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Abstract— Systems governed by hyperbolic partial differential
equations with dynamics associated with their boundary con-
ditions are considered in this paper. These infinite dimensional
systems can be described by linear or quasi-linear hyperbolic
equations. By means of Lyapunov based techniques, some
sufficient conditions are derived for the exponential stability
of such systems. A polytopic approach is developed for quasi-
linear hyperbolic systems in order to guarantee stability in a
region of attraction around an equilibrium point, given specific
bounds on the parameters. The main results are illustrated on
the model of an isentropic inviscid flow.

I. INTRODUCTION

Techniques based on Lyapunov function are commonly
used for the stability analysis of dynamical systems,
such as those described by partial differential equations
(PDE). Many distributed physical systems are described
by strict hyperbolic PDEs. For example, the conservation
laws describing process evolution in open conservative
systems are described by hyperbolic PDEs. One of the
main properties of hyperbolic systems is the existence of
the so-called Riemann transformation, which is a powerful
tool for the proof of classical solutions, analysis and
control, among other properties [1]. Among the potential
applications, hydraulic networks [11], road traffic networks
[13], gas flow in pipelines [3] or flow regulation in deep
pits [19] are of significant importance.

The stability problem of boundary control in hyperbolic
systems has been considered extensively in the literature,
as reported in [10] [9] [15], among other references. Most
results consider that the boundary control can react fast
enough when compared to the travel time of waves. More
precisely, no time response limitation is taken into account
at the boundary conditions. For many applications (e.g. [12]
[4]), the wave travel can be considered much slower than
the actuator time response. A static relationship can then
be established between the control input and the boundary
condition. Nevertheless, there are applications where the
dynamics associated with the boundary control cannot
be neglected (e.g. when using a resistor to control the
temperature of an airflow). Discrete approximations of this
kind of systems have been used to address this problem in
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The stability problem of linear and quasi-linear hyperbolic
systems in presence of dynamic behavior at the boundary
conditions is addressed in this work. The asymptotic
stability of this class of hyperbolic systems is demonstrated
using Riemann coordinates along with a Lyapunov function
formulation. The sufficient conditions for the stability are
obtained in terms of the boundary conditions dynamics.
These conditions are presented in a linear matrix inequality
(LMI) framework.

The theoretical results are applied on an homogeneous
system of conservation laws with the aim of designing a
stabilizing boundary control for an isentropic and inviscid
flow in a pipe with constant cross section. More precisely,
the problem of the regulation of the air pressure, density
and speed inside a pipe is addressed. The physical model is
a strict quasi-linear hyperbolic system since the presence of
friction or thermal sources is not considered. This model is
based on the Euler equations, which are commonly used in
compressible flow dynamics to describe the flow transport
in ducts.

The paper is organized as follows. First, Section II describes
the linear and quasi-linear hyperbolic systems considered. In
Section III, the main stability results for linear hyperbolic
systems with dynamic behavior at the boundary conditions
are established. An extension for quasi-linear hyperbolic sys-
tems is developed in Section IV using a polytopic approach.
Finally, the main result is applied to the boundary regulation
of pressure, density and speed in a pipe with isentropic and
inviscid air flow (Section V).

II. PROBLEM FORMULATION

Let n be a positive integer and Ω be an open non-empty
convex set of Rn. Consider the general class of quasi-linear
hyperbolic systems of order n defined as follows [17]:

∂ts(x, t) + F (s(x, t))∂xs(x, t) = 0 (1)

where ∂t and ∂x denote the partial derivative with respect to
t and x respectively, s(x, t) ∈ Ω, and F : Ω → Rn×n is a
continuously differentiable function called the characteristic
matrix of (1). If (1) is strictly hyperbolic, then a bijection
ξ(s) ∈ Θ ⊂ Rn exists, at least locally, such that the
system can be transformed into a system of coupled transport
equations [8]:
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∂tξi(x, t) + λi(ξ(x, t))∂xξi(x, t) = 0 (2)
i ∈ [1, ..., n]

where ξi(x, t) are called the Riemann coordinates of (1),
which are constant along the characteristic curves described
by:

dx

dt
= λi(ξ(x, t)) (3)

where ξ = [ξ1, ξ2, ..., ξn]T .

A. Quasi-Linear Hyperbolic Systems with Dynamic Bound-
ary Conditions

Consider the following quasi-linear hyperbolic equation in
Riemann coordinates:

∂tξ(x, t) + Λ(ξ)∂xξ(x, t) = 0 ∀x ∈ [0, 1], t ≥ 0 (4)

where Λ is a diagonal matrix function Λ : Θ→ Rn×n such
that Λ(ξ) = diag(λ1(ξ), λ2(ξ), ..., λn(ξ)) with

λ1(ξ) < ... < λm(ξ) < 0 < λm+1(ξ) < ... < λn(ξ)

∀ ξ ∈ Θ
(5)

If Λ(ξ) = Λ, then (4) is a linear hyperbolic equation given
by:

∂tξ(x, t) + Λ∂xξ(x, t) = 0 ∀x ∈ [0, 1], t ≥ 0 (6)

The state description can be partitioned as: ξ =

[
ξ−
ξ+

]
where ξ− ∈ Rm and ξ+ ∈ Rn−m. Define:

Λ+ = diag(|λ1(ξ)|, |λ2(ξ)|, ..., |λn(ξ)|) (7)

The problem of stability of linear hyperbolic systems has
been considered by [10], [16] and [4], among others, using
the static boundary conditions:

(
ξ−(1, t)
ξ+(0, t)

)
= G

(
ξ−(0, t)
ξ+(1, t)

)
(8)

where the map G : Rn×n → Rn×n vanishes at 0.
Linear hyperbolic systems with dynamics associated with
their boundary conditions are less explored in the litera-
ture, although there are approaches using finite-dimensional
approximations such as in [6], where this kind of systems
has been successfully stabilized. Instead of (8), consider the
following dynamics for the boundary conditions:

Ẋc = AXc +Bu (9)
Yc = Xc

with

Xc =

(
ξ−(1, t)
ξ+(0, t)

)
, u = KYξ, Yξ =

(
ξ−(0, t)
ξ+(1, t)

)
(10)

where K ∈ Rn×n and u ∈ Rn. A ∈ Rn×n, B ∈ Rn×n
are given matrices. The Cauchy problem (4) - (9) has a
unique classical solution [10] if there exists a δ0 > 0 and
a continuously differentiable function ξ0 : [0, 1] → Θ such
that the zero-order and one-order compatibility conditions are
satisfied and |ξ0|H2((0,1,Rn)) < δ0. Thus, the initial condition
can be defined for (4) - (9) as:

ξ(x, 0) = ξ0(x), Xc(0) = X0
c , ∀x ∈ [0, 1] (11)

III. STABILITY OF LINEAR HYPERBOLIC SYSTEMS WITH
DYNAMIC BOUNDARY CONDITIONS

The aim of this section is to use Lyapunov functions to
state some sufficient conditions for the exponential stability
of (6), (9) and (11). The main results obtained for linear
hyperbolic systems are presented in the following theorem:

Theorem 1. Consider the system (6), (9) and (11). Assume
that there exists a diagonal positive definite matrix Q ∈
Rn×n such that the following LMI is satisfied[

QAT +AQ+ Λ+Q BY
Y TBT −Λ+Q

]
≺ 0 (12)

where K = Y Q−1. Then there exist two constants α > 0
and M > 0 such that, for all continuously differentiable
functions ξ0 : [0, 1] → Θ satisfying the zero-order and
one-order compatibility conditions, the solution of (6), (9)
and (11) satisfies, for all t ≥ 0,

||Xc(t)||2 + ||ξ(x, t)||L2(0,1) ≤
Me−αt

(
||X0

c ||2 + ||ξ0(x)||L2(0,1)

) (13)

Proof. Considering the system (6), it is possible to replace

ξ(x, t) by
(
ξ−(1− x, t)
ξ+(x, t)

)
and obtain a PDE whose cor-

responding diagonal characteristic matrix function is Λ+.
Therefore, it can be may assumed without loss of generality
that m = 0 and Λ+ = Λ and that the boundary conditions
(9) have the following form:

Ẋc = AXc +Bu (14)
Xc = ξ(0, t), u = KYξ, Yξ = ξ(1, t)

Given a diagonal positive definite matrix P , consider, as
an extension of the Lyapunov function proposed in [9],
the quadratic Lyapunov function candidate defined for all
continuously differentiable functions ξ : [0, 1]→ Θ as:

V (ξ,Xc) = XT
c PXc +

∫ 1

0

(
ξTPξ

)
e−µxdx (15)
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where µ is a positive scalar that is precised below. Computing
the time derivative of V along the solutions of (6), (9) and
(11) yields to:

V̇ =XT
c

(
ATP + PA

)
Xc + Y Tξ K

TBTPXc

+XT
c PBKYξ −

[
e−µxξTΛPξ

] ∣∣1
0

− µ
∫ 1

0

(
ξTΛPξ

)
e−µxdx

(16)

(16) can be written in terms of the boundary conditions
dynamics (14) as follows:

V̇ = −µXT
c ΛPXc − µ

∫ 1

0

(
ξTΛPξ

)
e−µxdx

+

[
Xc

Yξ

]T  ATP + PA PBK
+ΛP + µΛP
KTBTP −e−µΛP


×
[
Xc

Yξ

]
(17)

Note that (12) is equivalent to consider that

[
ATP + PA+ ΛP PBK

KTBTP −ΛP

]
≺ 0 (18)

which is obtained by multiplying both sides of (18) by
diag

(
P−1, P−1

)
and performing the change of variable

Q = P−1 and Y = KQ. Thus, for a small enough and
positive µ, the third term of (17) is always negative. From
(5) it can be proved that there always exists an ε > 0 such
that Λ > εIn×n (e.g ε could be the smallest eigenvalue of
Λ). Moreover, the diagonality of P and Λ imply that:

V̇ ≤ −µεV (ε) (19)

Therefore for a sufficiently small µ > 0, the function (15) is
a Lyapunov function for the hyperbolic system (6), (9), and
(11). �

IV. STABILITY OF QUASI-LINEAR HYPERBOLIC
SYSTEMS WITH DYNAMIC BOUNDARY CONDITIONS

A proof of the Lyapunov stability of (4) under the static
boundary conditions (8) has been investigated in details in
[10], assuming that ρ1(G

′
(0)) < 1 (where ρ1(G

′
(0)) =

Inf{||∆G′(0)∆−1||; ∆ ∈ Dn,+}, where Dn,+ denotes the
set of n × n real diagonal positive definite matrices), and
using as a Lyapunov function candidate:

V (ξ) = V1(ξ) + V2(ξ, ξx) + V3(ξ, ξx, ξxx) (20)

with

V1(ξ) =

∫ 1

0

(
ξTQ(ξ)ξ

)
e−µxdx

V2(ξ, ξx) =

∫ 1

0

(
ξTxR(ξ)ξx

)
e−µxdx

V3(ξ, ξx, ξxx) =

∫ 1

0

(
ξTxxS(ξ)ξxx

)
e−µxdx

(21)

where Q(ξ), R(ξ) and S(ξ) are symmetric positive definite
matrices. The stability of system (4) with dynamics
associated with the boundary conditions is studied in a
different way by introducing a polytopic approach in the
characteristic matrix Λ(ξ).

Define a non empty convex set Ξ ⊂ Θ and a map T : Ξ→
Zϕ. Consider the following polytopic linear representation
of the nonlinear characteristic matrix:

Λ(ξ) =

2l∑
i=1

αi(ϕ)Λ(wi) (22)

∀ ξ ∈ Ξ and therefore ∀ϕ ∈ Zϕ, where ϕ is a varying
parameter vector that takes values in the parameter space
Zϕ (a convex set) such that [2]:

Zϕ := {[ϕ1, ..., ϕl]
T ∈ Rl, ϕi ∈ [ϕi, ϕi]∀ i = 1...l} (23)

where l is the number of varying parameters, αi(ϕ) is a
scheduling function αi : Zϕ → [0, 1], wi are the 2l = Nϕ
vertices of the polytope defined by all extremities of each
varying parameter ϕ ∈ Zϕ and

∑2l

i=1 αi(ϕ)Λ(wi) : Zϕ →
Rn×n. In general, all the admissible values of the vector ϕ
are constrained in an hyperrectangle in the parameter space
Zϕ. The scheduling functions αi(ϕ) are defined as (see [2]):

αi(ϕ) =

∏l
k=1 |ϕk − C(wi)k|∏l
k=1 |ϕk − ϕk]|

(24)

where:

C(wi)k =

{
ϕk

∣∣∣∣ ϕk = ϕk if (wi)k = ϕ
k

ϕk = ϕ
k

otherwise}

}
(25)

which has the following properties:

αi(ϕ) ≥ 0,

2l∑
i=1

αi(ϕ) = 1 (26)

Consider (4) as an equivalent parameter varying hyperbolic
system defined by:

∂tξ(x, t) +

2l∑
i=1

αi(ϕ)Λ(wi)∂xξ(x, t) = 0

∀ϕ ∈ Zϕ, ∀x ∈ [0, 1], t ≥ 0

(27)
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It is clear that ϕ depends on ξ. However, as long as
ξ remains in the set Ξ, the varying parameters ϕi can
be considered as independent varying parameters (LPV
framework [5]) that change the characteristic matrix. This
results in a conservative tool for stability analysis because a
whole polytope is stabilized instead of only the vertices [14].
Using (27), the following theorem states some sufficient
conditions to ensure exponential stability for system (4), (9)
and (11) in a defined region Zϕ.

Theorem 2. Consider the system (4), (9) and (11). Assume
that there exists a diagonal positive definite matrix Q ∈
Rn×n such that the following LMI is satisfied ∀i ∈ [1, ..., Nϕ]

[
QAT +AQ+ Λ+(wi)Q BY

Y TBT −Λ+(wi)Q

]
≺ 0 (28)

where K = Y Q−1. Then there exist two constants α > 0
and M > 0 such that, for all continuously differentiable
functions ξ0 : [0, 1] → Ξ satisfying the zero-order and
one-order compatibility conditions, the solution of (4), (9)
and (11) satisfies (13) for all t ≥ 0

Proof. Consider once again the Lyapunov function candidate
(15). Computing the time derivative of V along the solutions
of (4), (9) and (11) yields the following:

V̇ = XT
c

(
ATP + PA

)
Xc + Y Tξ K

TBTPXc

+XT
c PBKYξ −

2l∑
i=1

αi(ϕ)
[
e−µxξTΛ(wi)Pξ

] ∣∣1
0

−
2l∑
i=1

αi(ϕ)µ

∫ 1

0

(
ξTΛ(wi)Pξ

)
e−µxdx

(29)

Using the same procedure performed in the proof of Theorem
1, assuming once again that µ > 0 is small enough and the
fact that by definition,

∑2l

i=1 αi(ϕ) = 1 and αi ≥ 0 gives:

V̇ ≤ −µεV (ε) (30)

where ε in this case could be the smallest eigenvalue of
Λ(wi)∀i ∈ [1, ..., Nϕ]). This proves that (15) is a Lyapunov
function for the system (4), (9) and (11). �

The polytopic approach guarantees the stability and robust-
ness of the quasi-linear hyperbolic system in a determined
region Zϕ, which cannot be achieved with the approach
presented in Theorem 1 as it would only guarantee the
stability of (4), (9) and (11) in a small enough neighborhood
around the equilibrium.

V. ILLUSTRATING EXAMPLE: ISENTROPIC INVISCID
FLOW IN A PIPE WITH CONSTANT CROSS SECTION

In this section, the air flow inside a pipe with a constant cross
section is modeled by the Euler equations. The stabilization
problem is solved using a boundary control computed using

Riemann coordinates as presented in Sections III and IV.
Two boundary controllers are designed: one to stabilize
the system in an arbitrarily small neighborhood around a
steady-state equilibrium (Theorem 1) and a second one
to stabilize the system in a region in the parameter space
around the system’s equilibrium (Theorem 2).

Consider the Euler equations expressed in terms of the
primitive variables [18]: density (ρ), speed (u) and pressure
(p),

∂tW +A(W )∂xW + C(W ) = 0 (31)

where

W =

ρu
p

 ; A(W ) =

u ρ 0
0 u 1

ρ

0 a2ρ u


a =

√
γp
ρ is the speed of sound, γ is the specific heat ratio

and C(W ) is a function that describes the friction losses
and heat exchanges. The isentropic case is analyzed, then
C(W ) = 0. The eigenvalues of the characteristic matrix
A(W ), called the characteristic velocities, are:

λ1(W ) = u+ a, λ2(W ) = u, λ3(W ) = u− a (32)

and their respective Riemann invariants (see [18]):

a+
γ − 1

2
u,

√
p

ργ
, a− γ − 1

2
u (33)

Assume that the velocities (32) verify:

λ3(W ) < 0 < λ2(W ) < λ1(W ) (34)

which characterizes (31) as a strict hyperbolic system and
ensures the existence of a transformation to the Riemann
coordinates. Consider the following change of coordinates:

ξ1 =

√
γp

ρ
+
γ − 1

2
u−

√
γp̃

ρ̃
− γ − 1

2
ũ

ξ2 =

√
p

ργ
−

√
p̃

ρ̃γ

ξ3 =

√
γp

ρ
− γ − 1

2
u−

√
γp̃

ρ̃
+
γ − 1

2
ũ

(35)

where W̃ = [ρ̃, ũ, p̃]T is an arbitrary steady-state. With
these new coordinates (ξ1, ξ2, ξ3), the dynamics (31) can be
rewritten in the quasi-linear hyperbolic form (4). Since the
change of coordinates (35) is a mapping, ρ, u and p can be
expressed in terms of the Riemann invariants as:

2955



u =
ξ1 − ξ3 + (γ − 1)ũ

γ − 1
, p = ργ

(
ξ2 +

√
p̃

ρ̃γ

)2

ρ =

ξ1 − γ−1
2 (u− ũ) +

√
γp̃
ρ̃

√
γ
(
ξ2 +

√
p̃
ρ̃γ

)


2
γ−1 (36)

Note that the equilibrium [ρ̃, ũ, p̃]T expressed in terms of
Riemann coordinates is [0, 0, 0]T .

A. Boundary Control for the Quasi-Linear Model

A boundary control for equation (31) is designed with proved
stability in a region described by a polytope around an
equilibrium point. Define the dynamic boundary conditions
(9) with:

A =

−300 0 13
0 −40 0
4 0 −300


B =

−3 0 0
0 10 0
0 0 3

 (37)

The characteristic matrix defined in terms of physical quan-
tities can be expressed as:

Λ(W ) =

a+ u 0 0
0 u 0
0 0 a− u

 (38)

Define the varying parameter ϕ = [a, u]T , which is enough
to describe the propagation speed of the Riemann invariants.
Define the limits on each parameter as [a, a] and [u, u] to
describe the region Zϕ where the stability of system (31)
is ensured by using Theorem 2. Consider the equilibrium
W̃ = [1.16, 20, 100000]T : W̃ imposes at the equilibrium
point ũ = 20 and ã = 347. The region Zϕ is then defined
by setting the following limits of each parameter:

a = 355, a = 340, u = 40, u = 5 (39)

Applying Theorem 2, the following controller is obtained:

K1 =

−14.35 0 −1.54
0 −0.07 0

−2.12 0 −14.5

 (40)

with the respective diagonal positive definite matrix associ-
ated with the Lyapunov function (15):

P−1 = Q =

0.026 0 0
0 0.19 0
0 0 0.026

 (41)

To illustrate this result, numerical simulations of (31)
with (9) and (40) are performed with an initial condition
W0 = W (x, 0) ∈ Ξ. The MacCormack numerical method
combined with a time varying diminishing (TVD) scheme
has been considered for the PDE simulation, along
with a modified method of characteristics for the boundary
conditions resolution. For more detail on the simulator and its
validation see [7]. Define W0 = [1.168, 21, 101000]T ∈ Ξ.

Figures 1a, 1b and 1c present the results obtained in the
numerical simulations using the feedback gain (40). The
states ρ, u and p reach effectively the desire equilibrium in
finite time, while satisfying the condition ϕ ∈ Zϕ ∀ t > 0
(Figures 1b and 2a).

To illustrate the differences between Theorem 1 and 2, a
controller K2 is derived using Theorem 1 at W̃ . K2 thus
guarantees the system stability in a neighborhood that is close
enough to the equilibrium W̃ , considering Λ to be constant.
The following K2 is obtained:

K2 =

−30.86 0 −1.95
0 −0.6 0

−2.10 0 −32.4

 (42)

with the corresponding Lyapunov matrix (15):

P−1 = Q =

0.013 0 0
0 0.09 0
0 0 0.013

 (43)

Both controllers (K1 and K2) are simulated with the
same conditions starting from the initial condition W0 =
[1.168, 21, 101000]T . The results are presented in Figures
2b and 2c, which are the projections in time of the speed
profiles. Note that the polytopic controller presents a better
response (in terms on time response and smoothness) to-
gether with the guarantee of stability.

VI. CONCLUSION

In this paper, some sufficient conditions were derived for the
exponential stability of a linear and a quasi-linear hyperbolic
PDE system with dynamics associated with the boundary
conditions. The stability analysis has been done using a
Lyapunov function which allows expressing the stability
conditions in an LMI framework. A polytopic approach was
implemented to guarantee the stability of quasi-linear hyper-
bolic system inside a defined polytope. A simulation example
has shown the effectiveness of the contributions presented in
this work and the advantages in terms of convergence and
robustness of the polytopic approach. This work has many
applications in different systems governed by hyperbolic
PDE. A natural extension can be the sufficient conditions for
stability of quasi-linear hyperbolic systems with non-linear
dynamical behavior at the boundaries. Many questions are
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(a) Density profile with Theorem 2 (b) Speed profile with Theorem 2 (c) Pressure profile with Theorem 2

Fig. 1: Time evolution of the density, speed and pressure profile using the controller for quasi-linear hyperbolic systems

(a) Speed of sound profile with Theorem 2 (b) Projection of the speed profile with Theo-
rem 1

(c) Projection of the speed profile with Theo-
rem 2

Fig. 2: Comparison of the speed profiles using both approaches

still open. In particular, the derivation of boundary observers
for hyperbolic systems with linear and non-linear dynamic
boundary control seems to be a challenging issue.
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