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Abstract— In this paper we present a Lyapunov based
feedback design strategy, by employing the sum-of-squares
polynomials framework, to maximize the bootstrap current in
tokamaks. The bootstrap current may play an important role
in reducing the external energy input required for tokamak
operation. The sum-of-squares polynomials framework allows
us to algorithmically construct controllers. Additionally, we
provide a heuristic to take into account the control input shape
constraints which arise due to limitations on the actuators.

I. INTRODUCTION

A tokamak is a device which uses toroidal and poloidal

magnetic fields to heat and compress Deuterium-Tritium

plasma in order to initiate and sustain a nuclear fusion reac-

tion [16]. Toroidal and poloidal magnetic coils are combined

to produce a helical magnetic field that confines the plasma.

The poloidal field is also generated by the plasma current.

The plasma current contributes to the plasma heating, and

thus to the pressure distribution, as a consequence of the

electrical resistance of the plasma [16].

The main source of current in a tokamak is the one

induced in the plasma by the transformer action caused by

the central ohmic coil [20]. This current is also known as

the induced current. Additional sources of current are the

radio-frequency (RF) antennas. The total current provided by

these sources accounts for a considerable portion of energy

required for tokamak operation. An additional source of

current is internally generated by particles trapped between

isoflux surfaces (surfaces with constant magnetic flux). This

current is referred to as the bootstrap current [20]. Thus,

bootstrap current is an automatically generated source of

plasma current. An increase in the bootstrap current would

lead to a reduced requirement of external current inputs

provided by the transformer action and the RF-antennas. This

reduced dependence on external current sources would also

increase the pulse lengths for which the tokamak can operate.

For example, the ultimate goal of the ITER project [8] is to

demonstrate the steady state operation of tokamaks. A high

value of bootstrap current has been identified as a crucial

factor for steady state operation of tokamaks [10], [18].

The bootstrap current density is given by

jbs(x, t) = C(x, t)∂ψ/∂x,
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where C(x, t) is a function of the pressure and temperature

profiles of electrons and ions [21], ψ(x, t) is the poloidal

magnetic flux profile, x ∈ [0, 1] is the spatial variable and t ≥
0 is time. Additionally, C(x, t) is continuous and bounded

in both space and time and is non-zero on non-zero measure

subsets of [0, 1] for all time. The dependence of the bootstrap

current on poloidal flux, pressure and temperature profiles is

explained in [9]. The goal of this paper is to enhance the

bootstrap current density by constructing optimal controllers

for the gradient of the poloidal flux using the RF-antennas.

We achieve this goal by employing a simplified model for

the evolution of ∂ψ/∂x. Unfortunately, since jbs appears

in this model, the resultant model is a non-linear partial

differential equation in ∂ψ/∂x. To overcome this issue, we

linearize jbs about an operating point of ∂ψ/∂x and then

use this linearized model to construct Sum-of-Squares-based

controller-synthesis conditions which minimize the effect of

disturbances on the norm of the state ∂ψ/∂x. In addition, we

also provide a heuristic to enforce spatial shape constraints

on the control input. These constraints arise as a consequence

of the actuators’ operational limits.

The application of the sum-of-squares framework allows

us to algorithmically construct controllers in a computation-

ally effective manner. In [7] we used sum-of-squares poly-

nomials to control the safety-factor profile [20] in tokamaks.

We made the simplifying assumptions of considering both

the bootstrap current and plasma resistivity to be static.

These assumptions resulted in a linear partial differential

equation model for the evolution of ∂ψ/∂x. In this paper,

we consider time varying plasma resistivity profile. Such

resistivity profiles and the linearized jbs result in a linear

partial differential equation model of ∂ψ/∂x with time-

varying distributed coefficients. Additionally, in the presented

work we consider shape constrains on the control inputs,

which we did not consider in [7]. Examples of control of

tokamak plasmas with bootstrap current as a primary current

source can be found in [10], [12]. A few additional research

papers on the application of sum-of-squares polynomials for

controller synthesis of infinite-dimensional systems are [15],

[6].

The paper is organized as follows: Section II briefly covers

the concepts used throughout the paper, Section III provides

the main contribution and in Section VI we numerically

simulate the controlled system and discuss the results.
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II. PRELIMINARIES

A. Notation

The space Cn
2 [0, 1] is defined to be the set of n−times

continuously differentiable functions satisfying ‖f‖Cn
2
[0,1] =

(

∫ 1

0 |f(x)|2dx
)

1

2

<∞.

For a given strictly positive polynomialM on [0, 1], we de-

fine the space Cn,M−2

2 [0, 1] to be the set of n−times contin-

uously differentiable functions satisfying ‖f‖
C

n,M−2

2
[0,1]

=
(

∫ 1

0
|M−2(x)f(x)|2dx

)
1

2

<∞.

We define the space L2((0, T );C
n
2 [0, 1]), for 0 < T ≤ ∞,

to be the set n−times continuously differentiable functions

f(t, x) with support on x ∈ [0, 1] and t ∈ [0, T ] satisfying

‖f‖L2((0,T );Cn
2
[0,1] =

(

∫ T

0
‖f(x, t)‖2

Cn
2
[0,1]dt

)
1

2

<∞.

The definition of the spaces C1
2 ((0, T );C

n
2 [0, 1]) and

C1
2 ((0, T );C

n,M−2

2 [0, 1]), for 0 < T ≤ ∞, follow similarly.

B. Dynamic Model of the Poloidal Flux Gradient

We employ the model presented in [21] for the evolution

of the poloidal magnetic flux ψ. This model uses a cylindrical

approximation and neglects the diamagnetic effect to obtain

∂ψ

∂t
(x, t) =

η‖(x, t)

µ0a2

(

∂2ψ

∂x2
+

1

x

∂ψ

∂x

)

+ η‖(x, t)R0jni(x, t)

(1)

with the boundary conditions

∂ψ

∂x
(0, t) = 0 and

∂ψ

∂x
(1, t) = −R0µ0Ip(t)/2π,

where Ip(t) is the plasma current, η‖(x, t) is the plasma

resistivity, µ0 is the permeability of free space, a is the radius

of the last closed magnetic surface , R0 is the plasma major

radius and jni(x, t) is the combined current density resulting

from RF and bootstrap sources. Additionally, x ∈ [0, 1] is the

spatial variable and t ≥ 0 is the time.

To simplify notation, we begin by defining the variable

Z(x, t) = ψx(x, t)
1. To obtain an expression for the evolu-

tion of Z , we differentiate (1) in space to obtain

∂Z

∂t
(x, t) =

1

µ0a2
∂

∂x

(

η‖(x, t)

x

∂

∂x
(xZ(x, t))

)

+R0
∂

∂x

(

η‖(x, t)jni(x, t)
)

with boundary conditions

Z(0, t) = 0 and Z(1, t) = −R0µ0Ip(t)/2π. (2)

The non-inductive current density jni(x, t) is a sum of

the external non-inductive current density jeni(x, t) and the

bootstrap current density jbs(x, t). Separating these terms,

the model can be represented as

∂Z

∂t
(x, t) =

1

µ0a2
∂

∂x

(

η‖(x, t)

x

∂

∂x
(xZ)

)

+R0
∂

∂x

(

η‖(x, t)jbs(x, t)
)

+R0
∂

∂x

(

η‖(x, t)jeni(x, t)
)

.

(3)

1Throughout the paper, for a function f(x) of a variable x, fx(x) denotes
the partial derivative of f(x) with respect to x.

In our analysis, we will assume that

Zx(1, t) = −Z(1, t). (4)

This assumption is based on the observation that the total

current density jT (x, T ), defined in [1] as

jT (x, T ) = −(xZx(x, t) + Z(x, t))/µ0R0a
2r

is weak at the plasma edge, however, we assume it to be

zero.

Recall that by definition, jbs(x, t) = C(x, t)/Z(x, t), is a

function of Z , where C(x, t) is a function of the pressure and

density profiles. As a result the PDE is implicitly nonlinear

in the variable Z . We address this problem by linearization

of jbs(x, t) about an operating point Z̄(x) to get

jbs(x, t) = C̄(x)/Z̄(x) + u(x, t),

where C̄(x) corresponds to the static operating point Z̄(x)
and u(x, t) = (∂C/∂Z)|Z=Z̄(Z(x, t)− Z̄(x)). For our anal-

ysis, we take C̄(x)/Z̄(x) = 0. Simulation results, presented

in Section VI verify that this assumption does not have

a significant effect on the controller performance. At this

point we would like to remark that even though we aim

to solely minimize the norm of the Z-profile, in a more

realistic setting, a feasible target Z-profile would have to be

taken into account during control synthesis. This is due to the

relationship between the safety factor profile and the poloidal

magnetic flux gradient profiles [21]. Finally, the evolution

model of Z(x, t) used for the controller synthesis is

∂Z

∂t
(x, t) =

1

µ0a2
∂

∂x

(

η‖(x, t)

x

∂

∂x
(xZ)

)

+R0
∂

∂x

(

η‖(x, t)jeni(x, t)
)

+R0
∂

∂x

(

η‖(x, t)u(x, t)
)

.

(5)

We will take the disturbance u(x, t) to be the external input

to the system and assume that that u ∈ L2((0,∞), C2
2 [0, 1]).

This also implies that for all 0 < T < ∞, u ∈
L2((0, T ), C

2
2 [0, 1]). Additionally, we will assume that for all

initial conditions Z0 ∈ C2
2 [0, 1] and all sufficiently smooth

η‖, there exists a unique solution Z ∈ C1
2 ((0, T );C

2
2 [0, 1])

satisfying

dZ

dt
(x, t) =

1

µ0a2
∂

∂x

(

η‖(x, t)

x

∂

∂x
(xZ)

)

+R0
∂

∂x

(

η‖(x, t)jeni(x, t)
)

+R0
∂

∂x

(

η‖(x, t)u(x, t)
)

.

(6)

Refer to Section 7.6 in [14] for the existence and uniqueness

of solutions to parabolic partial differential equations with

time-varying evolution operators. Improved regularity of the

solutions can be proven by using the approach presented

in [5]2 wherein the authors prove the existence of smooth

solutions of (3) for jbs(x, t) = jeni(x, t) = 0.

2For review purposes, a preprint is available at http://www.

gipsa-lab.fr/~e.witrant/papers/12_ACC_Bribiesca.pdf
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C. Control input

In system (5), the external non-inductive current density

jeni(x, t) is the control input. The actuators for the control

input are typically lower hybrid current density (LHCD)

antennae and electron cyclotron current drive (ECCD) an-

tennae. In this paper we consider actuation using a single

LHCD antenna.

Using X-ray measurements from Tore Supra, an empirical

model of current deposition was developed in [21]. This

model uses a Gaussian deposition pattern with control au-

thority over certain scaling parameters. In particular, we may

use

jeni(x, t) = vlh(t)e
− (µlh(t)− x)2

2σlh(t)
, (7)

where we may control vlh, µlh and σlh with the constraint

that vlh(t) ∈ [0, 1.22 MA], µlh(t) ∈ [0.14, 0.33] and

σlh(t) ∈ [0.016, 0.073] for all t ≥ 0.

In this paper, we will design control laws for these three

input parameters using full-state feedback. This framework

assumes that we can measure Z(x, t) in real-time. Methods

for estimating Z(x, t) in real-time are discussed in [11].

Note that in the presented work, we choose the Gaussian

parameters as the control input parameters and not the N‖

and PLH . This is a simplified approach, however, it must

be noted that in a real tokamak, the two parameters N‖ and

PLH determine the three Gaussian parameters and hence the

mean, variance and amplitude of current deposits cannot vary

independently.

D. Sum-of-squares polynomials

A polynomial p(x) in variables x ∈ R
n is a sum-of-

squares polynomial (SOSP) if there exist polynomials pi(x)
for i ∈ {1, · · · , N} such that

p(x) =

N
∑

i=1

p2i (x).

Any SOSP is non-negative. The following theorem provides

a necessary and sufficient condition for a polynomial to be

SOSP.

Theorem 1 ([13]): A polynomial p(x), x ∈ R
n for n ∈ N,

of degree 2d, d ∈ N, is a SOSP if and only if there exists a

positive semi-definite and symmetric Q such that

p(x) = z(x)TQz(x), (8)

where z(x) is a vector of all monomials in x of degree d or

less.

If p(x) is a symmetric matrix-valued polynomial of dimen-

sion r then we replace z(x) with z(x)⊙ Ir where Ir is the

identity matrix of dimension r.

The problem of checking whether a polynomial is sign-

semidefinite is NP-hard [2]. However, as a consequence of

Theorem 1, the problem of checking whether a polynomial is

SOS is an LMI [3] and is therefore computationally tractable.

E. A boundedness condition on the system solution

In this paper we consider Z(x, t) to be the system output

and the disturbance u(x, t) as the system input. In this

subsection we show that for a bounded input, the system

output is bounded.

Lemma 1: Consider the function

V (t) =

∫ 1

0

Z(x, t)f(x)M−1(x)Z(x, t)dx,

where f(x) = x2, M(x) > 0, for x ∈ [0, 1], is a polynomial

and Z(x, t) is the solution of the evolution equation (5) with

u ∈ L2((0,∞), C2
2 [0, 1]).

Then if

dV (t)

dt
= V̇ (t) ≤

1

γ
‖u(x, t)‖2C2

2
[0,1]−γ‖Z(x, t)‖

2

C
2,M−2

2
[0,1]

,

for all t ≥ 0,

‖Z(x, t)‖2
C1

2
((0,∞);C2,M−2

2
[0,1])

≤
1

γ2
‖u(x, t)‖2L2((0,∞);C2

2
[0,1])

+
V (0)

γ
.

Proof: Since u ∈ L2((0,∞), C2
2 [0, 1]), for all 0 < t <

∞, u ∈ L2((0, T ), C
2
2 [0, 1]). Thus, from our assumptions

there exists a unique Z ∈ C1
2 ((0, T );C

2
2 [0, 1]) satisfying (6).

Additionally,

V̇ (t)

2
=

∫ 1

0

Z(x, t)f(x)M−1(x)
dZ(x, t)

dt
dx.

Note that this is well defined as dZ(x, t)/dt is given by (6)

and f(x) cancels out the singularity at x = 0 due to 1/x.

Assume that the hypotheses of the theorem hold. Integrat-

ing

V̇ (t) ≤
1

γ
‖u(x, t)‖2C2

2
[0,1] − γ‖Z(x, t)‖2

C
2,M−2

2
[0,1]

in time from 0 to an arbitrary 0 < T <∞,

‖Z(x, t)‖2
C1

2
((0,T );C2,M−2

2
[0,1])

≤
1

γ2
‖u(x, t)‖2L2((0,T );C2

2
[0,1])

+
V (0)

γ
.

Taking the limit T → ∞ gives us

‖Z(x, t)‖2
C1

2
((0,∞);C2,M−2

2
[0,1])

≤
1

γ2
‖u(x, t)‖2L2((0,∞);C2

2
[0,1])

+
V (0)

γ
.

This expression is well defined since

‖u(x, t)‖2
L2((0,∞);C2

2
[0,1])

<∞ and V (0)/γ is a constant.

III. MAIN RESULT

We now apply integration by parts to the condition in

Lemma 1 to formulate our optimization problem which will

allow us to synthesize controllers which minimize the upper
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bound 1
γ

on Z(x, t). We assume that the plasma resistivity

can be approximated, as given in [4]3:

η‖(x, t) = a(t)eλ(t)x for all (x, t) ∈ [0, 1]× [0, T ),

where 0 < a ≤ a(t) ≤ ā and 0 < λ ≤ λ(t) ≤ λ̄.

Theorem 2: Suppose that for a given γ there exist poly-

nomials M,R : [0, 1] → R such that M(x) > 0 for all

x ∈ [0, 1], Ω(x, λ) + Θ ≤ 0 for all (x, λ) ∈ [0, 1] × [λ, λ̄]
and 2A4 + 2B2 +A2(1) ≤ 0, where Ω(x, λ) =




2A1(x) 0 −R0µ0a
2f(x)

0 A0(x, λ) −R0µ0a
2fx(x)

−R0µ0a
2f(x) −R0µ0a

2fx(x) 0



 ,

Θ =







0 0 0

0 µ0a
2γ

a
0

0 0 − µ0a
2

āeλ̄γ






,

where

A0(x, λ) = 2A3(x)− λA2(x) −A2,x(x) + 2B1(x, λ),

A1(x) = −f(x)M(x),

A2(x) = −f̄(x)M(x) − f(x)Mx(x)− fx(x)M(x),

A3(x) = −2M(x)− fx(x)Mx(x), A4 =M(1),

B1(x) = −
fx(x)R(x)

2
+
f(x)Rx(x)

2
+ λ

f(x)R(x)

2
,

B2 =
R(1)

2
, f(x) = x2 and f̄(x) = x.

Then if

jeni(x, t) =
K(x)

R0µ0a2
Z(x, t)

where K(x) = R(x)M−1(x), then the effect of u on Z is

bounded as follows.

‖Z(x, t)‖2
C1

2
((0,∞);C2,M−2

2
[0,1])

≤
1

γ2
‖u(x, t)‖2L2((0,∞);C2

2
[0,1])

+
V (0)

γ
Proof: Suppose that there exists a γ > 0 for which the

hypotheses of Theorem 2 hold. Taking the time derivative of

V (t) gives us

V̇ (t)

2
=

∫ 1

0

ZM−1f
dZ

dt
dx = V̇1(t) + V̇2(t) + V̇3(t),

where

V̇1(t) =
1

µ0a2

∫ 1

0

ZM−1f
∂

∂x

(

η‖

x

∂

∂x
(xZ)

)

dx,

V̇2(t) = R0

∫ 1

0

ZM−1f
∂

∂x
(η‖u)dx,

V̇3(t) = R0

∫ 1

0

ZM−1f
∂

∂x
(η‖jeni)dx.

Note that we have dropped the spatial and temporal depen-

dencies of the variables for brevity.

3For review purposes, a preprint is available at http://www.

gipsa-lab.fr/~e.witrant/papers/12_TAC_Tokamak.pdf

We now define the new variable Y (x, t) =
Z(x, t)M−1(x). Hence

V̇1(t) =
1

µ0a2

∫ 1

0

Y f
∂

∂x

(

η‖

x

∂

∂x
(xMY )

)

dx,

V̇2(t) = R0

∫ 1

0

Y f
∂

∂x
(η‖u)dx and

V̇3(t) = R0

∫ 1

0

Y f
∂

∂x
(η‖jeni)dx.

Applying integration by parts twice on V̇1(t) we get

V̇1(t) =

∫ 1

0

η‖

µ0a2
(YxA1(x)Yx) dx

+

∫ 1

0

η‖

µ0a2

(

Y

(

A3(x) −
λA2(x)

2
−
A2,x(x)

2

)

Y

)

dx

+
η‖(1)

µ0a2
Y (1, t)

(

A4 +
A2(1)

2

)

Y (1, t)

+
η‖(1)

µ0a2
Zx(1, t)Y (1, t). (9)

Here we have used the fact that

Z(x, t) =M(x)Y (x, t)

⇒ Zx(x, t) =Mx(x)Y (x, t) +M(x)Yx(x, t)

⇒ Zx(1, t) =Mx(1)Y (1, t) +M(1)Yx(1, t).

Due to the assumption on the total current density on the

boundary jT (1, t) discussed in the prelimiaries and due to

our linearization of jbs, we obtain the boundary condition

u(1, t) = 0. Applying integration by parts to V̇2(t), we get

V̇2(t) =

∫ 1

0

R0η‖ (Y (−fx)u+ Yx(−f)u) dx (10)

Using the feedback law jeni(x, t) = K(x)Z(x, t)/R0µ0a
2,

we get

V̇3(t) =
1

µ0a2

∫ 1

0

Y f
∂

∂x

(

η‖KZ
)

dx

=
1

µ0a2

∫ 1

0

Y f
∂

∂x

(

η‖KMM−1Z
)

dx

=
1

µ0a2

∫ 1

0

Y f
∂

∂x

(

η‖RY
)

dx.

Applying integration by parts twice, V̇3(t)

=

∫ 1

0

η‖

µ0a2
Y B1(x)Y dx+

η‖(1)

µ0a2
Y (1, t)B2Y (1, t). (11)

Since V̇ (t) = 2V̇1(t) + 2V̇2(t) + 2V̇3(t), using (9), (10) and

(11), we obtain

V̇ (t) =

∫ 1

0

η‖

µ0a2





Yx
Y
u





T

Ω(x, λ)





Yx
Y
u



 dx

+
η‖(1)

µ0a2
Y (1, t) (2A4 +A2(1) + 2B2)Y (1, t)

+
η‖(1)

µ0a2
Zx(1, t)Y (1, t).
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Consequently,

V̇ (t)−
1

γ
‖u‖2C2

2
[0,1] + γ‖Z‖2

C
2,M−2

2
[0,1]

= V̇ (t)−
1

γ
‖u‖2C2

2
[0,1] + γ‖Y ‖2C2

2
[0,1]

=

∫ 1

0

η‖

µ0a2





Yx
Y
u





T

Ω(x, λ)





Yx
Y
u



 dx

+

∫ 1

0

(

−
u2

γ
+ γY 2

)

dx

+
η‖(1)

µ0a2
Y (1, t) (2A4 +A2(1) + 2B2)Y (1, t)

+
η‖(1)

µ0a2
Zx(1, t)Y (1, t)

=

∫ 1

0

η‖

µ0a2





Yx
Y
u





T

Ω(x, λ)





Yx
Y
u



 dx

+

∫ 1

0

η‖

µ0a2

(

−
µ0a

2u2

η‖γ
+
µ0a

2γY 2

η‖

)

dx

+
η‖(1)

µ0a2
Y (1, t) (2A4 +A2(1) + 2B2)Y (1, t)

+
η‖(1)

µ0a2
Zx(1, t)Y (1, t). (12)

Since η‖(x, t) = a(t)eλ(t)x, a ≤ η‖(x, t) ≤ āeλ̄ for all

(x, t) ∈ [0, 1]× [0, T ). Hence,




Yx
Y
u





T

Ω(x, λ)





Yx
Y
u



−
µ0a

2u2

η‖γ
+
µ0a

2γY 2

η‖

≤





Yx
Y
u





T

Ω(x, λ)





Yx
Y
u



−
µ0a

2u2

āeλ̄γ
+
µ0a

2γY 2

a

=





Yx
Y
u





T

(Ω(x, λ) + Θ)





Yx
Y
u



 .

Since Ω(x, λ) + Θ ≤ 0 for all (x, λ) ∈ [0, 1] × [λ, λ̄], we

conclude that

∫ 1

0

η‖

µ0a2





Yx
Y
u





T

Ω(x, λ)





Yx
Y
u



 dx

+

∫ 1

0

η‖

µ0a2

(

−
µ0a

2u2

η‖γ
+
µ0a

2γY 2

η‖

)

dx ≤ 0 (13)

for all t ≥ 0. Similarly, since from the theorem statement,

we have 2A4 +A2(1) + 2B2 ≤ 0 and hence

η‖(1)

µ0a2
Y (1, t) (2A4 +A2(1) + 2B2)Y (1, t) ≤ 0. (14)

Finally, from the boundary conditions given in (2) and (4)

coupled with the definition of Y (x, t), it is straightforward

to observe that

η‖(1)

µ0a2
Zx(1, t)Y (1, t) ≤ 0. (15)

Combining equations (12), (13), (14) and (15) we get

V̇ (t) ≤
1

γ
‖u‖2C2

2
[0,1] − γ‖Z‖2

C
2,M−2

2
[0,1]

,

for all t ≥ 0. Lemma 1 then completes the proof.

By using Sum-of-Squares to maximize γ in the conditions

of theorem 2, we can minimize an upper bound on the state.

Because bootstrap current is inversely proportional to Z and

is non-zero on non-zero measure subsets of [0, 1] for all t ≥
0, this implies that our controller will maximize the bootstrap

current.

IV. CONSTRAINTS ON THE CONTROLLER SHAPE

The controller given by Theorem 2 will have a spatial

distribution which is a function of the state Z(x, t). Unfor-

tunately, this distribution may not correspond with the Gaus-

sian distribution described in our discussion of Subsection II-

C. In order to constrain the input profile to have the required

Gaussian shape, we propose the following simple heuristic.

To ensure that jeni(x, t) resembles a Gaussian defined

by suitable choice of the time-varying parameters vlh, µlh

and σlh, we add an additional constraint to our optimization

problem. This constraint has the form

g1(x) ≤ jeni(x, t) =
K(x)

R0µ0a2
Z(x, t) ≤ g2(x),

where g1(x) < g2(x), for all x ∈ [0, 1], are polynomial

approximations of two selected feasible Gaussians. Since

both K(x) and Z(x, t) are continuous, the control input

is a continuous function bounded by the the shape of the

constraint envelope defined by g1(x) and g2(x). Additionally,

we assume that

Z(x, t) = α(t)Z1(x) + (1− α(t))Z2(x) for all t ≥ 0,

where α ∈ [0, 1] and Z1(x) is the polynomial approxima-

tion of the open-loop steady state. Similarly, Z2(x) is the

polynomial approximation of the closed-loop steady state

under maximum actuation of jeni(x, t) = jlh(x, t). Hence,

Z1(x) and Z2(x) define the expected envelope on the state

Z(x, t) established for a given set of operating conditions.

The parameter α reflects our actuation capabilities. Since

K(x) = R(x)/M(x), the shape constraint becomes

R0µ0a
2M(x)g1(x) ≤ R(x) (αZ1(x) + (1 − α)Z2(x))

≤ R0µ0a
2M(x)g2(x)

for all (x, α) ∈ [0, 1]× [0, 1]. Although this approach is only

a heuristic, we may improve our results by trying different

constraint envelopes, as represented by g1(x) and g2(x).

V. COMPUTATION

Finally, we implement the conditions of Theorem 2 and the

heuristic discussed previously using SOS. We formulate the

optimization problem as follows. We are given polynomials

Z1(x), Z2(x), g1(x) and g2(x) and solve the following.

Maximize γ > 0 such that following holds for some

polynomials M(x) and R(x).

1) M(x) > 0 for all x ∈ [0, 1],
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Fig. 1: Constraint envelope and
K(x)

R0µ0a2 (αZ1(x) + (1 −
α)Z2(x)) for α ∈ [0, 1]

2) Ω(x, λ) + Θ ≤ 0 for all (x, λ) ∈ [0, 1]× [λ, λ̄],
3) 2A4 + 2B2 +A2(1) ≤ 0 and

4) for all x ∈ [0, 1] and α ∈ [0, 1],

R0µ0a
2M(x)g1(x)

≤ R(x) (αZ1(x) + (1− α)Z2(x))

≤ R0µ0a
2M(x)g2(x)

where Ω(x, λ), Θ, A4, A2(x) and B2 are defined in the

statement of Theorem 2.

We solve the optimization problem using SOSTOOLS [17]

toolbox for MATLAB c©. The search for the maximum γ is

performed using the bisection method. We solve this problem

for the Tore Supra tokamak for which R0 = 2.38m and

a = 0.38m. Moreover, the plasma resistivity is defined as

η‖(x, t) = a(t)eλ(t)x where a(t) ∈ [0.0093, 0.0121] and

λ(t) ∈ [4, 7.3] for all t ≥ 0. These values were obtained

from the data for shot TS 35109.

VI. SIMULATION

We obtain a maximum value of γ = 104 as the solution

for the optimization problem for Tore Supra. The feasible

polynomials M(x) and R(x) obtained for this value of γ
are of degree 12 in the spatial variable x. We simulate

the closed-loop system on the simulator developed in [21].

This simulator considers the non-linear evolution model of

Z(x, t). The following figures provide the simulation results

and show that although our controller was developed using

a linearized model, it is effective in controlling the nonlinear

PDE.

Figure 1 shows the constraint envelope as well as
K(x)

R0µ0a2 (αZ1(x) + (1 − α)Z2(x)) for several values of α ∈
[0, 1], where K(x) = R(x)/M(x).

Figure 2 shows the comparison between the time evolution

of the spatial C2
2 [0, 1] norm of Z(x, t) using both open-

loop and closed-loop with closed loop control starting at

t = 12. Figure 3 shows the evolution of the spatial L2-

norm of jbs(x, t) using both open-loop and closed-loop with

closed loop control starting at t = 12. As a consequence of

the decrease in Z(x, t), we are able to obtain a percentage

increase of ≈ 90% in ‖jbs‖L2[0,1].

Figure 4 illustrates the time evolution of the jbs(x, t) using

level sets (shading).
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Finally, to analyze the control input shapes, we fit a feasi-

ble Gaussian to control input at a time instance as shown in

Figure 5. We observe that the control input approximates the

shape of feasible Gaussians satisfactorily for roughly 70% of

the spatial domain. However, the control input departs from

the Gaussian shapes as x→ 0. This is due to the controller

having the form jeni(x, t) = K(x)Z(x, t)/R0µ0a
2 and the

boundary condition Z(0, t) = 0. Note that the Gaussian

approximation of the LHCD current deposit is obtained from

hard X-ray measurements and, as stated in [21], a large

uncertainty remains concerning the actual deposit close to

the plasma center (x = 0). If a true zero boundary condition

for the input is desired, then RF-antennas (ECCD) can be

used to generate a sharper deposit profile near the plasma

center.
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0.33 and σlh = 0.072 at a time instance of 17s.

VII. CONCLUSIONS AND FUTURE RESEARCH

In this paper, we have investigated the use of the sum-of-

squares (SOS) framework for the control of tokamak plas-

mas. In particular, we have devised a strategy to maximize

the bootstrap current density in the plasma while taking into

account the time varying plasma resistivity. Our method also

provides a heuristic to constrain the shape of the control

inputs. The simulation results illustrate the effectiveness of

the proposed method.

Although the algorithms presented in this paper are ef-

fective at increasing bootstrap current, additional research

must be performed before this method can be used to design

controllers which can be tested under realistic operating

scenarios. For example, in our approach, we assume that

the controller gains are computed offline. This is based on a

steady-state model of tokamak operation. It is possible that

this model can be improved by gain-scheduling for different

operating conditions. The next step towards controller imple-

mentation would be to design an online optimizer to infer

the antennas’ engineering parameters (power, refractive index

for LHCD and orientation for ECCD) which minimize the

difference between the desired and effective current deposit.

We would also develop algorithms that return the values

of engineering control parameters (N‖ and PLH ) and not

the Gaussian parameters since the engineering parameters

are the control inputs for a tokamak. Additionally, we will

devise conditions to show that the optimality condition on

the state holds as long as there is a bounded difference

between the desired and effective current deposit. In future

work, we will also investigate the development of observer-

based controllers which use bootstrap current density to

estimate the state and controllers which take into account the

coupling between Z and C. We will also need to validate

our controllers on METIS [19], an advanced simulator for

toroidal plasmas. Finally, we would also like to generalize

our approach to include multiple LHCD and ECCD antennas.
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