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Abstract: This paper presents a study of the estimation of potential energy saving in bread
baking process using the jet impingement technology. This new technology is developed to
increase the heat transfer efficiency during the baking process. Based on a mechanistic heat
exchange model identified in the past work, a non convex optimization problem is formulated
taking account of a non zero energy cost related to the new technology. The simulation result
shows that one can expect to obtain up to 12% of energy saving under some reasonable
assumptions.
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1. INTRODUCTION

This work is a part of a national French research grant
that aims at investigating new energy-saving technologies
in French bakery. The technology considered in the present
work is the jet impingement technique which increases the
heat transfer efficiency between the bread crust and the
oven atmosphere.

In this paper the study is focused on the estimation of
energy efficiency in bread baking process using impinging
jet. One aims at optimizing the process with different
jet impingement related energy costs. In the past work
of [Alamir et al., 2012] a simple and faithful mechanistic
model is experimentally identified and validated over the
operational range of interest. The main thermal charac-
teristic profiles, such as temperature and water content on
the surface and inside the bread during the baking process,
can then be used in the optimization process.

The basic assumption used all through this paper is :
reproducing the temperature profile of the crust ensures
obtaining the main properties of the resulting bread,
regardless our understanding of complex phenomena that
take place during the baking process.

In the simplest case where the jet impingement related
energy cost is free, a Linear Programming (LP) problem
is formulated to express the tracking of the crust temper-
ature. This allows us to determine the upper bound of
potential energy saving. At the second step, a nonlinear
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optimization problem is considered in the case where the
jet impingement technology has a small energy cost but
not negligible compared to the basic heating process.

The paper is organized as follows: the identified thermal
model of a standard oven is presented in section 2, followed
by the explanation of the jet impingement technology
and the basic assumption mentioned above. In section
3 an optimization problem with nonlinear constraints
is formulated to compute the upper bound of energy
saving using the new technology. The problem is then
transformed into an equivalent nonlinear optimization
problem followed by its discretized problem in standard
form. Section 4 is devoted to some explanations and
comments on the numerical results for both cases where
jet impingement related energy cost is free or significant.

2. DYNAMIC MODEL FOR CONTROL

In this section, the dynamic model is introduced taking
account of the jet impingement effect. Some brief recalls
are given in order to understand the role of the jet
impingement technique in the thermal model.

2.1 Thermal model of a standard oven

Consider a standard french baking oven. The thermal
model of oven temperature T3 is described by:

Ṫ3 =−γl · T3 + γh · u1 (1)

with the heating actuator set-point u1 ∈ [0, 1] as a control
input and γl, γh the experimentally identified parameters.
The linear differential equation (1) is easy to solve and
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Fig. 1. Temperature evolution profile in Bongard

oven with a scenario of heating-stabilization-cooling
phases. The heat control u1 = 1 is applied during
the heating phase and u1 = 0 during the free-cooling
phase.

the explicit solution will be useful in the resolution of the
optimization problem which will be stated later.

The thermal parameters can be identified using the oven
temperature evolution profile presented in Fig. 2.1. The
data is provided by the experiment which took place in a
widely used Bongard oven. Take first the free-cooling
phase in which there is no heat control u1 = 0. The
temperature decreases exponentially from 250oC to 100oC
during t1 = 5h and t2 = 15h. This allows us to estimate

γl ≈−(t2 − t1)
−1ln

(T (t2)

T (t1)

)

=−(10× 3600)−1ln
(100 + 273

250 + 273

)

= 9.4× 10−6[s−1]

Similarly, using the heating phase in which the control
u1 = 1, one can estimate γh. Notice that the oven
temperature rises from 25oC to 210oC during the first
54min. Hence one has

γh ≈
γl(210 + 273− e−γl(54×60))(25 + 273)

1− e−γl(54×60)

= 6.1× 10−2[kg · s−1]

2.2 Jet impingement technique

Jet impingement technique has been studied over the
years due to its wide applications in industrial food or
drying process. Considerable reduction in process times
and improvement in product quality can be obtained
using this technique. For example, [Li and Walker, 1996]
compared large impingement ovens and the combination of
impingement and microwaves and found large differences
to industrial hot air ovens.

In the considered bread baking process, the boundary layer
occurring at sole and bread surfaces constitutes a great
resistance to convective heat transfer between hot air and
the bread surface. Impinging jet can then be used to reduce
the thickness of the boundary layer and thus increases the
convection [Banooni et al., 2008]. In this study, a multiple
impinging jet oven has been developed to investigate

the energy consumption during bread baking process. Its
geometrical characteristics were chosen as a compromise
between technical considerations and literature reviews
[Zuckerman and Lior, 2006].

According to the correlations available in the literature,
the average Nusselt number due to impingement on a flat
plate could represent 5 - 10 times the Nusselt number due
to natural convection [Attalla and Specht, 2009, Chang
et al., 2006, Geers et al., 2008]. It is more difficult to
evaluate the gain due to impingement on bread because its
volume changes during the process. However the expected
gain should be of the same order of magnitude as the one
obtained for the sole.

The use of jet impingement can be seen as an additional
control u2 ∈ [0, umax

2 ] that increases the coefficient which
reflects the efficiency of heat transfer between the bread
crust and the oven atmosphere.

2.3 An assumption on the baking process

The baking model using jet impingement can be simplified
by accepting the following

Assumption All the phenomena that take place during
the baking process inside the dough is driven by the crust
temperature profile.

In other words, if one aims at producing an equivalent
product using an energetically less demanding process, it
suffices to reproduce a crust temperature profile, denoted
by T2(·), which is identical to the profile obtained using
the standard protocol.

Denote the targeted crust temperature profile by T r
2 (·)

and recall that the protocol used in this experiment cor-
responded to a constant oven temperature T r

3 (·) ≡ 250oC
(to obtain T r

2 in a standard protocol). The above target
would be reached if the following equality is satisfied:

∀t ∈ [0, tf ]; (1 + u2)[T3(t)− T2(t)] = T r
3 (t)− T r

2 (t) (2)

where tf denotes the baking process duration. Indeed, it
would guarantee that the evolution of T2 tracks exactly
T r
2 , and hence by virtue of the Assumption, all the key

variables will follow their corresponding reference profiles.

0 5 10 15 20
0

20

40

60

80

100

120

140

160

Temperature T
2
 r (°C)

Time(min)

Te
m

pe
ra

tu
re

(°
C

)

Fig. 2. Targeted crust temperature profile T r
2 obtained in

a standard protocol (typical duration in 20 min)
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3. OPTIMAL CONTROL PROBLEM

3.1 Optimal control problem formulation

In this section, a particular optimal control problem is
considered in order to minimize the energy cost during
the baking process.

Let be given

· reference profiles T r
2 (·) and T r

3 (·) defined on [0, tf ], (3)

· maximum efficiency coefficient umax
2 , (4)

· coefficient C2 = µC1 that defines the unitary energy
cost of the use of u2, (5)

where the coefficient C1 ≈ 6.8 × 104 is the gain related
to the necessary heating power consumed to maintain the
oven reference temperature T r

3 = 250oC.

Based on the Assumption, the optimal control problem
can be formulated as follows :

Problem 1.

Consider the dynamic model (1) and let be given (3)-(5).
Compute the profiles u∗

1(·) and u∗

2(·) as well as the initial
values T3(0) of the oven temperature which minimize the
energy related cost function

J∗ := min
u1(·),u2(·),T3(0)

∫ tf

0

[

u1(t) + µ · u2(t)
]

dt (6)

subject to

∀t ∈ [0, tf ]; (1 + u2)(T3(t)− T r
2 (t)) = T r

3 (t)− T r
2 (t) (7)

∀t ∈ [0, tf ]; u2(t) ∈ [0, umax
2 ] (8)

∀t ∈ [0, tf ]; u1(t) ∈ [0, 1] (9)

T3(tf ) = T3(0) (10)

♦

Notice that in this formulation, the cost function to be
minimized is proportional to the energy being consumed
with the ratio C1. Indeed, by (5) the unitary energy
cost of the jet impingement technology u2 is given as a
fraction µ of the unitary energy cost of the classical heating
technology u1.

The problem (6)-(9) is adapted to an isolated process.
However it is possible that the final oven temperature
T3(tf ) would be not high enough for the next process. For
this purpose, an additional equation should be considered
which interprets the cyclic character. The constraint (10)
enables a cyclic process in which a baking process can start
at the end of the preceding one with the same initial oven
temperature T3(0).

It is clear that Problem 1 is not a LP problem because
of the bilinear term u2(t) · T3(t) in the constraint (7)
which involves a product of a control input and a state
component. One can define an equivalent optimization
problem by a change of input variable which transforms
(7) in linear constraint and solve the equivalent problem
using the Matlab subroutine fmincon.

3.2 Equivalent problem with linear constraints

By the change of input variable

η2(t) :=
1

1 + u2(t)
∈ [ηmin

2 , 1]; ηmin
2 :=

1

1 + umax
2

, (11)

the equivalent optimization problem associated to Prob-
lem 1 can be defined as follows:

Problem 2.

Consider the dynamic model (1) and let be given (3)-(5).
Compute the profiles u∗

1(·) and η∗2(·) as well as the initial
values T3(0) of the oven temperature which minimize the
energy related cost function

J∗ := min
u1(·),η2(·),T3(0)

∫ tf

0

[

u1(t) + µ ·
1− η2(t)

η2(t)

]

dt (12)

subject to

∀t ∈ [0, tf ]; T3(t)− (T r
3 (t)− T r

2 (t)) · η2(t) = T r
2 (t) (13)

∀t ∈ [0, tf ]; η2(t) ∈ [ηmin
2 , 1] (14)

∀t ∈ [0, tf ]; u1(t) ∈ [0, 1] (15)

T3(tf ) = T3(0) (16)

♦

Notice that by now, the constraints become all linear and
the nonlinearity is moved to the cost function containing
the fractional term in η2. The advantage of this formu-
lation is that it can be immediately used to compute
an upper bound on the potential energy saving. Indeed,
taking µ = 0 in the formulation of Problem 2 yields a
LP problem that corresponds to the case where the jet
impingement cost is free. Thus, the corresponding energy
saving obtained by solving the resulting problem would be
an upper bound on the energy saving that one can expect
when using this technology. LP problems can be solved
by well developed numerical tools and the details will be
omitted here, interested readers are referred to [Dantzig,
1998].

3.3 Discretized problem in standard form

The discretized problem can be formulated in standard
form :

min
p

[

τcT p− µ(N − 1)τ
]

subject to
Aeqp = beq

pmin ≤ p ≤ pmax

(17)

where

• p ∈ R
2N+1 denotes the unknown vector

p := (u1(t1), . . . , u1(tN ), η2(t1), . . . , η2(tN ), T3(t1))
T

by adopting an uniform discretization over the baking
process duration [0, tf ] with a sampling period τ

tk = (k − 1)τ ; τ =
tf
N

• the upper and lower bounds pmin and pmax ∈ R
2N+1

satisfy the constraints (14) and (15)

pmin := (0, . . . , 0, ηmin
2 , . . . , ηmin

2 , Tmin
3 )T

pmax := (1, . . . , 1, 1, . . . , 1, Tmax
3 )T

698



• the vector c ∈ R
2N+1 is defined such that (τcT p −

µ(N − 1)τ) equals to the criterion minimizing (12)

c :=
(

1, . . . , 1,
−µ

η22(t1)
, . . . ,

−µ

η22(tN )
, 0
)T

• the matrices Aeq ∈ R
(N+1)×(2N+1) and beq ∈ R

(N+1)

are defined such that Aeqp = beq implements the
constraint (13) and (16)

Aeq :=























01×N −∆r(t1) 0 · · · · · · 0 1

Ψ1 0
. . .

. . .
. . .

... a

Ψ2

...
. . .

. . .
. . .

... a2

...
...

. . .
. . .

. . . 0
...

ΨN−1 0 · · · · · · 0 −∆r(tN ) aN−1

ΨN 0 · · · · · · 0 0 aN−1























and

beq := (T r
2 (t1), . . . , T

r
2 (tN ), 0)T

with the matrices Ψi ∈ R
1×N , ∆r and the scalar a

defined by

Ψi := (ai−1b, . . . , ab, b, 0, . . . , 0)

a := exp(−γl · τ)

b :=
γh
γl

(1− exp(−γl · τ))

∆r := T r
3 − T r

2

In the above formulation, the first n lines implement
the constraint (13) for an isolated process. The explicit
solution of (1) is used. The last line

(ΨN 0 . . . 0 aN − 1)p = 0

implements the cyclic constraint (16), that is, the the final
temperature T3(tf ) should be equal to initial temperature
T3(t1).

4. NUMERICAL RESULTS

4.1 The µ = 0 case

This case corresponds to the case where jet impingement
has no cost. The optimal solutions of Problem 2 for
µ = 0 and different values of the maximal achievable
transfer improvement coefficient umax

2 are investigated and
commented, for more related details see [Alamir et al.,
2012].

When using µ = 0 in (12), the resulting problem is a LP
problem. Using a sampling period of τ = 24 sec and a
baking scenario of length tf = 20×60 sec, a LP problem of
dimension 150 is formulated and solved using the Matlab

linprog subroutine. The results are shown in Figure 3.

This figure shows the optimal time profile of the control
variables for four different maximum achievable value of
the heat transfer increase umax

2 due to jet impingement
technology. Figure 3 also shows the evolution of the
corresponding oven temperature T3. The zoomed profiles
are more shown in Figure 4 where one can see more clearly
how the heat transfer improvement enables lower oven
temperatures and leads to a possible significant energy
saving.
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Fig. 3. Computation of the optimal control profile of
the heating set-point u1(·) and the increased heat
efficiency transfer coefficient u2(·) for different values
of the maximum efficiency increase coefficient umax

2 ,
in the case where µ = 0.
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Fig. 4. Details of the optimal oven temperature profiles
for different values of the maximum achievable heat
transfer improvement umax

2 , in the case where µ = 0.

Denote by popt the optimal solution of (17). In order to
compute the corresponding energy saving, the optimal
cost given by J(popt) has to be compared to the reference
cost corresponding to the oven being maintained at the
reference temperature T r

3 = 250oC that has been used to
define the tracking problem. The reference energy level is
then given by

Jr := tf ×
γl
γh

× T r
3 (18)

which leads to the following percentage energy saving
computation formula:

G :=
Jr − J(popt)

Jr
× 100 (19)
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Jet impingement Energy saving (%) Energy saving (%)
coefficient umax

2
(µ = 0) (µ = 1.13× 10−3)

0 0 0
1 9.5 8.6
2 12.6 10.8
3 14.2 11.7
4 15 11.9
5 15.7 12.2
10 17.1 12.2

Table 1. Percentage of energy saving as a
function of the jet impingement related heat
transfer improvement in both cases where the
energy cost of jet impingement is supposed free
or not. Computation is based on a reference
scenario in which a constant oven temperature
T r
3 = 250oC is used in the bongard oven

corresponding to the thermal characteristics
investigated in section 2.

fan set point (%) factor F absorbed power Pabs (W )

25 2.5 44.8
50 3.125 59.7
75 3.875 92.2
100 4.875 154

Table 2. The ratio F between the jet impinge-
ment heat transfer and the natural convection
transfer coefficient and the power absorbed

Pabs by the fan under different velocities.

The results are shown on Table 1 where it can be seen that
under the assumption used above, the gain can be close to
16% for a realistic and experimentally validated increase
in heat transfer of umax

2 = 5.

4.2 The µ 6= 0 case

Now consider the case where a non zero energy cost is used
for the jet impingement technology u2. In order to estimate
the energy saving using u2, one needs to determine the
coefficient µ in the cost function (11). Equivalently, one
needs to know the necessary power consumed by u2 which
can double the thermal transfer on the bread surface.

Define the multiplicative factor F as the ratio between
the jet impingement heat transfer coefficient and the nat-
ural convection transfer coefficient. According to the first
experimental results using a natural convection transfer
coefficient of 8W/(m2.K) around the cylinder of a circular
jet, the expected transfer coefficient could be about 4.9
times higher if one uses the jet to full power. The experi-
ence is realized at room temperature with the velocity of
jet is on the order of 6m/s at 100%. The raltion between
the velocity (m/s) and the percentage (%) is considered
linear. The uncertainty in the identified F is around ±0.5.
The experimental values of the power absorbed (denoted
by Pabs in Watts) by the fan under different velocities are
given in Table 2.

Consider the case where the fan is at maximum flow rate
corresponding to the power absorbed equals to 154W , one
can determine the value of

µ =
154

2× 6.8× 104
≈ 1.13× 10−3

when linearity between the power and the efficiency gain
u2 is assumed.

The resulting optimization problem can be solved using
the Matlab subroutine fmincon. Concerning the initial
value setting, a reasonable choice would be η02(t) = 1
which means only the heating input u1 is considered. To
guarantee the optimality, different initial conditions are
also tested, including η02(t) = ηmin

2 or a random sequence
between ηmin

2 and 1.
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Fig. 5. Computation of the optimal control profile of
the heating set-point u1(·) and the increased heat
efficiency transfer coefficient u2(·) for different values
of the maximum efficiency increase coefficient umax

2 ,
in the case where µ = 1.13× 10−3.
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Fig. 6. Details of the optimal oven temperature profiles
for different values of the maximum achievable heat
transfer improvement umax

2 , in the case where µ =
1.13× 10−3.

The percentage of corresponding energy saving with differ-
ent values of maximal achievable transfer coefficient umax

2
is computed by using (18)-(19) in the previous case and
the results are given in Table 1.
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Fig. 7. Comparison of energy saving as a function of the
maximum allowable jet impingement related coeffi-
cient in both cases where µ = 0 and µ = 1.13× 10−3.

Notice that for a maximum allowable transfer coefficient
umax
2 = 5 the potential energy saving in the µ = 1.13 ×

10−3 case is close to 12 % which is an encouraging result
for the use of the jet impingement technology.

5. CONCLUSION

In this paper we have investigated the potential energy
saving in the French baking process by using the new jet
impingement technology. A simple mechanistic model on
the oven temperature is used. A Non Linear Program-
ming optimization problem is formulated. The problem
is reduced to a LP problem in the case where the jet
impingement technology has a free energy cost. Under
some assumption, an upper bound of expected energy
saving has been computed showing an approximated sav-
ing level of 16% when the gain improvement coefficient
corresponding to the new techology equals to 5. Moreover,
the experimental data shows that the energy cost of the
jet impingement technique is negligible when compared to
the classical baking process with a coefficient of level 10−3.
In this case, the expected energy saving can reach up to
12%. Future investigation should address the non convex
optimization problem with the radiation and the infrared
based technologies included in the model.

REFERENCES

M. Alamir, E. Witrant, G. Della Valle, O. Rouaud, Ch.
Josset, and L. Boillereaux. Estimation of energy saving
using jet impingement technique in french bread baking.
Research Report, 2012.

M. Attalla and E. Specht. Heat transfer characteristics
from in-line arrays of free impinging jets. Heat and Mass
Transfer, 45(5):537–543, 2009.

S. Banooni, S. M. Mujumdar, A.S. Taheran, M. Bahiraei,
and P. Taherkhani. Baking of flat bread in an im-
pingement oven: an experimental study of heat transfer
and quality aspects. Drying Technology, 26(7):902–909,
2008.

S. W. Chang, Y. J. Jan, and S. F. Chang. Heat transfer of
impinging jet-array over convex-dimpled surface. Inter-
national Journal of Heat and Mass Transfer, 49(17-18):
3045–3059, 2006.

G. B. Dantzig. Linear Programming and Extensions.
Princeton Landmarks in Mathematics. Princeton, 1998.

L. F. G. Geers, M. L. Tummers, T. J. Bueninck, and
K. Hanjalic. Heat transfer correlation for hexagonal and
in-line arrays of impinging jets. International Journal
of Heat and Mass Transfer, 51(21-22):5389–5399, 2008.

A. Li and C.E. Walker. Cake baking in conventional
impingement and hybrid ovens. Journal of Food Science,
61(1):188–197, 1996.

N. Zuckerman and N. Lior. Jet impingement heat transfer:
Physics, correlation, and numerical modeling. Advances
in Heat Transfer, 39:565–631, 2006.

701


