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Stability of switched linear hyperbolic systems by
Lyapunov techniques

Christophe Prieur, Antoine Girard, and Emmanuel Witrant

Abstract—Switched linear hyperbolic partial differential equa-
tions are considered in this paper. They model infinite dimen-
sional systems of conservation laws and balance laws, which are
potentially affected by a distributed source or sink term. The
dynamics and the boundary conditions are subject to abrupt
changes given by a switching signal, modeled as a piecewise
constant function and possibly a dwell time. By means of
Lyapunov techniques some sufficient conditions are obtained
for the exponential stability of the switching system, uniformly
for all switching signals. Different cases are considered with or
without a dwell time assumption on the switching signals, and on
the number of positive characteristic velocities (which may also
depend on the switching signal). Some numerical simulations are
also given to illustrate some main results, and to motivate this
study.

I. INTRODUCTION

Lyapunov techniques are commonly used for the stability
analysis of dynamical systems, such as those modeled by
partial differential equations (PDEs). The present paper fo-
cuses on a class of one-dimensional hyperbolic equations that
describe, for example, systems of conservation laws or balance
laws (with a source term), see [5].

The exponential stabilizability of such systems is often
proved by means of a Lyapunov function, as illustrated
by the contributions from [9], [13] where different control
problems are solved for particular hyperbolic equations. For
more general nonlinear hyperbolic equations, the knowledge of
Lyapunov functions can be useful for the stability analysis of
a system of conservation laws (see [4]), or even for the design
of exponentially stabilizing boundary controls (see [3]). Other
control techniques may be useful, such as Linear Quadratic
regulation [1] or semigroup theory [12, Chap. 6].

In this paper, the class of hyperbolic systems of balance laws
is first considered without any switching rule and we state
sufficient conditions to derive a Lyapunov function for this
class of systems. It allows us to relax [5] where the Lyapunov
stability for hyperbolic systems of balance laws has been first
tackled (see also [4]). Then, switched systems are considered
and sufficient conditions for the asymptotic stability of a
class of linear hyperbolic systems with switched dynamics
and switched boundary conditions are stated. Some stability
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conditions depend on the average dwell time of the switching
signals (if such a positive dwell time does exist). The stability
property depends on the classes of the switching rules applied
to the dynamics (as in [11] for finite dimensional systems).
The present paper is also related to [15] where unswitched
time-varying hyperbolic systems are considered.

In [2], the condition of [10] is employed. It allows analyz-
ing the stability of hyperbolic systems, assuming a stronger
hypothesis on the boundary conditions. More precisely, our
approach generalizes the condition of [4], which is known
to be strictly weaker than the one of [10]. Therefore our
stability conditions are strictly weaker than the ones of [2].
Moreover the technique in [2] is trajectory-based via the
method of characteristics, while our approach is based on
Lyapunov functions, allowing for numerically tractable condi-
tions. Indeed, the obtained sufficient conditions are written in
terms of matrix inequalities, which can be solved numerically.
Furthermore the estimated speed of exponential convergence
is provided and can be optimized. See [14] for the use of line
search algorithms to numerically compute the variables in our
stability conditions, and thus to compute Lyapunov functions.
The main results and the computational aspects are illustrated
on two examples of switched linear hyperbolic systems.

Due to space limitation, some proofs have been omitted and
collected in [14].

Notation. The notation is standard. When G is invertible, then,
(G−1)> is denoted as G−>. Given some scalar values (a1, . . . , an),
diag(a1, . . . , an) is the matrix in Rn×n with zero non-diagonal
entries, and with (a1, . . . , an) on the diagonal. Moreover given two
matrices A and B, diag[A,B] is the block diagonal matrix formed
by A and B (and zero for the other entries). The notation A ≥ B

means that A−B is positive semidefinite. The usual Euclidian norm
in Rn is denoted by | · | and the associated matrix norm is denoted
‖ · ‖, whereas the set of all functions φ : (0, 1) → Rn such thatR 1

0
|φ(x)|2 <∞ is denoted by L2((0, 1); Rn) that is equipped with

the norm ‖·‖L2((0,1);Rn). Given a topological set S, and an interval I
in R+, the set C0(I,S) is the set of continuous functions φ : I → S.

II. LINEAR HYPERBOLIC SYSTEMS

Let us first consider the following linear hyperbolic partial
differential equation:

∂ty(t, x) + Λ∂xy(t, x) = Fy(t, x), x ∈ [0, 1], t ∈ R+ (1)

where y : R+ × [0, 1] → Rn, F is a matrix in Rn×n, Λ is
a diagonal matrix in Rn×n such that Λ = diag(λ1, . . . , λn),
with λk < 0 for k ∈ {1, . . . ,m} and λk > 0 for k ∈ {m +
1, . . . , n}. We use the notation y =

(
y−

y+

)
, where y− : R+ ×
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[0, 1] → Rm and y+ : R+ × [0, 1] → Rn−m. In addition, we
consider the following boundary conditions:(

y−(t,1)

y+(t,0)

)
= G

(
y−(t,0)

y+(t,1)

)
, t ∈ R+ (2)

where G is a matrix in Rn×n. Let us introduce the matrices
G−− in Rm×m, G−+ in Rm×(n−m), G+− in R(n−m)×m and
G++ in R(n−m)×(n−m) such that G =

(
G−− G−+
G+− G++

)
.

We shall consider an initial condition given by

y(0, x) = y0(x), x ∈ (0, 1) (3)

where y0 ∈ L2((0, 1); Rn). Then, it can be shown (see e.g. [5])
that there exists a unique solution y ∈ C0(R+;L2((0, 1); Rn))
to the initial value problem (1)-(3). As these solutions may not
be differentiable everywhere, the concept of weak solutions of
partial differential equations has to be used (see again [5] for
more details). The linear hyperbolic system (1)-(2) is said to
be globally exponentially stable (GES) if there exist ν > 0 and
C > 0 such that, for every y0 ∈ L2((0, 1); Rn); the solution
to the initial value problem (1)-(3) satisfies

‖y(t, .)‖L2((0,1);Rn) ≤ Ce−νt‖y0‖L2((0,1);Rn), ∀t ∈ R+. (4)

Sufficient conditions for exponential stability of (1)-(3) have
been obtained in [5] using a Lyapunov function. In this section,
we present an extension of this result. This extension will be
also useful for subsequent work on switched linear hyperbolic
systems.

Let Λ+ = diag(|λ1|, . . . , |λn|).
Proposition 2.1: Let us assume that there exist ν > 0,

µ ∈ R and symmetric positive definite matrices Q− in Rm×m
and Q+ in R(n−m)×(n−m) such that, defining for each x in
[0, 1], Q(x) = diag[e2µxQ−, e−2µxQ+], Q(x)Λ = ΛQ(x),
the following matrix inequalities hold

−2µQ(x)Λ+ + F>Q(x) +Q(x)F ≤ −2νQ(x) (5)(
Im 0m,n−m
G+− G++

)>
Q(0)Λ

(
Im 0m,n−m
G+− G++

)
≤
(

G−− G−+

0n−m,m In−m

)>
Q(1)Λ

(
G−− G−+

0n−m,m In−m

)
.

(6)

Then there exists C such that (4) holds and the linear
hyperbolic system (1)-(2) is GES.

The complete proof of this proposition is detailed in [14]
and is based on the inequality V̇ (y(t, .)) ≤ −2νV (y(t, .))
along the solutions of (1) with the boundary conditions (2),
where the Lyapunov function V is defined by V (y) =∫ 1

0
y(x)>Q(x)y(x) dx.

If all the diagonal elements of Λ are different, the as-
sumption that Q(x)Λ = ΛQ(x) is equivalent to Q being
diagonal positive definite1. The main contributions of the
previous proposition with respect to the result presented in [5]
is double: first, we do not restrict the values of parameter
µ to be positive, this allows us to consider non-contractive
boundary conditions (it will be the case for the numerical
illustration considered in Example V-B); second, we provide
an estimate of the exponential convergence rate (see [14] for
more details).

1This equivalence follows from the computation of matrices Q(x)Λ and
ΛQ(x), and from a comparison between each of their entries.

III. SWITCHED LINEAR HYPERBOLIC SYSTEMS

We now consider the case of switched linear hyperbolic
partial differential equation of the form (see [2]) for all x ∈
[0, 1], and t ∈ R+,

∂tw(t, x) + Lσ(t)∂xw(t, x) = Aσ(t)w(t, x), (7)

where w : R+ × [0, 1] → Rn, σ : R+ → I , I is a finite
set (of modes), Ai and Li are matrices in Rn×n, for i ∈ I .
The partial differential equation associated with each mode is
hyperbolic, meaning that for all i ∈ I , there exists an invertible
matrix Si in Rn×n such that Li = S−1

i ΛiSi where Λi is a
diagonal matrix in Rn×n satisfying Λi = diag(λi,1, . . . , λi,n),
with λi,k < 0 for k ∈ {1, . . . ,mi} and λi,k > 0 for k ∈
{mi + 1, . . . , n}. The matrices Si can be written as

Si =
(
S−>i S+>

i

)>
(8)

where S−i and S+
i are matrices in Rmi×n and R(n−mi)×n.

We define the matrices Fi = SiAiS
−1
i and Λ+

i =
diag(|λi,1|, . . . , |λi,n|) for i ∈ I . The boundary conditions
are given by

B0
σ(t)w(t, 0) +B1

σ(t)w(t, 1) = 0, t ≥ 0 (9)

where, for all i ∈ I , B0
i = G0

iSi and B1
i = G1

iSi, G
0
i and G1

i

being matrices in Rn×n that satisfy

G0
i =

(
−Gi−− 0mi,n−mi
−Gi+− In−mi

)
, G1

i =
(

Imi −Gi−+

0mi,n−mi −Gi++

)
.

For i ∈ I , let us define the matrices in Rn×n, Gi =(
Gi−− Gi−+
Gi+− Gi++

)
. We shall consider an initial condition given

by
w(0, x) = w0(x), x ∈ (0, 1) (10)

where w0 ∈ L2((0, 1); Rn).
A switching signal is a piecewise constant function σ :

R+ → I , right-continuous, and with a finite number of
discontinuities on every bounded interval of R+. This al-
lows us to avoid the Zeno behavior, as described in [11].
The set of switching signals is denoted by S(R+, I). The
discontinuities of σ are called switching times. The number
of discontinuities of σ on the interval (τ, t] is denoted by
Nσ(τ, t). Following [8], for τD > 0, N0 ∈ N, we denote
by SτD,N0(R+, I) the set of switching signals verifying, for
all τ < t, Nσ(τ, t) ≤ N0 + t−τ

τD
. The constant τD is called the

average dwell time and N0 the chatter bound.
We first provide an existence and uniqueness result for the

solutions of (7)-(10):
Proposition 3.1: For all σ ∈ S(R+, I), w0 ∈

L2((0, 1); Rn), there exists a unique (weak) solution w ∈
C0(R+;L2((0, 1); Rn)) to the initial value problem (7)-(10).

Proof: We build iteratively the solution between suc-
cessive switching times. Let (tk)k∈K denote the increasing
switching times of σ, with t0 = 0 and K be a (finite or infinite)
subset of N. Let us assume that we have been able to build
a unique (weak) solution w ∈ C0([0, tk];L2((0, 1); Rn)) for
some k ≥ 0. Then, let ik be the value of σ(t) for t ∈ [tk, tk+1).
Let us introduce the following notation, for all k in K and for
all x in [0, 1],

yk(t, x) = Sikw(t, x), t ∈ [tk, tk+1]. (11)
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Note that closed time intervals are used on both sides due to
technical reasons in this proof. Then, (7) gives that, for all k
in K, yk satisfies the following partial differential equation,
for all x ∈ [0, 1], and t ∈ [tk, tk+1],

∂tyk(t, x) + Λik∂xyk(t, x) = Fikyk(t, x). (12)

Also, we use the notations yk =
(
y−k
y+
k

)
, where y−k : R+ ×

[0, 1]→ Rmik and y+
k : R+× [0, 1]→ Rn−mik . The boundary

conditions (9) give, for all k in K,(
y−k (t,1)

y+
k (t,0)

)
= Gik

(
y−k (t,0)

y+
k (t,1)

)
, t ∈ [tk, tk+1] . (13)

The initial condition ensuring the continuity of w at time tk
is the following:

yk(tk, x) = Sikw(tk, x), x ∈ (0, 1) . (14)

It follows from [5] that, for all k in K, there exists a unique
(weak) solution yk ∈ C0([tk, tk+1];L2((0, 1); Rn)) to the
initial value problem (12)-(14). Then, we can extend the
(weak) solution to the initial value problem (7)-(10), from the
initial time tk, up to the switching time tk+1; (14) ensures that
w ∈ C0([0, tk+1];L2((0, 1); Rn)), and the uniqueness of yk
ensures that w is the unique solution. Finally, since there are
only a finite number of switching times on every bounded
intervals of R+, the solution can be defined for all times,
resulting on a unique solution w ∈ C0(R+;L2((0, 1); Rn)).

IV. STABILITY OF SWITCHED LINEAR HYPERBOLIC
SYSTEMS

Let S ⊆ S(R+, I). The switched linear hyperbolic sys-
tem (7)-(9) is said to be globally uniformly exponentially
stable (GUES) with respect to the set of switching signals
S if there exist ν > 0 and C > 0 such that, for every
w0 ∈ L2((0, 1); Rn), for every σ ∈ S , the solution to the
initial value problem (7)-(10) satisfies ‖w(t, .)‖L2((0,1);Rn) ≤
Ce−νt‖w0‖L2((0,1);Rn), ∀t ∈ R+. In this section, we provide
sufficient conditions for the stability of switched linear hyper-
bolic systems.

A. Mode independent sign structure of characteristics

Assume first that the number of negative and positive char-
acteristics of the linear partial differential equations associated
with each mode is constant, that is for all i ∈ I , mi = m.

We provide a first result giving sufficient conditions such
that stability holds for all switching signals. See [14] for a
proof where a common Lyapunov function equivalent to the
L2-norm is used. An alternative proof can be obtained by
checking some semigroup properties and by using [7] (where
the equivalence is shown between the existence of a common
Lyapunov function commensurable with the squared norm and
the global uniform exponential stability).

Theorem 1: Let us assume that, for all i ∈ I , mi = m and
that there exist ν > 0, µ ∈ R and diagonal positive definite
matrices Qi in Rn×n, i ∈ I such that the following matrix
inequalities hold, for all i ∈ I and for all x in [0, 1],

−2µQi(x)Λ+
i + F>i Qi(x) +Qi(x)Fi ≤ −2νQi(x), (15)

(
Im 0m,n−m
Gi+− Gi++

)>
Qi(0)Λi

(
Im 0m,n−m
Gi+− Gi++

)
≤
(
Gi−− Gi−+

0n−m,m In−m

)>
Qi(1)Λi

(
Gi−− Gi−+

0n−m,m In−m

)
,

(16)
where Qi(x) = diag[e2µxQ−i , e

−2µxQ+
i ], Qi =

(
Q−i 0

0 Q+
i

)
,

Q−i and Q+
i are diagonal positive matrices in Rmi×mi and

R(n−mi)×(n−mi), together with the following matrix equali-
ties, for all i, j ∈ I ,

(S+
i )>Q+

i S
+
i = (S+

j )>Q+
j S

+
j ,

(S−i )>Q−i S
−
i = (S−j )>Q−j S

−
j .

(17)

Then, the switched linear hyperbolic system (7)-(9) is GUES
with respect to the set of switching signals S(R+, I).

The numerical computation of the unknown variables, sat-
isfying the sufficient conditions of Theorem 1, is explained in
[14].

For systems that do not satisfy the assumptions of the
previous theorem, but whose dynamics in each mode satisfy
independently the assumptions of Proposition 2.1 (i.e. the
dynamics in each mode is stable), it is possible to show that the
system is stable provided that the switching is slow enough:

Theorem 2: Let us assume that, for all i ∈ I , mi = m
and that there exist ν > 0, γ ≥ 1, µi ∈ R, diagonal positive
definite matrices Qi in Rn×n, such that the following matrix
inequalities hold, for all x in [0, 1],

−2µiQi(x)Λ+
i + F>i Qi(x) +Qi(x)Fi ≤ −2νQi(x), (18)(

Im 0m,n−m
Gi+− Gi++

)>
Qi(0)Λi

(
Im 0m,n−m
Gi+− Gi++

)
≤
(
Gi−− Gi−+

0n−m,m In−m

)>
Qi(1)Λi

(
Gi−− Gi−+

0n−m,m In−m

)
,

(19)
where Qi(x) = diag[e2µixQ−i , e

−2µixQ+
i ], Qi =

(
Q−i 0

0 Q+
i

)
,

Q−i and Q+
i are diagonal positive matrices in Rmi×mi and

R(n−mi)×(n−mi), together with the following matrix inequal-
ities, for all i, j ∈ I ,

(S+
i )>Q+

i S
+
i ≤ γ(S+

j )>Q+
j S

+
j , (20)

(S−i )>Q−i S
−
i ≤ γ(S−j )>Q−j S

−
j . (21)

Let ∆µ = max(µ1, . . . , µn) − min(µ1, . . . , µn), then, for
all N0 ∈ N, for all τD > ln(γ)

2ν + ∆µ

ν , the switched linear
hyperbolic system (7)-(9) is GUES with respect to the set of
switching signals SτD,N0(R+, I).

Proof: Let (tk)k∈K denote the increasing switching times
of σ, with t0 = 0 and K is a (finite or infinite) subset
of N. For k ∈ K, let ik be the value of σ(t) for t ∈
[tk, tk+1), and let yk be given by (11). It satisfies the boundary
conditions (13). Given the diagonal matrices Qi satisfying
the assumptions of Theorem 2, let M−i = (S−i )>Q−i S

−
i

and M+
i = (S+

i )>Q+
i S

+
i . The proof is based on the use

of multiple Lyapunov functions. More precisely, denoting
Mik(x) = e2µikxM−ik + e−2µikxM+

ik
, let us define, for all

w in C0([0,∞);L2((0, 1); Rn)), for all t in R+,

V (w(t, .)) =
∫ 1

0

w(t, x)>Mik(x)w(t, x) dx, (22)



4

if k is such that t ∈ [tk, tk+1), which may be rewritten as
V (w(t, .)) =

∫ 1

0
yk(t, x)>Qik(x)yk(t, x) dx, if t ∈ [tk, tk+1).

Note that Qik(x) commute with Λik since these matrices
are diagonal. Using (18) and (19), and following the proof of
Proposition 1, we get that, along the solutions of (7)-(9), for
all k ∈ K and t ∈ [tk, tk+1),

V (w(t, .)) ≤ V (w(tk, .))e−2ν(t−tk). (23)

The function V may be not continuous at the switching times
any more. Nevertheless, by (20) and (21), we have that, for
all k in K,

V (w(tk+1, .))

=
∫ 1

0

(
w(tk+1, x)>M−ik+1

w(tk+1, x)e2µik+1x

+w(tk+1, x)>M+
ik+1

w(tk+1, x)e−2µik+1x
)
dx

≤ γ
∫ 1

0

(
w(tk+1, x)>M−ikw(tk+1, x)e2µik+1x

+w(tk+1, x)>M+
ik
w(tk+1, x)e−2µik+1x

)
dx

≤ γe2∆µ

∫ 1

0

(
w(tk+1, x)>M−ikw(tk+1, x)e2µikx

+w(tk+1, x)>M+
ik
w(tk+1, x)e−2µikx

)
dx

≤ γe2∆µ lim
t→t−k+1

V (w(t, .))

where the continuity of w is used in the last inequality (it fol-
lows from Proposition 3.1). Then, it follows from (23) that, for
all k in K, V (w(tk+1, .)) ≤ γe2∆µV (w(tk, .))e−2ν(tk+1−tk),
and it allows us to prove recursively that, for all
t ∈ R+, V (w(t, .)) ≤

(
γe2∆µ

)Nσ(0,t)
V (w0)e−2νt ≤(

γe2∆µ
)(N0+ t

τD
)
V (w0)e−2νt. Let ν̄ = ν − ∆µ

τD
− ln(γ)

2τD
, the

assumption on the average dwell time gives that ν̄ > 0
and the previous inequality yields ∀t ∈ R+, V (w(t, .)) ≤(
γe2∆µ

)N0
V (w0)e−2ν̄t which allows us to conclude that the

switched linear hyperbolic system is GUES with respect to
the set of switching signals SτD,N0(R+, I). This concludes
the proof of Theorem 2.

Remark 4.1: Setting γ = 1 and µi = µ for all i ∈ I , we
recover the assumptions of Theorem 1. In that case we have
∆µ = 0: there is no positive lower bound imposed on the
average dwell time, which is consistent with Theorem 1. ◦

Remark 4.2: Note that the existence of γ ≥ 1 such that
(20) holds is equivalent to Ker(S+

i ) = Ker(S+
j ), for all

i, j ∈ I . Therefore the existence of γ ≥ 1 such that (20) and
(21) are satisfied is equivalent to Ker(S+

i ) = Ker(S+
j ) and

Ker(S−i ) = Ker(S−j ), for all i, j ∈ I (and also, by recalling
Li = S−1

i ΛiSi, the subspace associated with all positive (resp.
negative) eigenvalues of Li does not depend on i). If this
condition does not hold, stability can still be analyzed using
other stability results presented in the following section. ◦

B. Mode dependent sign structure of characteristics

We now relax the assumption on the number of negative and
positive characteristics. As in the previous section, we provide

a first result giving sufficient conditions such that stability
holds for all switching signals (see [14] for the proof):

Theorem 3: Let us assume that there exist ν > 0 and
diagonal positive definite matrices Qi in Rn×n, i ∈ I such
that, for all i ∈ I ,

F>i Qi +QiFi ≤ −2νQi, (24)

GTi QiΛ
+
i Gi ≤ QiΛ

+
i , (25)

and such that, for all i, j ∈ I ,

S>i QiSi = S>j QjSj . (26)

Then, the switched linear hyperbolic system (7)-(9) is GUES
with respect to the set of switching signals S(R+, I).

The assumptions of the previous theorem are quite strong.
To assure the asymptotic stability for switching signals with a
sufficiently large dwell time, weaker assumptions are needed.
More precisely, considering the assumptions of Theorem 2,
the last main result of this paper can be stated:

Theorem 4: Let us assume that there exist ν > 0, γ ≥ 1,
µi ∈ R, and diagonal positive definite matrices Qi in Rn×n,
i ∈ I such that the matrix inequalities (18), (19) hold
(where the same notation for Qi(x) is used) together with
the following matrix inequalities, for all i, j ∈ I ,

S>i QiSi ≤ γS>j QjSj . (27)

Let ∆̄µ = 2|µi| if I is a singleton and ∆̄µ =
2 maxi 6=j∈I(|µi| + |µj |) else. Then, for all N0 ∈ N, for all
τD > ln(γ)

2ν + ∆̄µ

ν , the switched linear hyperbolic system
(7)-(9) is GUES with respect to the set of switching signals
SτD,N0(R+, I).

Proof: We use the same notations as in Theorem 2, and
we consider the candidate Lyapunov function (22). Using (18)
and (19), Equation (23) still holds along the solutions of (7)-
(9). Moreover, for all k in K,

V (w(tk+1, .))

≤ e2|µik+1 |
∫ 1

0

yk+1(tk+1, x)>Qik+1yk+1(tk+1, x)dx

≤ γe2|µik+1 |
∫ 1

0

yk+1(tk+1, x)>Qikyk+1(tk+1, x)dx

≤ γe2|µik+1 |+2|µik |
∫ 1

0

yk(tk+1, x)>Qik(x)yk(tk+1, x)dx

≤ γe2∆̄µ lim
t→t−k+1

V (w(t, .)).

The end of the proof follows the same lines as that of
Theorem 2.

Let us note that Theorem 3 can be deduced from Theorem
4 by selecting γ = 1 and µi = 0 for all i ∈ I .

V. EXAMPLES

A. Mode independent sign structure of characteristics

Consider the wave equation: ∂2
t u(t, x) − ∂2

xu(t, x) = 0,
where x ∈ [0, 1], t ∈ R+, and u : R+ × [0, 1] → R. The
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solutions of the previous equations can be written as u(t, x) =
w1(t, x) + w2(t, x) with w = (w1

w2 ) verifying

∂tw(t, x) + L∂xw(t, x) = 0, x ∈ [0, 1], t ∈ R+ (28)

where L = diag(−1, 1). We consider for this hyperbolic
system the following switching boundary conditions:

w1(t, 1) =
{
−1.2w2(t, 1) if i(t) = 1
−0.6w2(t, 1) if i(t) = 2 ,

w2(t, 0) =
{

0.6w1(t, 0) if i(t) = 1
1.2w1(t, 0) if i(t) = 2 .

(29)

This is a switched linear hyperbolic system of the form (7)-
(9) with L1 = L2 = L, A1 = A2 = 02, S1 = S2 = I2,
G1 =

(
0 −1.2

0.6 0

)
and G2 =

(
0 −0.6

1.2 0

)
. With the notations

defined in the previous sections, we also have Λ+
1 = Λ+

2 = I2
and F1 = F2 = 02. In this case (15) becomes

−µΛ+
i ≤ −νIn. (30)

We were not able to apply Theorem 1 as we could not find
ν > 0, µ ∈ R, and diagonal positive definite matrices Q1 and
Q2 such that the set of matrix inequalities (16), (17) and (30)
hold.

Actually, this could be explained by the fact that it is
possible to find a switching signal that destabilizes the system
as shown on the left part of Figure 1 (where a periodic
switching signal is used with a period equal to 1).

We can prove the exponential stability for a set of switching
signals with an assumption on the average dwell time using
Theorem 2. Let us remark that since F1 = F2 = 0, (18)
is equivalent to µi ≥ ν for i ∈ {1, 2}. One can verify that
Equations (19), (20) and (21) hold as well for the choices
Q1 = ( 0.75 0

0 2 ), Q2 = ( 1.5 0
0 1 ) and γ = 2. Then, Theorem 2

guarantees the stability of the switched linear hyperbolic
system for switching signals with average dwell time greater
than ln(γ)

2ν = 2.3105. The right part of Figure 1 shows the
stable behavior of the switched linear hyperbolic system for
a periodic switching signal with a period equal to 2.4. To
illustrate Theorem 1, we add a diagonal damping term to (28)
defined by, for all x ∈ [0, 1] and t ∈ R+,

∂tw(t, x) + L∂xw(t, x) = Aw(t, x), (31)

where A = diag(−0.3,−0.3). The boundary conditions are
given by (29). Now, A1 = A2 = F1 = F2 = A and
the other matrices of the system remain unchanged. In the
present case (30) is equivalent to ν ≤ µ + 0.3. One can
verify that Theorem 1 applies with µ = −0.2, ν = 0.1 and
Q1 = Q2 = ( 1.5 0

0 1 ). Then, Theorem 1 guarantees the stability
of the switched linear hyperbolic system for all switching
signals. Figure 2 shows the stable behavior of the switched
linear hyperbolic system for a periodic switching signal of
period 1.

B. Mode dependent sign structure of characteristics

To illustrate the results of Section IV-B, we consider the
following switched linear hyperbolic system, for all x ∈ [0, 1]
and t ∈ R+,

∂tw(t, x) + Li(t)∂xw(t, x) = Fw(t, x), (32)

Fig. 1. Time evolution of u = w1 + w2, solution of (28)-(29) for periodic
switching signals of period 1 (up) and 2.4 (down).

Fig. 2. Time evolution of u = w1 +w2, solution of (29)-(31) for a periodic
switching signal of period 1.

where w : R+ × [0, 1] → R, i(t) ∈ I = {1, 2}, L1 = 1 and
L2 = −1 and F ∈ R. The boundary conditions are given by

w(t, 0) = Gw(t, 1) if i(t) = 1
w(t, 1) = Gw(t, 0) if i(t) = 2 (33)

and G > 0. This is a switched linear hyperbolic system of
the form (7)-(9) with A1 = A2 = F , S1 = S2 = 1, and
G1 = G2 = G. With the notation defined in the previous
sections, we also have Λ+

1 = Λ+
2 = 1 and F1 = F2 = F .

We assume that F < − ln(G); if this does not hold, then
it can be shown that the linear hyperbolic systems in each
mode are both not asymptotically stable. If F < 0 and G ≤ 1,
then Theorem 3 applies with Q1 = Q2 = 1 and ν = −F .
Hence, in that case Theorem 3 guarantees the stability of the
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switched linear hyperbolic system for all switching signals. If
G > 1 (resp. F > 0) then the condition (25) (resp. (24)) of
Theorem 3 does not hold and thus Theorem 3 does not apply.

If G > 1, let F < µ < − ln(G), then Theorem 4
holds with µ1 = µ2 = µ, ν = µ − F , γ = 1 and
Q1 = Q2 = 1. Then, Theorem 4 guarantees the stability of
the switched linear hyperbolic system for switching signals
with average dwell time τD greater than ∆̄µ

ν = −2µ
µ−F for

any µ ∈ (F,− ln(G)). The minimal value of −2µ
µ−F in this

interval is −2 ln(G)
ln(G)+F ; therefore the stability of the switched

linear hyperbolic system is guaranteed for switching signals
with τD greater than −2 ln(G)

ln(G)+F . For G = 2 and F = −1, in
that case the minimal required τD is 4.5178. Figure 3 shows
unstable and stable behaviors for these values of G and F and
for periods equal to 1.2 and 4.6.

If F > 0, let G and µ such that F < µ < − ln(G), then
Theorem 4 holds with µ1 = µ2 = µ, ν = µ − F , γ = 1 and
Q1 = Q2 = 1. Then, Theorem 4 guarantees the stability of the
switched linear hyperbolic system for switching signals with
τD greater than ∆̄µ

ν = 2µ
µ−F for any µ ∈ (F,− ln(G)). The

minimal value of 2µ
µ−F in this interval is 2 ln(G)

ln(G)+F ; therefore
stability of the switched linear hyperbolic system is guaranteed
for switching signals with τD > 2 ln(G)

ln(G)+F . For G = 0.5 and
F = −0.1, the minimal required τD is 2.3372. Figure 4 shows
unstable and stable behaviors for these values of G and F and
for periods equal 0.9 and 2.4.

Fig. 3. Time evolution of w, solution of (32)-(33) with F = −1 and G = 2,
for periodic switching signals of period 1.2 (left) and 4.6 (right).

Fig. 4. Time evolution of w, solution of (32)-(33) with F = 0.1 and
G = 0.5, for periodic switching signals of period 0.9 (left) and 2.4 (right).

VI. CONCLUSION

In this paper, some sufficient conditions have been derived
for the exponential stability of hyperbolic PDE with switching
signals defining the dynamics and the boundary conditions.
This stability analysis has been done with Lyapunov functions
and exploiting the dwell time assumption, if it holds, of the
switching signals. The sufficient stability conditions are writ-
ten in terms of matrix inequalities which lead to numerically
tractable problems.

This work lets many questions open. In particular, exploit-
ing the sufficient conditions for the derivation of switching
stabilizing boundary controls (as for the physical application
considered in [6]) seems to be a natural extension. The
generalization of the results to linear hyperbolic systems with
space-varying entries may also be studied.
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