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Abstract: We adress the problem of inverse input reconstruction for linear parameter-varying
(LPV) systems when only a limited amount of data (i.e. sparse measurements at final time) is
available. We include the LPV property by deriving a time-varying Green’s function that models
the input/output behavior. The estimation is achieved by solving a least-squares optimization
problem parameterized in terms of the input rugosity (regularization term) to take into account
the under-constrained nature of the problem. Several automatic tuning methods for the rugosity
are described, based on stochastic analysis of the data. A new LPV model is derived for
the isotopic ratio of chemical species and our results are applied to the atmospheric history
reconstruction of trace gases from polar firn measurements, a problem of prime interest in the
environmental sciences community.
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1. INTRODUCTION

Linear parameter-varying (LPV) models represent a wide
class of systems. They are extensively used to capture
the complexity of coupled dynamics, partially modeled
transient phenomena and/or changes of operating points.
Estimating an unknown input from a limited set of mea-
surements is a challenging topic in inverse problems stud-
ies and the inclusion of LPV dynamics can be of prime
interest for a large class of applications. While numerous
identification methods have been proposed for estimating
the varying parameters, the state or the LPV model archi-
tecture, few results (such as Kulcsár et al., 2010) aim at
reconstructing the input variations. We further complicate
the problem by considering that only the measurements
at final time are available to compute the estimate. This
approach is motivated by the analysis of processes for
which the measurements are particularly difficult to obtain
while an LPVmodel can be provided by a detailed physical
analysis.

Isotopic ratios are widely used in environmental studies,
especially as process tracers of geochemical cycles (e.g.
Hoefs, 2009). They are measured with high precision by
mass spectroscopy and usually expressed as a deviation
with respect to a reference material (“delta unit”) in per
mil (h):

⋆ This work was partially supported by the CNRS/INSU LEFE
program.

δminX = 1000×

(

[minX ]/[majX ]

Rstd

− 1

)

(1)

where [minX ] and [majX ] represent the concentrations of
the minor and major isotopes, respectively, and Rstd is
the [minX ]/[majX ] ratio of a standard. Isotopic ratios are
usually measured with a much better precision than con-
centrations of the individual isotopes ([majX ] and [minX ]).
The specific application of isotopic geochemistry devel-
oped in this study is atmospheric time trends reconstruc-
tion from isotopic ratios in polar firns. Atmospheric trace
gases are transported down slowly (in 15 to 100 years) in
the interstitial air channels of polar firn (compacted snow).
This process is ended at about 50 to 120 meters depth,
where closed bubbles are formed and the air is no longer in
contact with the atmosphere (e.g. Witrant and Martinerie,
2010; Buizert et al., 2012). Numerous air pumping oper-
ations at different depths (about 10 to 30 levels) in polar
firns have been performed (e.g. Witrant et al., 2012), pro-
viding sparse final time measurements from which histor-
ical changes in atmospheric concentrations are estimated
(e.g. Laube et al., 2010, 2012; Sturges et al., 2012, and
references therein). In the case of isotopic ratios, the use of
a linear inverse technique (Rommelaere et al., 1997) have
been thought impossible due to nonlinearities associated
with modeling two isotopes simultaneously (Sowers et al.,
2005). Approximate methods based on separating the ef-
fects of the two isotopes (Trudinger et al., 1997; Sapart
et al., 2012; Wang et al., 2012) or Monte-Carlo like testing
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of numerous atmospheric scenarios (Bräunlich et al., 2001;
Sowers et al., 2005) have been developed.

The paper is organized as follows. The inverse input es-
timation problem for LPV systems is formulated in Sec-
tion 2. A specific input/output modeling approach based
on Green’s function is proposed in Section 3, where we
include the time-varying property of the system. The spar-
sity of the measurements and their inclusion in an optimal
input design scheme is considered in Section 4, where the
solution of the inverse problem is parameterized in terms of
the input rugosity as a tuning parameter. Several solutions
to automatically tune this parameter are described in
Section 5. Finally, our results are applied to finding the
history of δ13CH4 from polar firn measurements at DE08
(an ice core obtained at Law Dome, East Antarctica, at
66◦43’S, 113◦12’E) in Section 6.

2. PROBLEM FORMULATION

Consider the class of single-input multiple-outputs LPV
systems that writes (in the discrete form) as, for k =
1, . . . , Nt:

xk =AD,kxk−1 +BD,kuk + wk, xk=0 = x0 (2)

where x ∈ R
N is the state, u ∈ R is the unknown input,

w ∈ R
N is an exogenous input, x0 is the initial condition,

and AD,k and BD,k are time-varying discrete state-space
matrices of appropriate dimension. The sparsity of the
measurements is considered in our case with the system
output as:

yNt
=CxNt

∈ R
M (3)

where C is the state to output matrix and M is the
number of measurements. We thus consider that only the
measurement of specific states at the final time is available.

Supposing that the time-evolution of AD,k, BD,k and
wk is provided by an appropriate physical model and
that the initial condition x0 is known, our goal is to
estimate the input history (uk for k = 1, . . . , Nt) from the
sparse set of measurements ym. This estimation problem
can be formulated finding the optimal input history that
minimizes the modeling error:

ǫ
.
= ym − yNt

(u) (4)

in the L2 sense. As such problem is clearly undercon-
strained, a specific care has to be taken for the choice
of an appropriate regularization term and on the use of
stochastic information on the measurements.

We also consider the case where the same input can affect
different processes for which the measurements are taken
at different final times (as it is the case in the firn problem
where the same atmospheric history can be reconstructed
from different polar sites). In this case, the dynamics and
measurements are modeled as:

xi,k =ADi,kxi,k−1 +BDi,kuk + wi,k, xi,k=0 = xi,0 (5)

yi,Nti
=Cixi,Nti

∈ R
Mi (6)

where i = 1 . . .Nproc denotes the process i, and Nti and
Mi are the associated numbers of sampling times and

measurements, respectively. Note that the same initial
date has been chosen for the different dynamics, to simplify
the notations as there is no technical difficulty to extend
the proposed results to varying initial conditions.

Finally, as the initial condition is typically unknown for
the processes for which only the final time measurement is
available, we consider the steady-state approximation:

xi,0 ≈ (I −ADi,0)
−1(BDi,0u0 + wi,0) (7)

For the polar firn example, this hypothesis provides a rea-
sonable initial distribution for trace gases that exerienced
transients later than the oldest age content in firn air and
a reasonable order of magnitude otherwise.

3. SYSTEM MODELING USING GREEN’S
FUNCTION

Green’s function can be used to solve inhomogeneous
differential equations with specific boundary conditions.
For linear time-invariant (LTI) systems, Green’s functions
are equivalent to the impulse response (Bayin, 2006) and
can thus be determined experimentally by measuring the
system response to an impulse. Such principle can also
be used to obtain a numerical input-output mapping for
complex models, supposing a dominant LTI behavior. If
such mapping can be inverted, then the system inputs can
be inferred from the measured outputs and the Green’s
function of the system.

3.1 Input estimation for time-invariant systems

The previous method for trace gas reconstruction (Rom-
melaere et al., 1997) relied on generating a Green’s func-
tion from the impulse response of the numerical model.
An analytical equivalent method can be described as fol-
lows (trace gas transport being described by LTI systems,
contrarily to the isotopic ratios), using the solution of the
state equation.

Consider the linear dynamics:

ẋ=Ax+Bu, x(t0) = x0 (8)

y=Cx (9)

where x ∈ R
N , u ∈ R, y ∈ R

M , and A, B, C are state-
space matrices of appropriate dimension. The solution of
the state-space equations writes as:

y(t) = CeA(t−t0)x(t0) + C

t
∫

t0

eA(t−τ)Bu(τ)dτ

Considering a sampling time ts and piecewise continuous
inputs u(t) for t ∈ [t0, tf ], the discretized version is
obtained as:

y(tk) = CeA(tk−t0)x(t0) + tsC
k

∑

i=0

eA(tk−ti)Bu(ti)

which equivalently writes in the matrix form:

y(tk) = G0(tk)x(t0) +G(tk)U(tk) (10)

where:
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G0(tk)
.
=CeA(tk−t0) ∈ R

M×N

G(tk)
.
= ts[CeA(tk−t0)B, CeA(tk−t1)B, . . . , CB]

U(tk)
.
= [u(t0), . . . , u(tk)]

T ∈ R
k

Note that G(tk) ∈ R
M×k corresponds to the Green’s

function of the LTI system.

Equation (10) describes a linear mapping (algebraic re-
lationship) between the vector of inputs U(tk) and the
outputs y(tk), it can be directly used in an appropriate
optimization scheme to infer U(tk) from the measurements
ym(tk). As the size of U is larger than the size of ym, the
problem is underconstrained.

3.2 Green’s function for time-varying discrete systems
with exogenous inputs

Consider the class of systems described by (2). In this case
(e.g. for k = 1, 2, 3):

x1 =AD,1x0 +BD,1u1 + w1

x2 =AD,2AD,1x0 +AD,2BD,1u1 +BD,2u2

+AD,2w1 + w2

x3 =AD,3AD,2AD,1x0

+AD,3AD,2BD,1u1 +AD,3BD,2u2 +BD,3u3

+AD,3AD,2w1 +AD,3w2 + w3

and we can show (recursively) that at time tk:

yk =C

k
∏

j=1

AD,kx0 + C

k
∑

i=1





k
∏

j=i+1

AD,j



BD,iui

+C

k
∑

i=1





k
∏

j=i+1

AD,j



wi

Equivalently:

yk =G0,kx0 +GkUk +Wk (11)

with Uk = [u1, . . . , uk]
T and

G0,k =C
k
∏

j=1

AD,k, Wk = C
k
∑

i=1





k
∏

j=i+1

AD,j



wi

Gk =C









k
∏

j=2

AD,j



BD,1,





k
∏

j=3

AD,j



BD,2, . . . , BD,k





4. COST FUNCTION AND OPTIMAL DESIGN

In order to minimize the estimation error (4) we considered
the regularized weighted least-squares cost function:

J(u)
.
=

1

2

Nproc
∑

i=1

||yi,Nti
(u)− ym,i||

2
Qi

+
1

2

tf,max
∫

t0

||u′′(t)||2R dt (12)

where tf,max
.
= max{tf,1, . . . , tf,Nproc

} is the latest mea-
surement time (tfi being the measurement date for process
i), u′′ is the second derivative of u and ||x||2Q = xTQx is
the weighted squared L2 norm. The involved weights are
such that Qi = QT

i ≥ 0 ∀i and R = RT > 0 (classical
optimality conditions). The use of u′′ as a regularization
term allows us to weight the rugosity of the optimal solu-
tion, as proposed by Menke (1989) for solving geophysical
problems or by Hastie et al. (2009) for statistical learning.

The set of admissible solutions is constrained by the
discretized dynamics (5)-(6). The optimization problem is
directly formulated as finding the optimal time evolution
u∗(t) for t ∈ [t0, tf ] such that J(u) is minimized.

4.1 Discrete cost function

The regularization term is discretized using:

u′′(tk) ≈
u(tk+1)− 2u(tk) + u(tk−1)

t2s
The boundaries are approximated supposing a linear sec-
ond order behavior calculated from the first (last) two
points:

u′′(t0)≈ 2u′′(t1)− u′′(t2)

u′′(tN )≈ 2u′′(tN−1)− u′′(tN−2)

The dynamics (11) with initial condition (7) implies that:

yi,Nti
= Ḡ0i,Nti

(BDi,0u0 + wi,0) +Gi,Nti
UNti

+Wi,Nti

where Ḡ0i,Nti

.
= G0i,Nti

(I − ADi,0)
−1. The measurements

are corrected from the known exogenous inputs by defin-
ing:

ȳm,i = ym,i − Ḡ0i,Nti
wi,0 −Wi,Nti

∈ R
Mi (13)

Note that, ideally (if yi,Nti
= ym,i) ȳm,i = Ḡ0i,Nti

BDi,0u0+
Gi,Nti

UNti
.

The continuous cost (12) can then be expressed in terms
of the discretized inputs {u0, Uk} as:

J(U) =
1

2

Nproc
∑

i=1

||Ḡ0i,Nti
BDi,0u0 +Gi,Nti

UNti
− ȳm,i||

2
Qi

+
ts
2
||FŪ ||2R (14)

where Ū
.
= [u0 UT

Nt̄
]T , Nt̄ = max{Nt1, . . . , NtNproc

} and:

F =
1

t2s
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The different time horizons and the inclusion of the initial
condition in the input vector are handled by defining:

Gi
.
= Ḡ0i,Nti

BDi,0 × [1 01×Nt̄
]

+Gi,Nti
× [0Nti×1 INti

0Nti×(Nt̄−Nti)]

656



where Iα is the identity matrix of size α and 0α×β is a
zero matrix of size α × β. The cost function (14) thus
equivalently writes in the compact form:

J(Ū) =
1

2

Nproc
∑

i=1

||GiŪ − ȳm,i||
2
Qi

+
1

2
||FŪ ||2R (15)

where the multiplication of the second term by ts is
included in R to simplify the notation.

4.2 Optimal input

The optimization objective is formulated as finding:

Ū∗(t) = arg min
Ū

J(Ū)

and the necessary conditions for optimality are:

∂J(Ū∗)

∂Ū
= 0 and

∂2J(Ū∗)

∂Ū2
> 0

Applying the first order optimality condition on (15) gives:

Nproc
∑

i=1

[GiŪ
∗ − ȳm,i]

TQiGi + Ū∗TFTRF = 0

⇔ Ū∗ =



FTRF +

Nproc
∑

i=1

GT
i QiGi





−1
Nproc
∑

i=1

GT
i Qiȳi (16)

The second order condition for optimality is satisfied by
construction as GT

i QiGi + FTRF > 0 for the indicated
constraints on Wi and R.

4.3 Weights selection

The weights on the estimation error are obtained from
the standard deviations of the measurements σi(j), where
i = 1, . . . , Nproc is the process index and j = 1, . . . ,Mi is
the measurement index, as Qi = diag

(

1/σ2
i (j)

)

. The input
weight is chosen as:

R = κ2 ts × INt̄
(17)

where κ is the rugosity tuning parameter. Note that the
optimal solution of (16) depends only on κ as a free
parameter.

5. AUTOMATIC RUGOSITY TUNING

One of the main difficulties in estimating a relevant inverse
input is related to the proper weighting between the least-
squares terms, parameterized in our case with the rugosity
penalty κ in (17). Several available methods based on
stochastic analysis are briefly described in this section.

5.1 Data prediction versus model resolution

The underdetermined property of the problem can be
addressed as a trade-off between perfect data prediction
and perfect model resolution (Menke, 1989; Rommelaere
et al., 1997). Based on this idea, an optimization criterion
using root mean square deviations (rmsd) can be derived
as follows.

Defining the aggregatedGreen’s functions, weighted Green’s
functions and measured outputs as, respectively, Ḡ

.
=

[GT
1 . . . GT

Nproc
]T , ḠQ

.
= [GT

1 Q1 . . . GT
Nproc

QNproc
] and Ȳ

.
=

[ȳTm,1 . . . ȳTm,Nproc
]T , the generalized inverse AGI describes

the data-to-input mapping as Ū∗ = AGI(κ)Ȳ and is com-
puted from (16)-(17) as:

AGI(κ)
.
=

[

κ2tsF
TF + ḠQḠ

]−1
ḠQ

Similarly, defining the predicted ouputs vector as Y
.
=

[yT1 . . . yTNproc
]T , the mapping between data and predicted

outputs is Y = S(κ)Ȳ where S(κ)
.
= ḠAGI(κ). S is

typically referred to as the data resolution or smoother
matrix.

The data prediction error ǫY = Ȳ − Y = (I − S) Ȳ is in-
cluded in the optimization problem by considering its root
mean square deviation. The model resolution is included
using the covariance matrix cov(Ū∗) = AGI cov(Ȳ )AT

GI .
This matrix determines the degree of error amplification
induced by the mapping between data and model parame-
ters (Menke, 1989). The diagonal elements of cov(Ū∗) mea-
sure the width of the data distribution and these elements
can be mapped into the output space using the Green’s
function. The rugosity parameter is thus determined as:

κ∗ = min
κ

{

rmsd(Ȳ − Y ) + rmsd(Ỹu)
}

(18)

where Ỹu = Ḡ
√

diag(cov(Ū∗)) reflects the model resolu-
tion impact on the output.

5.2 Bias versus variance

The rugosity tuning can also be considered as a trade-
off between bias and variance, measured by the cross-
validation (CV) curve. Such tool is extensively used for
model selection (e.g. see the survey by Arlot and Celisse,
2010) and can be calculated, in the generalized cross-
validation (GCV) form as:

GCV(κ) =
1

Ndata

(

||(I − S(κ))Ȳ ||

tr(I − S(κ))/Ndata

)2

where Ndata is the number of data points, || · || is the
Euclidean norm on R

Ndata and tr(·) is the trace of the
matrix. The optimization problem is in this case to find
κ∗ that minimizes the GCV.

While CV methods typically necessitate a large data
set, some recent results by Lukas (2006, 2008) allow
for considering small data sets and for adjusting the
robustness of the criterion. The robust GCV function is
given by:

RGCV(κ) = γGCV(κ) + (1 − γ)µ(κ)GCV(κ) (19)

where µ(κ)
.
= tr(S(κ)2)/Ndata and γ ∈ [0; 1] is the

robustness parameter (small for more robust results). The
problem of correlated data has been considered in (Lukas,
2008), where the RGCV is improved to the R1GCV by
setting µ(κ) = [tr(S(κ)) − tr(S(κ)2)]/[Ndataκ] in (19).

6. INVERSION FOR ISOTOPIC RATIOS

6.1 Isotopic model in δ units

Consider the concentration dynamics of two isotopes (xmin

and xmaj) and their isotopic ratio r, for k = 1, . . . , Nt:
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xmin,k =ADminxmin,k−1 +BDminx
atm
min,k (20)

xmaj,k =ADmajxmaj,k−1 +BDmajx
atm
maj,k (21)

rk = diag(1/xmaj,k)xmin,k (22)

where xmin, xmaj and r ∈ R
N , N being the number of

discretization depths used to simulate the reference model
described in the Appendix, and the state-space matrices
are given by an appropriate transport model (in our case
by Witrant et al. (2012) for trace gas transport in firns).
The system inputs are the atmospheric concentrations
xatm
min (unknown) and xatm

maj (known). The initial condition
of the major isotope is calculated according to (7) while
the one of the minor isotope results from the optimization
process. The time-evolution of xmaj is calculated using
(21) and xatm

maj . The LPV model of the ratio is obtained by
combining (20) and (22) as:

rk = diag(1/xmaj,k)
(

ADmin xmin,k−1 +BDmin x
atm
min,k

)

=AD,krk−1 + diag(1/xmaj,k)BDmin xatm
min,k (23)

with AD,k
.
= diag(1/xmaj,k)ADmin diag(xmaj,k−1).

From definition (1) we can use the changes of vari-
ables xatm

min = (δatm/1000 + 1)Rstd x
atm
maj ∈ R and δk =

(rk/Rstd − 1)× 1000 ∈ R
N to get, using (23):

δk
1000

=
1

Rstd

(

AD,krk−1 + diag(1/xmaj,k)BDmin xatm
min,k

)

− 1

=AD,k

(

δk−1

1000
+ 1

)

+BD,k

(

δatmk

1000
+ 1

)

− 1

where BD,k
.
= diag(xatm

maj,k/xmaj,k)BDmin and 1 ∈ R
N is

a column vector of ones. Hence:

δk =AD,kδk−1 +BD,kδ
atm
k

+103 (AD,k × 1+BD,k − 1) (24)

Supposing a steady-state initial condition, it follows that:

δ0 = (IN −AD,0)
−1BD,0 δ

atm
0 (25)

+1000 (IN −AD,0)
−1 (AD,0 × 1+BD,0 − 1)

The δ isotopic ratio model (24)-(25) is thus a LPV system
(the dominant isotope being the varying parameter) that
belongs to the general class of systems (2)-(7). Note that a
physical modeling approach based on the PDE transport
model also leads to the same conclusion, as described in
the Appendix.

6.2 δ13CH4 atmospheric scenario estimation from firn air
measurements at DE08

Our inverse scenario method is evaluated on the isotopic
ratio δ13CH4 of 13CH4 (xmin) versus

12CH4 (xmax) at the
DE08 polar site. Atmospheric measurements for δ13CH4

are available since 1978, as described by Francey et al.
(1999), and we can thus evaluate the inverse method effi-
ciency. DE08 is an ice core for which the measurements are
particularly sparse. However it is considered as the most
reliable site for isotopic scenario reconstruction because
isotopic fractionation in firn is minimal (Sapart et al.,
2012). Undergoing a high snow accumulation rate, the
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Fig. 1. Efficiency of the inverse scenario strategy for
δ13CH4 at DE08 (all data are from Francey et al.,
1999). Left pannel: estimated scenarios (plain lines),
2 σ limit (dashed lines) and atmospheric data (‘+’).
Right pannel: final time distributions (plain lines) and
ice core measurements (‘o’)

DE08 firn air covers a short period of time with a high
time resolution (Witrant et al., 2012).

The input estimation results are presented on Figure 1,
where the estimated scenarios (top) and their correspond-
ing final time distribution (bottom) are calculated for the
different rugosity tuning strategies discussed in Section 5.
The time range is set according to the drilling date (1993)
and the gas transport time at DE08 (≈ 20 years). For
this specific isotopic ratio/ice core combination the tuning
methods are consistent and provide almost identical results
(superposed curves in the figure). While the final time
distributions remain in the error bars, a strong weight has
been set on the rugosity by the tuning methods (due to
the very limited number of measurements). The optimal
rugosity values for RMSD, GCV, RGCV and R1GCV are
2850, 3772, 3808 and 4444, respectively. The robustness
weight in the RGCV is set as γ = 7 × 10−4 (based
on entensive model validation on multiple sites and for
multiple gases) and has to be increased up to 0.9 to observe
an increased robustness (and hence an increased rugosity,
which does not appear as a necessary issue in our case).

7. CONCLUSION

We formulated the input estimation problem for LPV
systems as an inverse problem where the input/output
relationship is described by a known time-varying map-
ping, formalized with a Green’s function. This allowed us
to find an analytical solution for optimal input estimation,
in the least-squares sense, parameterized in terms of the
input rugosity (regularization coefficient). Several stochas-
tic methods were investigated to automatically tune this
coefficient. A new LPV model was derived to describe
the time-variation of isotopic ratio and our method was
shown to effectively estimate the atmospheric history of
chemical species from polar firn measurements. Future
works will consider the accuracy and sensitivity of the
automatic tuning methods when more measurements are
available (e.g. in the multi-sites case). The impact of data
calibration (which sometimes differ depending on the data)
is also a topic of interest.
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Appendix A. ISOTOPIC RATIOS IN FIRN AIR

Considering two trace gases concentrations ρ1 and ρ2, the
physical models are given by the trace gas model proposed
in (Witrant et al., 2012) as, for i = 1, 2:

[ρi(z, t)f(z)]t + ρi(z, t)τ(z) +

[

ρi(z, t)f(z)(v(z) + wair(z))

−Di(z)

(

[ρi(z, t)]z − ρi(z, t)
Mig

RT

)]

z

= 0

where f is the volume fraction of open porosity, τ the rate
of mass exchange between open and closed air networks,
v the firn sinking velocity, wair the air velocity, Di the
effective diffusivity, Mi the gas molar mass, g the gravi-
tational acceleration, R the ideal gas constant and T the
temperature. The δ ratio definition implies that:

ρ1 =

(

δ

1000
+ 1

)

Rstd ρ2

The resulting linear model in δ(z, t) is obtained as:

[δf ]t +

(

f(v + wair) +
D2M2g

RT

)

[δ]z − [D2δz ]z

−2
ρ2,z
ρ2

D2δz

+
1

ρ2

[

(D2 −D1)[δρ2]z − (D2M2 −D1M1)
g

RT
δρ2

]

z

= −
1000

ρ2

[

(D2 −D1)[ρ2]z − (D2M2 −D1M1)
g

RT
ρ2

]

z

where ρ2 acts as the varying parameter.

The upper boundary condition is δ(0, t) = δatm(t). For the
bottom boundary condition (at z = zf ), we start from the
definition:

δ =

(

ρ1/ρ2
Rstd

− 1

)

× 1000

to derive:

δz =

[

ρ1/ρ2
Rstd

]

z

× 1000 =
g

RT
(M1 −M2) (δ + 1000)

Hence we have a non-homogeneous boundary condition:

δz(zf , t)−
g

RT
(M1 −M2) δ(zf , t) = 1000

g

RT
(M1 −M2)
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