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Fresh Air Fraction Control in Engines Using
Dynamic Boundary Stabilization of

LPV Hyperbolic Systems
Felipe Castillo, Emmanuel Witrant, Christophe Prieur, Vincent Talon, and Luc Dugard

Abstract— In this paper, we consider the boundary control
of the fresh air mass fraction in a Diesel engine operated with
low-pressure exhaust gas recirculation. The air mass fraction
transport phenomenon is modeled using a cascade of first-order
linear parameter-varying hyperbolic systems with dynamics asso-
ciated with their boundary conditions. By means of Lyapunov-
based techniques, sufficient conditions are derived to guarantee
the exponential stability of this class of infinite dimensional
systems. We develop a polytopic approach to synthesize a robust
boundary control that guarantees the exponential stability for
a given convex parameter set. Simulation results illustrate the
effectiveness of the proposed boundary control to regulate the
mass fraction of fresh air in a Diesel engine.

Index Terms— Automatic control, control design, fluid flow
control.

I. INTRODUCTION

REGULATIONS of Diesel engine emissions have become
stricter, and satisfying simultaneously the emissions leg-

islations and the desired engine drivability objectives is a
particularly challenging issue. Although significant improve-
ments were made over the past years, there are still many
technical issues that need to be addressed to meet the future
regulation laws on emissions. The introduction of sophisticated
alternative combustion modes such as homogeneous charge
compression ignition, low-temperature combustion, and pre-
mixed controlled compression ignition offers a great poten-
tial to reduce the engine emissions levels [1], [2], [30].
However, these new modes require specific fueling strate-
gies and in-cylinder conditions, thus creating the need for
more complex, reliable and precise control systems and
technologies.
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Dual-loop exhaust gas recirculation (EGR) with both
high-pressure (HP) and low-pressure (LP) recirculations is
one of the new strategies that can provide the appropri-
ate conditions for multiple combustion modes [22]. Ensur-
ing the adequate in-cylinder conditions is still a diffi-
cult task due to the lack of measurements for EGR flow
rates and mass fraction. Several air mass fraction/EGR
rate control and estimation methods have been proposed in
[14], [20], [34], and [37]. However, most of the actual air
fraction control techniques are based on 0-D engine modeling,
which does not allow considering the air transport inside the
engine admission air-path. Indeed, the mass transport causes a
degradation of the overall engine emission performance during
strong transient conditions. This is mostly due to the LP-
EGR as the distance that the gas travels in the engine air-
path is much longer than the one associated with HP-EGR.
The control of air fraction considering the mass transport
time is a significantly less explored subject although in [6],
a nonphysical representation of the delay by means of partial
differential equations (PDEs) was used to design a predictor-
based controller.

The flow transport strongly depends on the engine operating
conditions. It has been shown in [13] and [35] that this depen-
dence can be modeled using a linear parameter-varying (LPV)
approach. On the other hand, the transport of mass is
often modeled by first-order hyperbolic PDEs, as reported
in [4], [10], and [31]. An LPV hyperbolic model can thus
capture the dynamics of the air mass fraction and be used to
solve the associated control problem.

Several results are available in the literature for the
control of first-order hyperbolic systems. For instance,
sufficient conditions for controllability and observability of
quasi-linear hyperbolic systems have been obtained in [24].
The boundary control of hyperbolic systems has been consid-
ered in [16], [17], [26], and [27] among other references. Most
results consider that the boundary control can react fast enough
in comparison with the waves travel time. More precisely,
no time response limitation is considered at the boundary
conditions. For many applications [5], [18], the wave travel
can be considered as being much slower than the actuator time
response. A static relationship can then be established between
the control input and the boundary condition. Nevertheless,
there are applications where the dynamics associated with the
boundary control cannot be neglected (e.g., the use of LP-
EGR to control the fresh air fraction in an engine intake
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manifold). To address this problem, a discretization of the
infinite-dimensional system has been used in [7] to apply
finite-dimensional control tools. In [10], some sufficient con-
ditions for the exponential stability of hyperbolic systems with
linear time invariant dynamic boundary conditions have been
given. In [21] and [28], a strict time-varying Lyapunov func-
tion that allows establishing the asymptotic stability of time-
varying hyperbolic systems is formulated for time-invariant
boundary conditions. In [32], a multimodel approach (similar
to an LPV) with a bilinear matrix inequality has been proposed
for the stability of a hyperbolic system representing the flow
in an open channel. In [23], backstepping designs for the
boundary control of hyperbolic and time-delayed systems have
been proposed. However, to the best of our knowledge, no
boundary control design for LPV hyperbolic systems with
LPV boundary conditions has been addressed in the literature.

This paper, which is an extension of [8], focuses on the
stabilization of LPV hyperbolic systems with boundary con-
ditions defined by LPV dynamics and its application to the
control of the air fraction in the intake manifold of Diesel
engines. To demonstrate the asymptotic stability for this class
of hyperbolic systems, we use an extension of the strict
Lyapunov function formulation presented in [17]. A polytopic
approach is developed to synthesize a robust boundary control
that guarantees the exponential stability for a given convex
parameter set. We obtain sufficient conditions in terms of
the boundary conditions to prove Lyapunov stability. This
feedback design strategy is used for the boundary control of
the fresh air mass fraction in an engine air-path with LP-EGR.
The effectiveness of our approach is evaluated in simulation
using a 1-D model of the engine admission air-path.

This paper is organized as follows. The problem formulation
and the main stability results for LPV hyperbolic systems
with LPV dynamic behavior at the boundary conditions are
presented in Section II. In Section III, an LPV hyperbolic
system is used to model the air fraction in the engine air-
path, and an air fraction boundary control is designed using
the results of Section II. In Section IV, simulation results are
presented to illustrate the effectiveness of the proposed control
strategy.

Notation: By the expressions H � 0, H � 0, H � 0, and
H ≺ 0, we mean that the matrix H is positive semidefinite,
negative semidefinite, positive definite, and negative definite,
respectively. The usual Euclidian norm in R

n is denoted
by |.|, and the associated matrix norm is denoted ‖.‖. Given
g : [0, 1] → R

n , we define its L2-norm (when is finite) as

‖g‖L2 =
√∫ 1

0
|g(x)|2dx .

II. STABILITY OF PARAMETER-VARYING LINEAR

HYPERBOLIC SYSTEMS WITH DYNAMIC

BOUNDARY CONDITIONS

Let n be a positive integer, � an open nonempty convex
set of R

n , and Zϕ a nonempty convex set of R
l . Consider the

general class of first-order LPV hyperbolic systems of order
n defined as follows:

∂tξ(x, t)+�(ϕ)∂xξ(x, t) = 0 ∀ x ∈ [0, 1], t ≥ 0 (1)

where ξ : [0, 1] × [0,+∞) → �, ϕ is a varying para-
meter vector that takes values in the parameter space Zϕ ,
�(ϕ) : Zϕ → R

n×n is a diagonal and invertible matrix
function (called the characteristic matrix) such that �(ϕ) =
diag(λ1(ϕ), λ2(ϕ), . . . , λn(ϕ)) and ∂t and ∂x denote the partial
derivatives with respect to time and space, respectively.

Assumption 1: Assume that the following inequalities hold
for all ϕ ∈ Zϕ :

0 < λ1(ϕ) < · · · < λn(ϕ). (2)
Consider the following dynamic boundary conditions for (1):

Ẋc = Ac(ϕ)Xc + Bc(ϕ)u

ξ(0, t) = Cc Xc + Dcu (3)

with

u = K ξ(1, t) (4)

where Xc ∈ R
nx , Ac : Zϕ → R

nx ×nx , Bc : Zϕ → R
nx ×n ,

Cc ∈ R
n×nx , Dc ∈ R

n×n , K ∈ R
n×n , u ∈ R

n , and nx ≥ 1.
Define the initial condition for (1) and (3) as{

ξ(x, 0) = ξ0(x) ∀ x ∈ [0, 1]
Xc(0) = X0

c
(5)

where ξ0(x) ∈ L2((0, 1); R
n) and X0

c ∈ R
nx . Such an initial

condition is required for the existence of a unique classical
solution of the Cauchy problem (1)–(5) [19]. In this section,
we consider the problem of finding a control gain K and
a positive scalar μ such that the system (1) with boundary
conditions (3) and initial condition (5) is exponentially stable
for all ϕ ∈ Zϕ satisfying the following inequality:
||Xc(t)||2+||ξ(t)||L2(0,1) ≤ b

(||X0
c ||2+ ||ξ0||L2(0,1)

)
e−μ�t (6)

where b and � are positive scalars.
Let the polytope Zϕ be defined as follows:

Zϕ :={[ϕ1, . . . , ϕl ]T ∈ R
l | ϕi ∈ [ϕ

i
, ϕi ] ∀i =1, . . . , l} (7)

for given l ∈ N
+ and the parameter extremities ϕ

i
, ϕi

(minimum and maximum, respectively). We thus consider that
all the admissible values of the vector ϕ are constrained in
a hyperrectangle in the parameter space Zϕ . Consider the
polytopic linear representation (PLR) of the parameter-varying
characteristic matrix for all ϕ ∈ Zϕ [3]

�(ϕ) =
Nϕ∑
i=1

αi (ϕ)�(wi ) (8)

where wi ∈ Zϕ are the Nϕ = 2l vertices of the polytope
formed by all extremities (ϕi and ϕ

i
) of each varying para-

meter ϕ ∈ Zϕ ,
∑2l

i=1 αi (ϕ)�(wi ) : Zϕ → R
n×n , and αi (ϕ) is

a scheduling function αi : Zϕ → [0, 1] defined as

αi (ϕ) =
∏l

k=1 |ϕk − C(wi )k |∏l
k=1 |ϕk − ϕ

k
| (9)

where C(wi )k is the kth component of the vector C(wi )
defined as

C(wi )k =
{
ϕk, if (wi )k = ϕ

k
.

ϕ
k
, otherwise

(10)
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Mi =

⎡
⎢⎢⎣

Ac(wi )
T P1 + P1 Ac(wi )+ CT

c �(wi )P2Cc P1 Bc(wi )K + CT
c �(wi )P2 Dc K

+μ�(wi )P1

K T Bc(wi )
T P1 + K T DT

c �(wi )P2Cc K T DT
c �(wi )P2 Dc K − e−μ�(wi )P2

⎤
⎥⎥⎦ � 0 (14)

the scheduling functions αi have the following properties [3]:

αi (ϕ) ≥ 0,

Nϕ∑
i=1

αi (ϕ) = 1. (11)

The polytopic representation (8) can also be considered for
the matrices Ac(ϕ) and Bc(ϕ) of the boundary conditions (3)
using the same scheduling function (9). Define the PLR of
the parameter-varying hyperbolic system (1) with boundary
conditions (3) as follows:

∂tξ(x, t)+
Nϕ∑
i=1

αi (ϕ)�(wi )∂xξ(x, t) = 0

∀ ϕ ∈ Zϕ ∀ x ∈ [0, 1], t ≥ 0 (12)

with boundary conditions

Ẋc =
Nϕ∑
i=1

αi (ϕ)Ac(wi )Xc +
Nϕ∑
i=1

αi (ϕ)Bc(wi )u

ξ(0, t) = Cc Xc + Dcu. (13)

Based on the PLR (12) and (13), the following theorem
states a sufficient condition to ensure the exponential stability
for system (1) with boundary conditions (3) and initial condi-
tion (5) for all ϕ ∈ Zϕ .

Theorem 1. [Stability analysis] Along with Assumption 1,
assume that there exists two diagonal positive definite matrices
P1 ∈ R

nx ×nx and P2 ∈ R
n×nand a scalar μ > 0 such that

the matrix inequality (14), as shown at the top of the page, is
satisfied, for all i = 1, ..., Nϕ ,

Then there exist two constant scalars a > 0 and b > 0 such
that, for all ξ0 ∈ L2((0, 1); R

n) and X0
c ∈ R

nx , the solution
of (1), (3) and (5) satisfies, for all t ≥ 0

||Xc(t)||2+||ξ(t)||L2(0,1) ≤ be−at
(
||X0

c ||2+||ξ0||L2(0,1)

)
(15)

Proof: Given the diagonal positive definite matrices
P1 and P2, consider (as an extension of the Lyapunov func-
tion proposed in [17]) the quadratic strict Lyapunov function
candidate defined for all continuously differentiable functions
ξ : [0, 1] → � as

V (ξ, Xc) = X T
c P1 Xc +

∫ 1

0
(ξT P2ξ)e

−μx dx (16)

where μ is a positive scalar. Computing the time deriva-
tive V̇ of V along the classical C1-solutions of (1) with
boundary conditions (3) and initial condition (5) yields the
following:

V̇ = Ẋ T
c P1 Xc+X T

c P1 Ẋc+
∫ 1

0

(
ξ̇T P2ξ + ξT P2ξ̇

)
e−μx dx . (17)

After integration by parts and considering the
PLR (12) and (13), the following is obtained:

V̇ =
2l∑

i=1

αi (ϕ)

[(
X T

c

(
Ac(wi )

T P1 + P1 Ac(wi )
)
Xc

)
+ (

ξ(1)T K T Bc(wi )
T P1 Xc

+ X T
c P1 Bc(wi )K ξ(1)

)
− [

e−μxξT�(wi )P2ξ
]∣∣1

0

− μ

∫ 1

0

(
ξT�(wi )P2ξ

)
e−μx dx

]
(18)

where ξ(1) = ξ(1, t). The previous equation can be written
using the boundary conditions (3) as follows:

V̇ =
2l∑

i=1

αi (ϕ)

[(
X T

c (Ac(wi )
T P1 + P1 Ac(wi ))Xc

)
+ (
ξ(1)T K T Bc(wi )

T P1 Xc

+ X T
c P1 Bc(wi )K ξ(1)

)
− e−μξ(1)T�(wi )P2ξ(1)

+ X T
c CT

c �(wi )P2Cc Xc

+ X T
c CT

c �(wi )P2 Dc K ξ(1)

+ ξ(1)T K T DT
c �(wi )P2Cc Xc

+ ξ(1)T K T DT
c �(wi )P2 Dc K ξ(1)

−μ
∫ 1

0

(
ξT�(wi )P2ξ

)
e−μx dx

]

=
2l∑

i=1

αi (ϕ)

[
−μX T

c�(wi )P1 Xc−μ
∫ 1

0

(
ξT�(wi )P2ξ

)
e−μx dx

+
[

Xc

ξ(1)

]T

Mi

[
Xc

ξ(1)

]]
(19)

where the matrix Mi is defined as in (14). The definition
αi ≥ 0 and the matrix inequality Mi � 0 from (14) imply
that the last term of (19) is always negative or zero. This
gives the following inequality:

V̇ ≤
2l∑

i=1

αi (ϕ)

[
− μX T

c �(wi )P1 Xc

−μ
∫ 1

0

(
ξT�(wi )P2ξ

)
e−μxdx

]
. (20)

From (2), it can be proved that there always exists a � > 0
such that �(ϕ) − �I n×n � 0 (e.g., � could be the smallest
eigenvalue of �(ϕ) over Zϕ). Moreover, the diagonality of
P1, P2, and � implies that

V̇ ≤ −μ�V (ξ, Xc). (21)

Therefore, the function (16) is a Lyapunov function for the
hyperbolic system (1) with boundary conditions (3).
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Fig. 1. Schematic of a Diesel engine admission air-path.

By integrating the inequality (21) from 0 to t , we obtain
the following:

V (t) ≤ V (0)e−μ�t . (22)

To obtain the final result (15), we bound the Lyapunov
function as follows:

min{λmin(P1), λmin(P2)}
(||Xc(t)||2 + ||ξ(t)||L2(0,1)

)
≤ V (t) ≤ max{λmax(P1), λmax(P2)}

×(||Xc(t)||2 + || ξ(t)||L2(0,1)
)

(23)

where λmin and λmax are the minimum and maximum
eigenvalues of the considered matrices, respectively. Then,
using (22) together with (23) gives

||Xc(t)||2+||ξ(t)||L2(0,1)≤
max{λmax(P1), λmax(P2)}
min{λmin(P1), λmin(P2)}
×(∥∥X0

c

∥∥2 + ||ξ0||L2(0,1)
)
e−μ�t

(24)

which implies that a = μ� and b = max{λmax(P1),
λmax(P2)}/min{λmin(P1), λmin(P2)} in (15).

Note that the matrix inequality (14) considers, through the
Lyapunov matrices P1 and P2, the dynamic coupling between
the system and its boundary conditions. Inequality (14) along
with (21) implies that μ is a tuning parameter of the controller
design as it explicitly enables to set the convergence speed
of the Lyapunov function. Another interesting convergence
feature can be deduced from (21): a faster convergence is
obtained for larger values of �. This implies that hyperbolic
systems with high convective velocities converge faster, which
is physically consistent.

The following corollary gives a sufficient condition for the
design of a stabilizing controller for the particular case where
Cc is a diagonal matrix, Dc = 0 and n = nx .

Corollary 1 [Design of a Stabilizing Controller]: Along
with Assumption 1, if Cc is diagonal and Dc = 0 and if
there exists a diagonal positive definite matrix Q ∈ R

n×n and

a scalar μ > 0 such that the linear matrix inequality (25),
as shown at the bottom of the page, is satisfied, for all i ∈
1, . . . , Nϕ , where Y = K Q, there exist two constants α > 0
and M > 0 such that, for all ξ0 ∈ L2((0, 1); R

n) and X0
c ∈ R

n ,
the solution of (1) with boundary conditions (3) and initial
condition (5) satisfies (15) for all t ≥ 0.

Proof: The proof of Corollary 1 can be found in [8].
This corollary is interesting because for systems where CC

is diagonal and Dc = 0, it provides a constructive approach to
obtain the boundary control gain K using convex optimization
algorithms after determining a suitable value of μ > 0
(e.g., chosen to obtain a good performance versus robustness
tradeoff for the system considered).

III. FRESH AIR MASS FRACTION CONTROL

For the air fraction boundary control design problem,
consider the admission air-path of a Diesel engine with
LP-EGR presented in Fig. 1.

A fresh air mass flow rate Qair enters the admission air-
path where it is mixed upstream (subscript u) the compressor
(subscript c) with the LP-EGR (characterized by its mass flow
rate Qegrl and air fraction Fegrl). The EGR mass flow rate is
controlled by the position of the LP-EGR valve. Fegrl depends
on the engine operating conditions and is considered here as
a known exogenous input since this quantity is measured in
production engines. The compressor increases the enthalpy
of the gas, which results in an increase of the compressor
downstream (subscript d) gas pressure and temperature pdc
and Tdc, respectively (Fig. 1). To increase the gas mass in the
engine cylinders and thereby the engine power, the gas coming
from the compressor is cooled down by a heat exchanger,
which increases the gas density and thereby the mass inside
the cylinders. The pressure and temperature downstream of
the heat exchanger are denoted as pdhe and Tdhe, respectively.
Finally, the gas travels from the heat exchanger to the intake
manifold (subscript im) where the gas is delivered to the
engine with a mass flow rate Qeng and air fraction Fim. In this

[
Q Ac(wi )

T + Ac(wi )Q + Cc�(wi )QCc + μ�(wi )Q Bc(wi )Y
Y T Bc(wi )

T −e−μ�(wi )Q

]
� 0 (25)
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section, we consider the problem of controlling the air fraction
in the intake manifold by regulating the LP-EGR mass flow
rate. We focus on the generation of the target Qegrl, which
then is translated into LP-EGR valve position by a secondary
control. Since the EGR valves position controllers have been
already implemented in modern engines and is an application
well known in the engine control community, we do not detail
its functionality in this paper.

The admission air-path presented in Fig. 1 can be considered
as a series of tubes that is linked together by volumes, i.e., by
the volumes upstream and downstream of the heat exchanger
Vuhe and Vdhe, respectively. Using this formulation, we can
define three tube sections and three control volumes. The
three tube sections are defined as: the tube downstream of
the compressor (up to the heat exchanger), the heat exchanger
with Nd tubes in parallel, and the tube downstream of the
heat exchanger. The control volumes are: the tube upstream
of the compressor (denoted as Vuc where gas mixture occurs),
the heat exchanger upstream volume Vuhe, and downstream
volume Vdhe. The control volumes allow us to formulate
a 0-D model for the interfaces between the components of
the air-path where most of the mass transport phenomenon
occurs (the three tubes). In other words, we do not model the
evolution of the states along the space dimensions in these
volumes. Instead, we describe the dynamics of the flow using
a volume-average formulation which eases the modeling of
the air-path without affecting significantly the accuracy of the
mass transport representation.

The 1-D modeling of the engine admission air-path is
particularly complex as it involves solving the 1-D Euler
equations for a compressible gas [36], which is not appropriate
for designing real-time feedback strategies. Therefore, the
following assumptions are made to simplify the complexity
of the air fraction model, making it suitable for Diesel engine
control.

Assumption 2: We assume the following:

A-21: the pressure and particle speed dynamics are much
faster than the air fraction dynamics;

A-22: no friction and thermal losses are considered (except
for the heat exchanger);

A-23: the speed density equation (equation that accurately
predicts the amount of air ingested by an engine
during the induction stroke [34]) is considered to
model the engine intake mass flow rate. No pulsating
flow is considered;

A-24: the cross-sectional area of each of the air-path
sections (tube between two devices) is considered
constant along the space variable x .

The air fraction in a control volume is modeled by consid-
ering the classical 0-D approach [35]:

Ḟv = RTv
pvVv

( ni∑
i=1

(Qi Fi )−
no∑

o=1

(Qo Fv )

)
(26)

where Fv , Tv , pv , and Vv are the control volume air fraction,
temperature, pressure and volume, respectively. ni and no

are the amount of mass inputs and outputs, and Qi and
Qo are the input and output mass flow rates, respectively.

Assumption A-21 implies that Qeng = Qair + Qegrl. Therefore,
the following equations describe the air mass fraction dynam-
ics in the tube upstream of the compressor and in both heat
exchanger volumes [according to (26)]:

Ḟuc = RTuc

pucVuc
(−(Qegrl+Qair)Fuc+Qegrl Fegrl+Qair) (27)

Ḟuhe = RTdc

pdcVuhe
(−(Qegrl + Qair)Fuhe + (Qegrl Qair)

+ Fdc(Ldc, t)) (28)

Ḟdhe = RTdhe

pdheVdhe
(−(Qegrl + Qair)Fdhe + (Qegrl + Qair)

× Fhe(Lhe, t)) (29)

where Fuc, Tuc, and puc are the air fraction, temperature, pres-
sure and volume upstream of the compressor. Fuhe and Fdhe
are the air fractions upstream and downstream of the heat
exchanger, respectively. Fhe is the air fraction inside the heat
exchanger, and Fdc(Ldc, t) and Fhe(Lhe, t) are the output
air fractions of the compressor downstream tube and the
heat exchanger tubes, respectively. Note that the dynamics
of (27)–(29) are defined in terms of the states with the
exception of (27) that depends on the time-varying additive
term Qegrl Fegrl + Qair. This issue is addressed in the sequel
to obtain a system in the form of the dynamic boundary
conditions (3).

For the 1-D model of the air fraction dynamics in the tube
sections, consider the change in mass fraction across a control
volume of length ∂x , which can be expressed as [36]

∂t [ρ(x, t)At (x)F(x, t)]+∂x[ρ(x, t)u(x, t)At (x)F(x, t)] = 0,

∀ x ∈ [0, L], t ≥0 (30)

where L is the length of the pipe, At the tube cross section,
ρ the gas density and u the speed of particles. Equation (30)
can be expressed as (see [36, Ch. 4.2.5] for more details)

∂t [ρ(x, t)F(x, t)] + ∂x [ρ(x, t)u(x, t)F(x, t)]
+ ρ(x, t)u(x, t)F(x, t)∂x [ln(At (x))] = 0. (31)

Expanding (31) and dividing by F(x, t) gives

∂tρ(x, t)+ u(x, t)∂xρ(x, t)+ ρ(x, t)∂x u(x, t)

+ ρ(x, t)u(x, t)∂x (ln(At (x)))+ ρ(x, t)

F(x, t)
∂t F(x, t)

+ ρ(x, t)u(x, t)

F(x, t)
∂x F(x, t) = 0. (32)

The first four terms of (32) constitute the global continuity
of mass implying that the sum of the four terms equals zero.
Therefore, the air fraction continuity equation implies that

∂t F(x, t)+ u(x, t)∂x F(x, t) = 0

F(0, t) = Fin(t) F(x, 0) = F0(x) ∀x ∈ [0, L], t ≥ 0

(33)

where Fin is the air fraction at the input boundary condition,
F0(x) is a continuous differentiable function describing the
initial conditions, and u(t, x) is the air fraction propagation
speed (independent of the air fraction).
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The assumptions A-21, A-22, and A-24 imply that u(x, t)
is only time-varying (constant in space), which simplifies
significantly the solution of (33). For the heat exchanger,
where A-22 does not apply, the average temperature and
pressure are defined as follows:

The = Tdc + Tdhe

2
, phe = pdc + pdhe

2
(34)

where The and phe are the heat exchanger temperature and
pressure, respectively. Uniform pressure and temperature dis-
tributions are assumed inside the heat exchanger to obtain (34),
which allows approximating a space average particle speed
inside the heat exchanger as presented later in (38).

From (33) and (34), the dynamics of each tube section can
be modeled with the following set of time-varying first-order
hyperbolic PDEs:

∂t Fdc + udc(t)∂x Fdc = 0

Fdc(0, t) = Fuc(t)

Fdc(x, 0) = Fdc0(x) (35)

∂t Fhe + uhe(t)∂x Fhe = 0

Fhe(0, t) = Fuhe(t)

Fhe(x, 0) = Fhe0(x) (36)

∂t Fdhe + udhe(t)∂x Fdhe = 0

Fdhe(0, t) = Fdhe(t)

Fdhe(0, x) = Fde0(x) (37)

for all x ∈ [0, 1] and t ≥ 0. The particle speeds for each air-
path section udc, uhe, and udhe can be normalized (implying
that x ∈ [0, 1]) and calculated using the ideal gas law as
follows:

udc = RTdc(Qair + Qegrl)

pdc AdcLdc

uhe = RThe(Qair + Qegrl)

phe AheLhe Nd

udhe = RTdhe(Qair + Qegrl)

pdhe AdheLdhe
(38)

where Ldc, Lhe, and Ldhe are the lengths; Adc, Ahe, and
Adhe are the cross-sectional areas of each of the respective
tube sections and Nd is the number of parallel tubes in the
heat exchanger. To use the results of Theorem 1, the system
has to be in the form of (1) with boundary conditions (3).
System (35)–(37) is a cascade of hyperbolic systems con-
nected by the dynamics defined by (27)–(29), which does
not correspond to the system structure (1). This problem is
solved by following a similar approach as in [18], where n
hyperbolic systems in cascade form are combined in one PDE
of order n by redefining the boundary control. However, it
is important to highlight that our realization considers the
dynamic behavior of the boundary conditions; therefore, a
different stability analysis has to be considered. Consider the
definition of the air fraction errors as

ξdc(x, t) = Fdc(x, t)− Fimref

ξhe(x, t) = Fhe(x, t)− Fimref

ξdhe(x, t) = Fdc(x, t)− Fimref (39)

and

ξuc(t) = Fuc(t)− Fimref

ξuhe(t) = Fuhe(t)− Fimref

ξdhe(t) = Fdhe(t)− Fimref (40)

where Fimref is a given scalar reference for the air fraction.
According to (39) and (40), we can rewrite the dynamics of the
simplified air fraction air-path model (27)–(29) and (35)–(37)
as an LPV hyperbolic PDE of order n as follows:

∂t

⎡
⎢⎣
ξdc

ξhe

ξdhe

⎤
⎥⎦+

⎡
⎢⎢⎢⎢⎣

ϕ2

AdcLdc
0 0

0
ϕ3

AheLhe Nd
0

0 0
ϕ4

AdheLdhe

⎤
⎥⎥⎥⎥⎦∂x

⎡
⎢⎣
ξdc

ξhe

ξdhe

⎤
⎥⎦ = 0

(41)

with the dynamic boundary conditions in the form of (3):

⎡
⎢⎣
ξ̇uc

ξ̇uhe

ξ̇dhe

⎤
⎥⎦ =

⎡
⎢⎢⎢⎢⎣

− ϕ1

Vuc
0 0

0 − ϕ2

Vuhe
0

0 0 − ϕ4

Vdhe

⎤
⎥⎥⎥⎥⎦

⎡
⎣ ξuc
ξuhe
ξdhe

⎤
⎦

+

⎡
⎢⎢⎢⎢⎣

ϕ1

Vuc
0 0

0
ϕ2

Vuhe
0

0 0
ϕ4

Vdhe

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎣

ṽ

ξdc(1)

ξhe(1)

⎤
⎥⎦. (42)

The boundary control in the form of (4) that allows writing
the cascade of hyperbolic systems as a PDE of order n is⎡

⎢⎣
ṽ

ξdc(1)

ξhe(1)

⎤
⎥⎦ =

⎡
⎣ 0 0 K13

1 0 0
0 1 0

⎤
⎦

⎡
⎢⎣
ξdc(1)

ξhe(1)

ξdhey(1)

⎤
⎥⎦ (43)

where ṽ is a virtual control input that cancels the additive
terms of (27) and is defined as

ṽ = Fegrl Qegrl

Qair + Qegrl
− Fimref − Qair

Qair + Qegrl
. (44)

The time-varying parameters ϕi are given by

ϕ1 = RTuc(Qair +Qegrl)

puc
, ϕ2 = RTdc(Qair +Qegrl)

pdc

ϕ3 = RThe(Qair+Qegrl)

phe
, ϕ4 = RTdhe(Qair +Qegrl)

pdhe
. (45)

From (43) and (44), the LP-EGR mass flow rate is defined as

Qegrl = Qair(Fimref − 1 + K13(ξdhe(1)))

Fegrl − Fimref − K13(ξdhe(1))
. (46)

The LP-EGR mass flow rate target of (46) is then transformed
into LP-EGR valve position by a secondary controller, which
typically is composed of an open-loop control obtained from
an inverted orifice equation and a closed-loop control com-
posed of a PID and an LP-EGR mass flow rate estimation as
the one presented in [13]. Fig. 2 presents the final schematic
of the proposed air fraction control in the intake manifold.
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Fig. 2. Resulting air fraction control architecture.

Fig. 3. Parameter set reduction. (a) Original parameter set. (b) Reduced parameter set.

The system (41)–(45) with boundary control (43) is in the
adequate form to apply the results of Theorem 1. However,
with the definition of the varying parameters presented in (45),
the polytope (convex set Zϕ) obtained using the PLRs (12)
and (13) is very large and therefore highly conservative. Since
all the varying parameters in (45) are strongly dependent
on the compressor mass flow rate Qair + Qegrl, especially
from the fact that this flow has a direct impact on the mass
transport time in the admission path, it is highly convenient
to use this quantity to reduce the size of the polytope and
therefore the conservatism of the results. The engine speed
could also be used to represent the dynamics of the admission
path [14]; however, it is more complicated in this application
because other factors have to be considered to express the mass
transport phenomenon in terms of Neng. Among these factors,
we find the HP-EGR, the swirl and the engine volumetric
efficiency.

Let us redefine the varying parameters as

ϕ̃(t) = [Qair + Qegrl, (Qair + Qegrl)
2] (47)

and the original varying parameters ϕ as a linear combination
of ϕ̃ as follows:

ϕ j (t) = ϑT
j ψ(t), j ∈ [1, . . . , 4] (48)

where ϑ j ∈ R
3 is an unknown coefficient vector and

ψ(t) = [1, (Qair + Qegrl), (Qair + Qegrl)
2]. A classical least

square method can be used to determine the optimal set of
coefficients ϑ j such that |ϕ j (t) − ϑT

j ψ(t)|2 is minimized,
and the coefficient identification can be done using engine
benchmark measurements over representative engine operating
conditions. With this approach, the amount of varying parame-
ters is decreased from four to two, which significantly reduces
the conservatism of the control synthesis.

In Fig. 3(a), the polytope Zϕ formed by all the extremities of
ϕ̃1 and ϕ̃2 is shown. As demonstrated in [29], the conservatism
can be further reduced from the fact that ϕ̃2 = ϕ̃2

1 , which
allows considering only the polytope formed by three vertexes
for the control synthesis, as shown in Fig. 3(b).

The bounds of the varying parameter vector ϕ̃ can also be
found using experimental measurements over representative
engine operating conditions.

To summarize, the air fraction is controlled using the results
of Section II over the polytope formed by the extremities
of ϕ̃ to find the gain K13 in (46) such that the air frac-
tion at the engine intake manifold Fim converges in finite
time to the reference Fimref . In the next section, simulation
results illustrate the performance of the proposed air fraction
control.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY

TABLE I

SIMULATION PARAMETERS. dt IS THE SIMULATION TIME STEP, AND

Nuhe , Nhe , AND Ndhe ARE THE DISCRETIZATION SIZES OF THE TUBE

UPSTREAM THE COMPRESSOR, HEAT EXCHANGER, AND

DOWNSTREAM THE COMPRESSOR, RESPECTIVELY

TABLE II

RMSD OBTAINED AFTER THE SOLUTION OF

THE LEAST SQUARE METHOD

IV. SIMULATION RESULTS

To illustrate the effectiveness of the proposed LPV bound-
ary control strategy, an air fraction control (46) that sat-
isfies Theorem 1 is simulated along with the setup shown
in Fig. 1. The simulation is performed using a 1-D
model based on the Euler equations for compressible gases,
which is numerically solved with a MacCormack numeri-
cal scheme and a Time Variation Diminishing strategy (for
more details on the numerical methods refer to [15], [33],
and [36]). This 1-D model has been experimentally vali-
dated for inflow, outflow, and intrapipe restrictions [9], [12],
[25]. Table I gives the physical and numerical parame-
ters used for the simulation of a light-duty 1.6 L Diesel
engine.

The bounds on each parameter as well as the coefficients
of (48) are found from measurements on an engine benchmark
operated over a wide range of engine operating conditions.
More precisely, we use the new motor vehicle emissions group
cycle along with two additional engine cycles. The bounds
obtained for ϕ̃ are the following:

ϕ̃1 ∈ [0.009, 0.074], ϕ̃2 ∈ [0.00009, 0.0054]. (49)

The identification of the coefficient vector ϑi is per-
formed using a traditional least-squared-method and the
Penrose–Moore pseudoinverse. Table II presents the iden-
tified root-mean-square deviation (RMSD) of ϑi , where
RMSD j = RMSD(ϕ j (t)− ϑT

j ψ(t)).
As shown in Table II, the parameterization (48) is repre-

sentative of the engine-varying parameters ϕ and is therefore
adequate for the boundary control synthesis.

Fig. 4. Intake manifold air fraction simulation results for a change of air
fraction reference.

Fig. 5. LP-EGR mass flow rate simulation results for a change of air fraction
reference.

Fig. 6. Convergence of the Lyapunov function.

Consider, as a criterion for the boundary control design,
a maximum air fraction convergence time of 1.2 s, (i.e., the
time to reach 90% of the final asymptotic value). From (21)
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Fig. 7. Time evolution of the engine operating conditions.

and the smallest eigenvalue of �(ϕ), we find that μ > 0.6 is
required to achieve the desired convergence time. Solving (14)
over the reduced polytope [presented in Fig. 3(b)] leads to the
following control gain and Lyapunov matrices P1 and P2:

K13 = 0.25

P1 =
⎡
⎣ 0.0422 0 0

0 0.0493 0
0 0 0.0353

⎤
⎦

P2 =
⎡
⎣ 0.445 0 0

0 0.299 0
0 0 0.129

⎤
⎦. (50)

Figs. 4 and 5 show the simulation results obtained from
a change of air fraction reference (Fimref ) from 1 to 0.7
at time 0.1 s. Three different air-path operating conditions
are simulated to verify the robustness of the controller with
respect to parameter variation and the impact of the mass
transport phenomenon in the control of the air fraction in the
intake manifold.

As shown in Fig. 4, the intake manifold air fraction con-
verges to the reference while respecting the convergence time
criterion for the three operating conditions. The convergence
time depends on the mass flow rate going through the air
system (Fig. 4), which is due to the intrinsic time delays
associated with transport in the system. In Fig. 5, the LP-EGR
mass flow rate is presented for the three engine operating
conditions: when the mass flow rate increases in the system,
Qegrl also does, to maintain the appropriate air fraction.

Fig. 8. Time evolution of the air fraction in the intake manifold.

The convergence of the Lyapunov function (16) is shown in
Fig. 6, where it is shown that the actual system convergence
is always faster than the exponential decrease predicted
by (21).

To evaluate the efficiency of the controller under strong
engine transient conditions, a simulation of an engine cycle
with abrupt changes in fuel quantities and air fraction in the
exhaust and intake manifold has been performed. Fig. 7 shows
the engine operating conditions during the proposed maneuver.

Figs. 8 and 9 present the evolution in time of the air
fraction in the intake manifold and the LP-EGR mass flow
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Fig. 9. Time evolution of the LP-EGR mass flow rate.

rate, respectively. As shown, the air fraction in the intake
manifold effectively tracks the air fraction target Fimref in a
smooth trajectory, only separated by the transport time inherent
of the system. Fig. 9 shows that also the Qegrl effectively
compensates the variation of the engine operating conditions,
enabling the controller to properly control the air fraction in
the intake manifold.

Due to the low calculation load and low complexity of
the boundary control (46), this approach is suitable for real-
time implementation in a production engine. The current
limitation to implement this strategy mainly comes from the
lack of reliable measurements or estimations of the fresh air
mass fraction in the intake manifold under strong transient
conditions (e.g., lack of a reliable sensor for detecting the mass
transport). However, many efforts are being made to address
this issue using air fraction observers that consider the mass
transport phenomenon [11], which would enable the imple-
mentation of the proposed boundary control in production
engines.

V. CONCLUSION

This paper proposes a new solution for the boundary control
of the fresh air mass fraction in a Diesel engine operated
with LP-EGR. A formulation using a cascade of first-order
LPV hyperbolic systems with dynamics associated with the
boundary conditions has been considered to model the air
fraction transport phenomenon. Some sufficient conditions
for the exponential stability of such systems were obtained
using a matrix inequality approach. The exponential stability
was demonstrated by means of a strict Lyapunov function
formulation, along with a linear polytopic representation for
the LPV hyperbolic system.

By defining a minimal air fraction convergence time as the
performance criterion, an air fraction regulation strategy was
designed using the previous stability results. The conservatism
of the boundary feedback control was significantly reduced by
redefining the system-varying parameters. The complexity of
the obtained boundary control is very low, which makes it
suitable for real-time implementation. A 1-D simulation of
the engine admission air-path with the proposed controller
was performed to evaluate the effectiveness of the control

approach. The simulation results are promising and motivate
future steps toward implementation.

The new control design method presented in this paper has
many applications in various systems governed by hyperbolic
PDEs, such as mine ventilation, traffic control, and hydraulic
networks. However, many questions are still open. In partic-
ular, a generalization of some sufficient conditions for the
exponential stability of hyperbolic systems with nonlinear
dynamic boundary conditions seems to be a challenging issue.
Considering perturbations in the system (1) and in the bound-
ary conditions dynamics, (3) is also a natural extension of
this paper.
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