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Abstract— Moisture control in advective flow systems with
time delay is studied in this work and assessed in a process-
control system (test bench). A control-oriented model is pro-
posed by considering advection as a transport time-delay and
the sensitivity to operating conditions as structured uncertain-
ties. The model parameters and variations are identified from
experimental results. A guaranteed cost control strategy is
then used to handle both time-varying delays and uncertainties
in an optimal design, and improved with a linear change of
variables and an integral action. The results are compared with
a traditional PI strategy and evaluated on both simulation and
experimental results.

I. INTRODUCTION

The ability to manipulate flow properties (density, concen-
tration, pressure, etc.) to improve efficiency and performance
in the transport of materials is of major technological im-
portance and is currently an active research topic in control
engineering. Flow control is often encountered in industrial
and commercial applications, such as hydraulic networks
[1], gas flow in pipelines [2] and flow regulation in mining
[3]. The air flow must be regulated to ensure the proper
operating conditions, often described in terms of tempera-
ture or moisture. Flow control can also be applied to the
automotive industry, for instance to regulate the quantity of
fresh air in the intake manifold of an engine with exhaust gas
recirculation, which is a critical factor for reducing emissions
[4]. The flow dynamics are generaly modeled by Partial
Differential Equations (PDE), inferred from Euler or Navier-
Stokes equations. Reduction and discretization strategies are
often used to formulate the corresponding lumped model
and solve the control problem in a framework of ordinary
differential equations, e.g. in [5] and [6]. In [7] the control
problem is directly addressed in the PDE framework by con-
sidering an hyperbolic system with n rightward convecting
transport PDEs. Using the information from the boundary
control and the boundary conditions, an observer is designed
by Lyapunov based techniques. Another approach consists
in approximating the transport phenomena by a time delay
model, as in [8] where the method of characteristics is
used to express the PDE model as a Functional Differential
Equations (FDE) with a distributed delay kernel.

Flow transport is a phenomenon that induces time-delay.
This time-delay is caused by the path followed by an
elementary mass in the pipeline. In closed-loop this problem
is more difficult to handle. The existence of time delays may
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result in instability, oscillation and poor performance of the
control system. Therefore, significant efforts have been done
during the last decades to study time-delay systems, and a
large number of results on analysis and control synthesis
have been reported in the literature, as presented in [9],
[10], among others. In addition, various control methods have
been proposed in the literature to stabilize uncertain control
systems with time delay [11], [12]. One approach to deal
with this problem is to minimize a cost function that sets
the performance and robustness objectives [13], [14], which
seems to be attractive from the application point of view.

This paper is focused on the modeling and control of mois-
ture in a test-bench available at University Joseph Fourier,
Grenoble. The test-bench, presented in Figure 1, consists of
a heating column encasing a resistor, a tube, two fans, a
wind speed meter and three distributed moisture sensors. The
actuators are the resistance power, the rotational velocities of
the fans and the injection of mist. The mixture of dry inflow
and mist injection generates a change of moisture along the
tube. The contribution of this paper is to propose a simplified
model and a control methodology to handle the inherent
time-delay in the dynamical behavior of the moisture inside
of the tube. Variations of the operating conditions (in terms of
temperature and fan rotational velocity) are also considered.
First, a simplified model for moisture regulation in the test
bench is obtained, as a linear system with parameter uncer-
tainties and a time-delay.In order to minimize a performance
cost we design a state-feedback controller and minimizes
an integral-quadratic cost function such that the resulting
closed-loop system is robustly stable [15]. The sufficient
conditions for stability are presented in a linear matrix
inequality (LMI) framework. Finally, to improve the tracking
performance, a state-feedback integral control is developed
and compared with a classical PI control, using simulation
and experimental results on the test bench.

The paper is organized as follows. Section II describes the
test bench identification and the resulting model for moisture
control. The control problem is formulated in Section III,
explicitely taking into account the parameters uncertainties
and a time-delay. The regulation problem is solved in Section
IV and the control strategy is applied for the regulation of
the moisture in the test bench in the Section V.

II. MODELING AND IDENTIFICATION
A. Test bench Identification

To investigate the phenomenon of mass transport in
Poiseuille flow and to obtain a model which represents the
dynamics of moisture in the system, several experiments



were carried out on the test bench. The description of the
test bench is presented in Figure 1.
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Fig. 1. Flow control test bench.

This device is equipped with 7 sensors (3 moisture sensors
distributed along the tube, 3 temperature sensors distributed
along the tube and 1 wind speed sensor) and 4 actuators (1
mist injection into the tube (Mist Control), 1 heater (Resis-
tance power) and 2 fans for circulating the air (controlled by
the rotational velocity)).

The objective of this plant is to illustrate the transport of
mist (concentration of water particles in dry air) along of
the tube, which is characterized by a time-delay between the
mist injection and the measurement of the moisture. In this
section, an identification procedure has been conceived to
obtain the control-oriented model between the mist injection
and the humidity measurement given by sensor 3. More-
over, the dynamics of such a plant exhibit large variations
according to changes of heating and wind conditions. We
thus also analyze the system performance on the whole range
of operation and deduce an uncertain control-oriented model.

As first step, it is important to know how the moisture
dynamics interact with the temperature and wind speed,
which is evaluated by setting the mist injection at 100%,
the resistance power at 0% and the rotational velocity of the
fan at 40%. Figure 2 shows that the temperature does not
change significantly (from 31◦C to 30.8◦C) when the mist
injection is set at 100% at constant velocity (0.4m/s) and
the resulting maximum value of moisture is 53%. We can
thus conclude that the evaporation of the droplets of water
composing the mist (which would reduce the temperature
due to the energy that is necessary for the phase change) is
negligible at ambient temperature.

A set of experiments has been done to identify a nominal
model and the parameter uncertainties. Variations of mist
injection, resistance power and rotational velocities of the
fans are thus necessary. This was achieved according to the
following stages.

1) Varying mist injection from 20% to 100%, without
changing the resistance power nor the fan rotational
velocity.

2) Increasing the resistance value from 0% to 100% by
intervals of 20%, in order to observe the maximum
change in the moisture (no change in the fan rotational
velocity).
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Fig. 2. Test Bench response when mist injection, resistance power and fan
rotational velocity are set to 100%, 0% and 40%, respectively

3) Increasing the fan rotational velocity from 20% up to
100% by intervals of 20%.

Table I shows the parameter variations considered (mist
injection, resistance power and fan rotational velocity, all
variations were done starting from 0% to 100% by intervals
of 20% ).

TABLE I
TABLE OF EXPERIMENTS

Resis- Mist injection Fan rotational velocity
tance 20% 40% 60% 80% 100%
0% 20− 100% X X X X X
20% 20− 100% X X X X X
40% 20− 100% X X X X X
60% 20− 100% X X X X X
80% 20− 100% X X X X X
100% 20− 100% X X X X X

To give an overview of the performance of the plant,
Figure 3 shows the first stage of the experiments when the
operating conditions are: mist injection ranging from 0%
to 100%, no resistance power and fan rotational velocity
at 40%. Changes in the moisture (with initial condition at
43.4%) are large when the fan rotational velocity is slow
(approximately between 10% and 40%) and weakly affect
the temperature (which varies between 25.9◦C and 26.4◦C).

The second and third stages of the experiments are illus-
trated in Figure 4, which shows the possible range of mois-
ture (the initial condition with which the experiments were
performed is for the moisture at 40% and the temperature
around of 28◦C). The temperature does not vary significantly
(from 28◦C to 31◦C), while the moisture ranges from 39%
to 56% at a wind speed of 0.2m/s approximately. Note that
the range of moisture at steady state is significantly larger
than in Figure 3, due to the decreased flow velocity.

B. Time-delay Model

As shown in the previous section, the test bench has strong
dynamical variations according to the operating point (mist
injection, resistance power and fan rotational velocity). A
complete model should account for the energy exchange and
transport phenomenon inside the tube, but could be efficient



Fig. 3. Test Bench response with different values of mist injection (from
0% to 100% by intervals of 20%).
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Fig. 4. Operating range of the moisture dynamics in the test bench.

to handle for control design. To get a simplified control-
oriented model, we consider a first-order time-delay system
that captures the main dynamics of the moisture in the plant.

To obtain the model parameters and the admissible range
of uncertainties, all the system responses gathered from
the experiments described above have been considered. The
variations of the mist injection, resistance power and fan
rotational velocity are presented by mapping 3 parameters
(gain, time constant and time-delay) to generate a first-order
transfer function with time delay given by

Moisture(%)

MistControl(%)
=

K

1 + Tps
e−τs, (1)

where K is the gain, Tp is the time constant and τ is the
time-delay. This parameters are illustrated in Figure 5 and
are presented as follows
• K = k0 + δK with K0 = 1.2 and δK ∈ [−0.6; 1.34].
• Tp = T 0

p + δTp with T 0
p = 40 and δTp ∈

[−33.75; 76.27].
• τ = τ0 + δτ with τ0 = 8.3 and δτ ∈ [−3.17; 3.7].
Taking into account all the dynamics presented in Figure 5,

it is possible to choose one operation point (when the
experiment is working at 40% in the mist injection, the
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Fig. 5. Parameters uncertainties {k, Tp, τ} respectively.

resistance power at 20% in the resistance power and 20% in
the fan rotational velocity), in order to illustrate the behavior
of the nominal mathematical model. Figure 6illustrate that
there exists a good approximation between the nominal
mathematical model and the dynamics of the test bench.
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Fig. 6. Comparison between nominal model and the experimental results
obtained from the test bench

Remark 1: It is important to note that the gain decreases
when the mist input increases, independently of the variation
of the fan rotational velocity and of the resistance power,
which implies some nonlinearity in the mist control. Also, the
time-delay (τ ) is inversely proportional to the fan rotational
velocity as expected.



III. FORMULATION AND SOLUTION OF THE
CONTROL PROBLEM

As identified in Section II, the considered model is an
input delay system with a time-varying delay. This class of
systems has been considered in several studies for stabiliza-
tion and robust feedback design [17], [18]. As show later
in Section IV, the plant model (1), can be represented in
the state space form with uncertain parameters and a time-
varying input delay as follows: ẋ(t) = (A + ∆A(t))x(t)∑

+ (B + ∆B(t))u (t− τ(t))
x(t) = φ(t), ∀t ∈ [−h, 0]

(2)

where x(t) ∈ Rn is the state and u(t) ∈ Rm is the
control input. A and B are known real constant matrices
with appropriate dimensions. The scalar h is defined as
h = sup{τ(t)} and φ(t) is a given differential initial function
on [−h, 0]. ∆A(t) and ∆B(t) are unknown real matrices
representing time-varying parametric uncertainties, which are
assumed to be of the form:

[∆A(t) ∆B(t)] = MF (t) [N1 N2] (3)

where M , N1, and N2 are known constant matrices, and
F (t) ∈ Rl×q is an unknown real time-varying matrix
satisfying:

F (t)TF (t) ≤ I (4)

∆A(t) and ∆B(t) are said to be admissible if both (3) and
(4) hold. The time-varying input delay is assumed to be a
continuous and bounded function, satisfying for all t ≥ 0

0 < τ(t) ≤ h. (5)

The objective is to design a robust and optimal controller
that to minimizes the quadratic cost function:

J =

∫ ∞
0

[
x(t)TR1x(t) + u(t)TR2u(t)

]
dt (6)

where R1 > 0 and R2 > 0 are given constant matrices,
considering the linear state-feedback controller:

u(t) = Kx(t), K ∈ Rm×n (7)

The control problem is formulated as follows: given a
scalar h > 0, design a state-feedback controller (7), such that
for any time-varying delays τ(t) satisfying (5), the closed-
loop system (2)-(7) is asymptotically stable and the cost func-
tion in (6) is upper bound for all admissible uncertainties. In
this case, (7) is said to be a guaranteed cost state feedback
controller [16]. Sufficient conditions for the solvability of the
guaranteed cost control problem can be obtained following
[15], considering some simplification for the studied plant.

Theorem 1: Consider the uncertain time-delay system (2)
and the cost function (6). Then, for given a scalar h > 0,
the guaranteed cost control problem is solvable if there exist
matrices X > 0, Z > 0, Y , W 1, W 2, S1, S2 and a scalar
ε > 0 such that the following matrix inequality holds:


H1 Ω1 Ω2 Ω3 Ω4

ΩT
1 H2 Ω5 Ω6 0

ΩT
2 ΩT

5 H3 0 0

ΩT
3 ΩT

6 0 H4 0

ΩT
4 0 0 0 H5

 < 0 (8)

where:

H1 = XAT + AX + BY + Y TBT

−W 1 −W T
1 − S1 − ST1 + εMMT

H2 = diag
(
W 2 + W T

2 ,S2 + ST2

)
H3 = diag

(
0, hXZ−1X

)
, H4 =

[
εh2MMT − hZ 0

0 εI

]
H5 = diag

(
−R−11 ,−R−12

)
Ω1 =

[
A1X + W 1 −W T

2 B1Y + S1 − ST2
]

Ω2 =
[
0 hS1

]
Ω3 =

[
hXAT + hY TBT + εhMMT XNT

1

]
Ω4 =

[
X Y T

]
, Ω5 = diag (0, hS2)

Ω6 =

[
hXAT

1 XNT
1

hY TBT
1 Y TNT

2

]
In this case, the desired guaranteed cost state-feedback

controller can be chosen as

u(t) = Y X−1x(t) (9)

and the corresponding cost function in (6) satisfies:

J ≤ φ(0)TX−1φ(0) +

∫ 0

−h

∫ 0

β

φ̇(α)TZ−1φ̇(α) dα dβ (10)

Remark 2: Theorem 1 provides a sufficient condition for
the solvability of the guaranteed cost control problem for the
time-delay system (Σ). Note that the matrix inequality in (8)
is not an LMI because of the term XZ−1X . In order to
solve this non-convex problem, we introduce a new variable
P such that XZ−1X ≥ P . Then, we have:

P−1 ≥X−1ZX−1, (11)

by Schur complement, it follows from (11) that[
P−1 X−1

X−1 Z−1

]
≥ 0.

The following non-linear optimization problem can be
stated, involving LMI conditions (for more details see [19])
subject to 

H1 Ω1 Ω2 Ω3 Ω4

ΩT
1 H2 Ω5 Ω6 0

ΩT
2 ΩT

5 H3 0 0

ΩT
3 ΩT

6 0 H4 0

ΩT
4 0 0 0 H5

 < 0 (12)

where H1, H2, H4, H5, Ωi, i = 1, . . . , 6, are the same
as those used for the Theorem 1, and H3 = diag (0, hP ).
Using Theorem 1, it can be seen that the guaranteed cost
control problem is solvable and a desired guaranteed cost
state-feedback controller can be obtained as in (9).



IV. APPLICATION TO THE TEST BENCH

A. Control design

The plant model represented by (1) is first represented as
the state-space delay system (2) with

A =
[
−0.025

]
, B =

[
1.2
]
,

M =
[
1
]
, N1 =

[
0.017

]
, N2 =

[
1.34

]
The values of N1 and N2 are taken from the relationship

between the maximum value and the nominal value of Tp and
K, respectively. The time-delay τ(t) is assumed to satisfy
(5), with h = 12. Using Theorem 1 and by (10), a guaranteed
cost state-feedback control can be obtained with a maximum
cost of J < 37.28. Nevertheless, the associated tracking
performance is not accurate enough: a state-feedback control
with integral action is then required. The aim is to regulate
the output of the moisture x(t) around a reference operating
point value (xref ). In order to have a zero steady-state error
(xref (t) − x(t)), an integrator is added and the extended
system is: [

ẋ(t)

Ė(t)

]
=

[
A(t) 0
−I −λ(t)

] [
x(t)
E(t)

]
+

[
B(t)
0

]
u(t− τ) +

[
0
1

]
xref

(13)

where E =
∫ t
0
[xref (t)− x(t)]dt is the integral of the error.

A new parameter 0 < λ(t) < 1
Tp

has been introduced
as a “forgetting factor” for the integrator. The purpose of
this term is to avoid high overshoots when changing the
operating point by weighting down past accumulated errors.
This parameter is designed to vanish in finite time (e.g. see
[20] for its use in optimal control of tokamak plasmas).

Using the Theorem 1, a guarantee cost state-feedback
integral control (GC-IC) is obtained as

u(t) = [−0.031 0.0005][x(t) E(t)]T

The corresponding closed-loop GC-IC satisfies J <
46.25.

B. Simulation results

To illustrate the performance of our controller, the oper-
ating conditions are given by the nominal model and the
objective is to track a reference of xref = 50%, is show in
Figure 7. To compare the GC-IC efficiency with a classical
feedback design strategy, we consider a PI feedback tuned
using the internal model control (IMC) method proposed
by [21]. The IMC-PI tuning rules have the advantage of
using only a single tuning parameter to achieve a clear trade-
off between closed-loop performance and robustness against
model inaccuracies.

Consider the model of the test bench described by (1) and
the PI controller given by:

PI(s) = Kp

(
1 +

1

Tis

)
(14)

The IMC-PI tuning rules for time-delayed system
are given by [21] as Kp = 1

K
Tp

Tc+τ
and Ti =

min (Tp, 4 (Tc + τ)), where Tc is the trade-off on output
performance (small), usually set as Tc = τ .

Considering the nominal model of the test bench described
in the Section II. B. The values of the PI control are: Kp =
2.03 and Ti = 0.025.

The GC-IC and IMC-PI controllers are applied on the
nominal and extreme models, in order to compare their
performance on moisture regulation. The nominal responses
are illustrated in the Figure 7. In order to evaluated the
performance in the extreme models case, we use the integral
absolute error (IAE) as an indicator of efficiency (illustrated
in Figure 8). The results show that IMC-PI has better
performances on the nominal model the GC-IC has a better
robust performance on the extreme models.
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C. Experimental results

To investigate the effectiveness of the proposed control
strategies, the IMC-PI and GC-IC feedbacks have been im-
plemented on the test bench. The first experiment is done on
the nominal case and has the following operating condition:
no resistance power, an initial temperature at 26◦C and a
fan rotational velocity at 20%. Figure 9 shows the response
of the controlled moisture while tracking a step rference of
50%.

In the second experiment (extreme case), the resistance
control is increased at 40% and the fan rotational velocity
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Fig. 9. Experiment 1 (nominal): Response of IMC-PI and GC-IC on the
test bench

at 40% with an initial temperature of 25◦C. The moisture
reference is the same as in the previous experiment (50%)
and the experimental results are shown in Figure 10.
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Fig. 10. Experiment 2: Response of IMC-PI and GC-IC on the test bench

These experimental results show that the both controller
ensure the reference tracking with small steady-state error.
However the performances of the IMC-PI are more sensitive
to uncertainties that the GC-IC.

V. CONCLUSION

A complete modeling and control study of moisture reg-
ulation in an experimental test bench has been proposed
in this paper. First, a model was obtained from different
experiments in order to identify the dynamics of moisture
in the system. The dynamics of mist transport were modeled
as a first order system with uncertain parameters and input
delay (which is mostly given by the ratio between the length
of the tube and the airflow velocity) between the measured
moisture and the mist injected. A guaranteed cost control
was then proposed for the uncertain time-delay system. The
state-feedback controller guarantees the robust stability of
the closed-loop system and an upper bound of the specific
cost function for the maximum uncertainty in the test bench.
The reference design strategy was improved by introducing
a linearizing change of variables (which provides a convex
constructive method using LMIs) and an integral action with
a forgetting effect. Finally the efficiency of that control
methodology is illustrated and compared with a classical
IMC-PI design using simulation and experimental results.
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