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Abstract: The problem of boundary control in first order linear parameter varying (LPV)
hyperbolic systems with dynamics associated with the boundary conditions is considered in this
article. By means of Lyapunov based techniques, some sufficient conditions are derived for the
exponential stability of these infinite dimensional systems. A polytopic approach is developed
in order to synthesize a robust boundary control which guarantees the exponential stability for
a given convex parameter set. An application using a Poiseuille flow control experimental setup
illustrates the main results.
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1. INTRODUCTION

Fluid transport is a phenomenon often encountered in
many industrial applications of significant importance
such as hydraulic networks (Santos and Prieur [2008]), gas
flow in pipelines (Bastin et al. [2008]) and flow regulation
in deep pits (Witrant et al. [Jan. 2010]), among others.
These kind of infinite dimensional systems introduce vari-
able time-delays that make the closed loop control much
more challenging. The fluid transport is often modeled by
balance laws which are hyperbolic partial differential equa-
tions (PDE), commonly used to express the fundamental
dynamics of open conservative systems. Measurements and
actuators in distributed parameter systems are not usually
available. It is more common for them to be located at the
boundaries which is particularly true in applications such
as the ones previously mentioned.

The stability problem of the boundary control in time
invariant hyperbolic systems has been considered for a long
time in the literature, as reported in Coron et al. [2007],
Coron et al. [2008] and Prieur et al. [2008], among other
references. However, the boundary control of LPV hyper-
bolic systems has not been found in the literature, which
is the principal concern of this work. Also, most results
in boundary control of hyperbolic systems consider that
the control can act directly at the boundary conditions.
More precisely, no time response limitation is considered
at the boundary actuator. This is a valid assumption in
applications such as the ones addressed in Bastin et al.
[2009], where the wave travel time can be considered much
longer than the actuator time response, allowing a static
relationship between the control input and the boundary
condition to be established. Nevertheless, there are appli-
cations where the dynamics associated with the boundary
control cannot be neglected. To address this problem, a
discretization of the infinite-dimensional system has been

used in order to apply finite-dimensional control tools such
as in Castillo et al. [2012]. In Castillo et al. [2013] and
Rasvan [2008], the stability of hyperbolic systems with LTI
dynamic boundary conditions has been considered.

The present work focuses on the stability problem of
linear parameter varying hyperbolic systems in presence
of known LPV dynamics at the boundary conditions. To
demonstrate asymptotic stability of this kind of hyper-
bolic systems, Riemann coordinates are used along with
an extension of the strict Lyapunov function formulation
presented in Coron et al. [2007]. Sufficient conditions are
derived on the system in terms of the boundary conditions
to prove Lyapunov stability. The sufficient conditions for
stability are presented in a linear matrix inequality (LMI)
framework. An example of a physical experimental setup
specifically designed to study the fluid transport phe-
nomenon is developed in detail to illustrate the proposed
boundary control strategy.

This paper is organized as follows: in Section 2, the class
of hyperbolic systems under consideration is given and
the control problem is presented. In Section 3, the main
stability results for linear parameter varying hyperbolic
systems with dynamic behavior at the boundary condi-
tions are presented. In Section 4, a reduced physical model
of an experimental setup for the regulation of the output
temperature in a Poiseuille flow is developed. Finally, in
Section 5, a temperature boundary control is designed for
the experimental setup using the main contributions of
this work. Simulations results are presented to illustrate
the effectiveness of the proposed control strategy.
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2. PROBLEM FORMULATION

This section gives a brief introduction on first order
parameter-varying linear hyperbolic systems in one dimen-
sion space and presents the specific hyperbolic systems
considered in this work. Let n be a positive integer, Θ an
open non-empty convex set of R

n and Zϕ a non empty
convex set of Rl. Consider the general class of first order
linear parameter-varying hyperbolic systems in Riemann
coordinates of order n defined as follows:

∂tξ(x, t) + Λ(ϕ)∂xξ(x, t) = 0 ∀x ∈ [0, 1], t ≥ 0 (1)

where ξ : [0, 1] × R
n → Θ, ϕ is a varying parame-

ter vector that takes values in the parameter space Zϕ,
Λ(ϕ) : Zϕ → R

n×n is a diagonal and invertible ma-
trix function (called the characteristic matrix) such that
Λ(ϕ) = diag(λ1(ϕ), λ2(ϕ), ..., λn(ϕ)) with:

λ1(ϕ) < ... < λm(ϕ) < 0 < λm+1(ϕ) < ... < λn(ϕ)

∀ϕ ∈ Zϕ
(2)

The state description can be partitioned as: ξ =

[

ξ−
ξ+

]

where ξ− is in R
m and ξ+ is in R

n−m. Define:

Λ+(ϕ) = diag(|λ1(ϕ)|, |λ2(ϕ)|, ..., |λn(ϕ)|) (3)

Considering the system (1), it is possible to introduce the

change of variable

(

ξ−(1− x, t)
ξ+(x, t)

)

to obtain a PDE of

the form (1), whose corresponding diagonal characteristic
matrix function is Λ+(ϕ). Therefore, it can be assumed
without loss of generality that m = 0 and Λ(ϕ) = Λ+(ϕ).
In this work, the following dynamic boundary condition
for (1) is considered.

Ẋc = Ac(ϕ)Xc +Bc(ϕ)u (4)

Yc = Xc

with

Xc =

(

ξ−(1, t)
ξ+(0, t)

)

, u = KYξ, Yξ =

(

ξ−(0, t)
ξ+(1, t)

)

(5)

where Ac : Zϕ → R
n×n, Bc : Zϕ → R

n×n, K ∈ R
n×n

and u ∈ R
n. Given a continuously differentiable function

ξ0 : [0, 1] → Θ that satisfies the zero-order and one-
order compatibility conditions (required for existence of
an unique C1 solution), then the initial condition can be
defined as (see Kmit [2008]):

ξ(x, 0) = ξ0(x), ∀x ∈ [0, 1] (6)

The control problem under consideration in this work is to
find a control gain K such that system (1) with boundary
condition (4) - (5) is Lyapunov stable ∀ϕ ∈ Zϕ.

3. STABILITY OF PARAMETER-VARYING LINEAR
HYPERBOLIC SYSTEMS WITH DYNAMIC

BOUNDARY CONDITIONS

Consider the following polytopic linear representation of
the parameter varying characteristic matrix:

Λ(ϕ) =
2l
∑

i=1

αi(ϕ)Λ(wi) (7)

∀ϕ ∈ Zϕ, where ϕ is a varying parameter vector that takes
values in the parameter space Zϕ defined by (see Angelis
[2001]):

Zϕ := {[ϕ1, ..., ϕl]
T ∈ R

l, ϕi ∈ [ϕi, ϕi
], ∀ i = 1...l} (8)

where l is the number of varying parameters, αi(ϕ) is
a scheduling function αi : Zϕ → [0, 1], wi ∈ Zϕ are
the 2l = Nϕ vertices of the polytope formed by all
extremities (ϕi and ϕ

i
) of each varying parameter ϕ ∈ Zϕ

and
∑2l

i=1 αi(ϕ)Λ(wi) : Zϕ → R
n×n. In general, all the

admissible values of the vector ϕ are constrained in an
hyperrectangle in the parameter space Zϕ. The scheduling
functions αi(ϕ) are defined as:

αi(ϕ) =

∏l
k=1 |ϕk − C(wi)k|
∏l

k=1 |ϕk − ϕ
k
|

(9)

where:

C(wi)k ={ϕk|ϕk = ϕk if (wi)k = ϕ
k

(10)

or ϕk = ϕ
k
otherwise}

which exhibits the following properties:

αi(ϕ) ≥ 0,

Nϕ
∑

i=1

αi(ϕ) = 1 (11)

Consider (1) as an equivalent parameter varying hyper-
bolic system defined by:

∂tξ(x, t) +

Nϕ
∑

i=1

αi(ϕ)Λ(wi)∂xξ(x, t) = 0

∀ϕ ∈ Zϕ, ∀x ∈ [0, 1], t ≥ 0

(12)

with boundary conditions

Ẋc =

Nϕ
∑

i=1

αi(ϕ)Ac(wi)Xc +

Nϕ
∑

i=1

αi(ϕ)Bc(wi)u

Yc = Xc

(13)

Using (12) along with the boundary conditions (13), the
following theorem states some sufficient conditions to en-
sure exponential stability for system (1) with boundary
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conditions (4) and initial condition (6) ∀ϕ ∈ Zϕ.

Theorem 1. Consider the system (1) with boundary
conditions (4) and initial conditions (6). Assume that
there exists a diagonal positive definite matrix Q ∈ R

n×n

such that the following LMI is satisfied ∀i ∈ [1, ..., Nϕ]

[

QAc(wi)
T +Ac(wi)Q+ Λ+(wi)Q Bc(wi)Y
Y TBc(wi)

T −Λ+(wi)Q

]

≺ 0

(14)

where Y = KQ, then there exist two constants α > 0
and M > 0 such that, for all continuously differentiable
functions ξ0 : [0, 1] → Θ satisfying the zero-order and one-
order compatibility conditions, the solution of (1), (4) and
(6) satisfies for all t ≥ 0

||Xc(t)||
2 + ||ξ(x, t)||L2(0,1) ≤

Me−αt
(

||Xc(0)||
2 + ||ξ0(x)||L2(0,1)

) (15)

Proof Given a diagonal positive definite matrix P , con-
sider, as an extension of the Lyapunov function proposed
in Coron et al. [2007], the quadratic strict Lyapunov func-
tion candidate defined for all continuously differentiable
functions ξ : [0, 1] → Θ as:

V (ξ,Xc) = XT
c PXc +

∫ 1

0

(

ξTPξ
)

e−µxdx (16)

where µ is a positive scalar that will be precised below.
Computing the time derivative of V along the classical C1-
solutions of (1) with boundary conditions (4) and initial
conditions (6), yields the following:

V̇ = ẊT
c PXc +XT

c PẊc +

∫ 1

0

(

ξ̇TPξ + ξTP ξ̇
)

e−µxdx

(17)

After integration by parts the following is obtained:

V̇ =

2l
∑

i=1

αi(ϕ)
[

(

XT
c

(

Ac(wi)
TP + PAc(wi)

)

Xc

)

+
(

Y T
ξ KTBc(wi)

TPXc +XT
c PBc(wi)KYξ

)

−
[

e−µxξTΛ(wi)Pξ
]
∣

∣

1

0

− µ

∫ 1

0

(

ξT )Λ(wi)Pξ
)

e−µxdx
]

(18)

The previous equation can be written in terms of the
boundary conditions as follows:

V̇ =

2l
∑

i=1

αi(ϕ)

[

− µXT
c Λ(wi)PXc

− µ

∫ 1

0

(

ξTΛ(wi)Pξ
)

e−µxdx+

[

Xc

Yξ

]T

×





Ac(wi)
TP + PAc(wi) PBc(wi)K

+Λ(wi)P + µΛ(wi)P

KTBc(wi)
TP −e−µΛ(wi)P





[

Xc

Yξ

]

]

(19)

Note that (14) is equivalent to consider that:

[

Ac(wi)
TP + PAc(wi) + ΛP PBc(wi)K
KTBc(wi)

TP −Λ(wi)P

]

≺ 0 (20)

which is obtained by multiplying both sides of (20) by
diag

(

P−1, P−1
)

and performing the variable transforma-

tions Q = P−1 and Y = KQ. Thus, for a small enough and

positive µ and the fact that by definition,
∑2l

i=1 αi(ϕ) = 1
and αi ≥ 0, the third term of (19) is always negative. It is
clear that there exists an ǫ such that Λ(wi) > ǫIn×n (e.g ǫ
could be the smallest eigenvalue of Λ(wi) ∀i ∈ [1, ..., Nϕ]).
This implies that:

V̇ ≤ −µǫV (ξ,Xc) (21)

Therefore for a sufficiently small µ > 0, the function (16)
is a Lyapunov function for the hyperbolic system (1) with
boundary conditions (4). �

4. EXPERIMENTAL SETUP MODELING

To further investigate the phenomenon of fluid transport
in a Poiseuille flow with dynamics at the boundary con-
ditions, an experimental setup has been designed to test
and validate advanced control strategies. Figure 1 shows
the schematic of the proposed device.
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Fig. 1. Schematic of the experimental setup

This device mainly consists of a heating column encasing
a resistor, a tube, two ventilators, a gas speed meter and
distributed temperature sensors. The control problem is
to regulate the outlet temperature of the tube by driving
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the power dissipated on the heating resistor at different air
flow speeds (exogenous inputs produced by fans) through
the tube. Only the outlet temperature and the flow speed
will be considered as measurements for the closed loop
boundary control strategy.

The modeling of the experimental setup presented in Fig-
ure 1 is done by considering two subsystems: the heating
column and the tube. A zero-dimensional model (0-D)
(control volume approach with heat exchanges coming
from the heating resistor) represents the heating column.
For the tube, a one dimensional (1-D) transport model is
used to describe the gas density variations in the tube.

4.1 Heating Column Model

Figure 2 presents the schematic of the 0-D control volume
approach considered for the heating column.

Tin

min mout

p0, T0, V0, m0

d
Wd
Q

Pin ��

Fig. 2. Schematic of the control volume approach

Consider the internal energy of a perfect gas:

U0 = Cvm0T0 (22)

where U0 is the gas internal energy, T0 the gas tempera-
ture, m0 the mass inside the column and Cv the specific
heat of the gas for constant volume. The time derivative
of (22) is:

U̇0 = Cvm0Ṫ0 + CvT0ṁ0 (23)

Using the first law of thermodynamics, the dynamics of
the internal energy of the gas inside the column can also
be given by:

U̇0 =
∑

hiṁi + dQ+ dW (24)

where hi is the specific enthalpy getting in and out of the
volume with a mass flow rate ṁi, dQ quantifies the heat
exchanges and dW is the work done by the gas. In the
case of the heating column, there are two flows interacting
with the volume, the input mass flow rate ṁin and the
output mass flow rate ṁout. As the gas does not perform
any work, then dW = 0. In order to write (24) in terms
of temperature, the specific enthalpy of a gas, defined
by h = CpT , where Cp is the specific heat constant at
constant pressure, is used. Therefore, (24) can be expressed
as:

U̇0 = CpTinṁin − CpT0ṁout + dQ (25)

where Tin is the heating column input temperature. To
simplify the model, consider the following two hypotheses:

H-1: The pressure dynamics is much faster than the tem-
perature dynamics, which allows considering a quasi-
static behavior of the mass and pressure;

H-2: p0 ≈ pin, where pin is the input pressure;

Hypothesis H-1 and H-2 allow writing (23) and (25),
respectively as:

U̇0 = Cvm0Ṫ0 (26)

U̇0 = Cpṁin(Tin − T0) + dQ (27)

To simplify, overall in the 1-D model (see next sub-
section), the temperature dynamics can be expressed in
terms of the gas density by introducing the following
change of variable (perfect gases law):

ρ0 =
pin
RT0

(28)

Taking the time derivative of (28) yields

Ṫ0 = −
R

pin
T 2
0 ρ̇0 (29)

Equalizing (26) and (27) and using (28) - (29) along with
the perfect gases law to replace the mass inside the control
volume m0 in terms of the pressure and the specific gas
constant R, the following is obtained:

ρ̇0 = −
RγTinṁin

pinV0
ρ0 −

R

pinV0Cv

ρ0dQ+
γṁin

V0
(30)

where ρ0 = m0/V0 is the density inside the heating

column, V0 is the column volume and γ =
Cp

Cv
.

4.2 Tube Model

To model the dynamics of the fluid inside the tube,
the one-dimensional Euler equations are considered for
a perfect gas and a constant tube cross section. These
equations can be written in terms of the primitive variables
(density ρ, particle speed u and pressure p) as follows (see
Winterbone and Pearson [2000]):

∂V

∂t
+A(V)

∂V

∂x
+C(V) = 0 (31)

V =

[

ρ
u
p

]

;A =







u ρ 0

0 u
1

ρ
0 a2ρ u






;C =

[

0
G

(γ − 1)ρ(q + uG)

]

where a =
√

γp
ρ

is the speed of sound, G is a term asso-

ciated with the friction losses and q is a term associated
with the wall heat exchanges. In order to simplify (31),
the following hypothesis are considered:
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H-21: the propagation speed of the entropy wave (average
energy and mass) inside the tube is much slower
than the sound speed u << a;

H-22: the pressure inside the tube is considered constant
(equal to the atmospheric pressure) because the
pressure differential introduced by the fans is very
small;

H-23: the heat exchanges and the friction in the tube are
neglected: q = 0 and G = 0.

Hypothesis H-21 et H-22, imply ∂u(x,t)
∂x

≈ 0 and ∂p(x,t)
∂x

=
0. This reduces system (31) to the following convection
equation:

∂ρ(x, t)

∂t
+ u(t)

∂ρ(x, t)

∂x
= 0 (32)

where u(t) is the time-varying convection parameter of
(32). The gas speed u(t) in the tube is measured. Using
H-21, H-22 and H-23 allows expressing the input mass flow
rate as:

ṁin = u(t)ρ(0, t)At (33)

where At is the tube cross section area. With (33), the
boundary conditions of (32) can be expressed as:

ρ̇0 = −
RγTinu(t)ρ(0, t)At

pinV0
ρ0 −

R

pinV0Cv

ρ0dQ

+
γu(t)ρ(0, t)At

V0
; ρ(0, t) = ρ0

(34)

5. OUTPUT TEMPERATURE BOUNDARY
CONTROL

The output temperature boundary control is designed for
(32) with boundary conditions (34). Define the density
error as:

ξ = ρ− ρref (35)

where ρref is the desired output density. It is easy to show
that system (32) with boundary conditions (34) can be
expressed in an LPV form as follows:

∂ξ(x, t)

∂t
+ Λ(ϕ)

∂ξ(x, t)

∂x
= 0 (36)

with boundary conditions:

ξ̇0 = Ac(ϕ)ξ0 +Bc(ϕ)dQ+ Ec(ϕ) (37)

and with the varying parameters defined as follows:

ϕ1 = u(t), ϕ2 = ρ0, ϕ3 = ρ0u(t) (38)

Only ϕ1 is measured. ϕ2 and ϕ3 are considered as uncer-
tain parameters as no temperature measurement is taken
inside the heating column. Strictly speaking, system (37)
is quasi-LPV because one of the parameters is a state.
However, as ρ0 can be easily bounded from the knowledge

of the operating conditions of the experimental setup, then
the system can be considered as an LPV one. Define the
control input as:

dQ = F (ϕ, ρref ) +Kξ(L, t) (39)

where F (ϕ, ρref ) is defined as:

F (ϕ, ρref ) = −Bc(ϕ)
−1Ec(ϕ)

= Cvγu(t)At

(pin
R

− Tinρref

) (40)

This yields to the system (32) with boundary conditions
(34), which corresponds to the system considered in The-
orem 1. Note that dQ is independent of the uncertain
parameters ϕ2 and ϕ3, which is crucial for the boundary
control implementation. Define the convex subset Zϕ in
order to operate the experimental setup between the tem-
peratures of 290 K and 323 K and a flow speed between
0.63 m/s and 3.82 m/s:

Zϕ :={[ϕ1, ϕ2, ϕ3]
T ∈ R

3, ϕ1 ∈ [0.63, 3.82],

ϕ2 ∈ [0.968, 1.08], ϕ3 ∈ [0.61, 4.12]}
(41)

In order to design the boundary control for system (32)
with boundary conditions (34), consider the control archi-
tecture presented in Figure 3.

�
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���� ������

Fig. 3. Flow Tube Control Architecture

Consider the following system parameters: pin = 1 × 105

Pa, Tin = 300 K, V0 = 4 × 10−3 m3, At = 6.4 ×
10−3 m2, and L = 1.5 m where L is the tube’s length.
Applying Theorem 1 leads to the following control gain
and Lyapunov function parameter P :

K = −654, P = 1 (42)

which ensure that the equilibrium ξ = 0 is exponentially
stable ∀ϕ ∈ Zϕ. In order to illustrate the effectiveness of
the proposed boundary control strategy, some simulation
results of system (32) with boundary conditions (34) and
the boundary control (42) are presented for different flow
speeds. The results obtained are presented in Figures 4
and 5. A change of temperature reference from 300K to
320K ( which can be transformed into a density reference
using the perfect gases law) is introduced at 1s.

As depicted in Figure 4, the system effectively follows
the change of reference for the different flow speeds.
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Fig. 4. Output temperature boundary control results for 3 different

flow speed

Fig. 5. Control Input for 3 different flow speed

The faster the flow speed, the faster the convergence,
as the fluid transport time is smaller. Figure 5 shows
the respective control inputs obtained for the simulation
results. It appears that the power dissipated by the heating
resistor has to be greater as the flow speed increases. This
is due to the fact that in this case, the gas residence time
inside the heating column is smaller and the amount of
energy absorbed by the gas is less important.

6. CONCLUSIONS

This paper was concerned with the boundary control
of first order LPV hyperbolic systems with dynamics
associated with the boundary conditions. Some sufficient
conditions for exponential stability of such systems have
been obtained and presented using an LMI approach. The
exponential stability has been demonstrated by means of
an extended strict Lyapunov function formulation. The
modeling of an experimental setup has been developed
using a 0-D modeling approach for the heating column and
a 1-D modeling strategy for the tube. It has been shown
that the experimental setup model can be expressed in an
LPV hyperbolic form with dynamic boundary conditions.
Simulation results have shown the effectiveness of the
contributions presented in this work.

The present results have many applications in different
systems governed by hyperbolic PDE’s. However, many
questions are still open. In particular, a generalization
of some sufficient conditions for exponential stability of
hyperbolic systems with non-linear dynamic boundary
conditions seems to be a challenging issue. Considering
perturbations in system (1) and in the boundary condi-
tions dynamics (4) seems to be a natural extension of this
work.
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