR tracking 40 bar < 1 bar 0.11%
LQR 15 bar < 1 bar 0.17%

PI 15 bar 8 bar 0.12%

TABLE II: Common rail controller results.

The LQR tracking controller has a smaller transient with
respect to abrupt changes in the reference when compared to
the LQR controller and the PI. However, it also has a steeper
response, which slightly overpasses the maximum pressure
1600 bar and might produce a saturation in the actuator, in
the other hand, the LQR and the PI do not have overshoots.
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(a) prail as a function of time for all
the control law.

(b) Error
|prail−pref |

prefmax
as a function

of time for all the control law.

(c) Iimv as a function of time for all
the control law.

Fig. 3: Step response for the common rail injection pressure controller.

(a) Step response. prail as a function of
time for the LQR tracking controller

(b) Step response. Iimv as a function of
time for the LQR tracking controller

Fig. 4: Step response of the common rail injection pressure
LQR tracking controller for two different Q parameters.

Figure 3c shows the Iimv signal of the step response. As it is
observed, the PI has the bigger current peak, followed by the
LQR tracking controller. Differently, the LQR controller has
a considerable smother input signal behavior with respect to
the other two approaches.
The parameters Q and R can be adapted to a specific
response requirement. For instance, if a smaller transient time
is required for the LQR tracking controller, decreasing the
first element in the parameter matrix Q (Equation (23)) to 10,
decreases the weight of the signal pressure with respect to
the cost function (16), which results on a slightly smaller
transient time as depicted in Figure 4a. However, it also
increases the overshoot up to 20%, which is out of the bounds
of the controller requirement (1600 bar). As well, this change
decreases the peak magnitude of Iimv from 1.38 A to 1.28 A
as depicted in Figure 4b.
A second simulation experience is performed using the

(a) prail as a function of time for all the
control law.

(b)
|prail−pref |

prefmax
as a function of time for

all the control law.

Fig. 5: Simulation results for the common rail injection
pressure controller.

common rail pressure reference pref , which is obtained with
experimental data maps, where the inputs are the torque
demand represented by the mean effective cylinder pressure
IMEP and the engine speed N . The engine speed is varied
from 700 rpm up to 4000 rpm and pref varies from 250 bar
up to 1600 bar. Phases of acceleration followed by phases of
deceleration are tested, they are depicted in Figure 5. Main
events are presented in phases 2 and 3 :

• Phase 2. Deceleration from 33 s up to 50 s. Strong
deceleration, between 38 s up to 50 s the rail pressure
is forced to its minimum value.

• Phase 3. Acceleration from 50 s up to 76 s. Strong
acceleration, between 55 s up to 76 s the rail pressure
is forced to its maximum value.

From the simulation results shown in Figure 5 it is observed
that all the controllers have a similar good tracking perfor-
mance. The mean error in all the approaches remain lower
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(a) Iimv as a function of time for all
the control laws.

(b) Iimv as a function of time for all
the control laws, zoom between 50 s
to 55 s.

(c) Iimv as a function of time for all
the control laws, zoom between 33 s
to 38 s.

Fig. 6: Simulation results for the IMV control current Iimv .

than 0.5%.
The control signal Iimv shown in Figure 6a is also analyzed.
As illustrated, Iimv seems to be alike on the three cases,
but some differences can be appreciated. When using the
PI, there are phases where the control signal overpasses the
other two control signals, suggesting important differences
in the transitory response. To give more details, figures 6b
and 6c show a close up of Figure 6a in the peaks region. The
PI control signal is less smooth compared with the LQR
approaches. It confirms the observations from Figure 3c,
where the PI current signal overpasses significantly the other
controllers. These abrupt peaks current might imply more
energy consumption with respect to the power delivered
in the solenoid coils of the IMV and a reduction on the
actuator’s lifetime, because unnecessary power consumption
diminishes the valve performance and lowers the valve
operating life.
Besides the performance differences remarked until now, the
most important difference with respect to the PI lies on
the controller synthesis. The LQR controllers are computed
solving the Control Algebraic Ricatti Equation (CARE)
which guarantees the system stability. Moreover, in the LQR
algorithm only the weighting factors Q and R must be
calibrated, it can be performed through a simulation process
where the designer judges the produced optimal controller
adjusting the weighting factors to get a controller more in line
with the specified design goals. Differently from the PI, those
weighting factors are computed once and remain constants
for all the operating range and do not compromise the
controller stability. Adjusting these parameters empirically
is a common procedure in control design.

VI. CONCLUSIONS

A common rail injection system model has been designed
to develop a control strategy to track the rail pressure. As
the common rail model contains strong nonlinearities, an
input-to-state linearization strategy has been applied to obtain
a virtual linear system, which is controlled by a virtual
input. A linear control strategy is performed in the linear
system and the virtual input is computed. Using input-to-state
linearization makes possible to cancel out the nonlinearities
of the injection system and to have a linear controllable
system which can be used to create linear control laws.

When applying feedback linearization and the LQR ap-
proach, a unique control law has to be created for the whole
operating range contrary to the PI strategy which usually
needs of a non systematic process to obtain a set of data
maps of PI gains to be adjusted.
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