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Abstract Fluid networks are characterized by complex interconnected flows, in-
volving high order nonlinear dynamics and transport phenomena. Classical lumped
models typically capture the interconnections and nonlinear effects but ignore the
transport phenomena, which may strongly affect the transient response. To control
such flows with regulators of reduced complexity, we improve a classical lumped
model (obtained by combining Kirchhoff’s laws and graph theory) by introduc-
ing the effect of advection as a time delay. The model is based on the isothermal
Euler equations to describe the dynamics of the fluid through the pipe. The result-
ing hyperbolic system of partial differential equations (PDEs) is diagonalized using
Riemann invariants to find a solution in terms of delayed equations, obtained ana-
lytically using the method of the characteristics. Conservation principles are applied
at the nodes of the network to describe the dynamics as a set of (possibly non lin-
ear) delay differential equations. Both linearized and nonlinear Euler equations are
considered.

1 Introduction

Modeling and control of fluid flow networks has been a challenging topic during the
last decades. This research is motivated by engineering applications such as mine
ventilation systems [17, 28], gas pipelines [2, 13], water channels [7, 21], traffic
flow dynamics [27], cryogenic distribution lines [3], etc.
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For example, considering mining ventilation engineering, the first approaches
used a steady-state description of the pipe network and models were built using the
Hardy Cross method [8]. With this method, the airflow in mine ventilation circuits
is determined algebraically by combining graph theory and classical Kirchhoff’s
laws to model the interconnection nodes [15]. In more recent approaches, a lumped
parameter model for mine ventilation networks has been represented in terms of
nonlinear ordinary differential equations [22, 17], with an extension to periodically
forced networks in [19]. The model proposed in these works is based on Kirch-
hoff’s voltage and current laws, combined with the fluid dynamical equations of
individual branches. The branches are modeled by considering the incompressible
Navier-Stokes equations as an electric equivalent RL circuit model with a nonlinear
resistance. More precisely, the pressure drop over a branch is approximated to be
proportional to the square of the air flow rate and to the air flow acceleration.

On the other hand, partial differential equations are often used to model fluid
flows as hyperbolic conservation laws. For example, the Saint-Vennant equations
are used to approximate 2-D shallow water phenomena with a 1-D PDE model
[10]. Such models have been extensively used to control open channel networks
[7, 20, 21, 9, 5]. Another example is provided in mine ventilation networks [28],
where Euler equations are used to describe the gas flow dynamics in pipelines
[2, 14, 13, 11]. In a different field, a first order PDE has been proposed to describe
the traffic flow density on an homogeneous road, obtaining the Lighthill Whitham
Richards model [27]. However, such detailed dynamic models are typically com-
plex and often incompatible with real-time control objectives. To reduce the com-
putational load, a 0-D approximation of the 1-D transport (with advection and sink)
as a time-delay system has been proposed in [29, 30] and shown to be efficient as a
reference model for feedback control of the large advective flows appearing in the
mining ventilation problem. A similar approach was used in [4] to model the tem-
perature in an SI engine exhaust catalyst. Nevertheless, such approximations did
not take into account the occurrence of interconnected flows or the simultaneous
transport of multiple variables.

The aim of this work is to present a time-delay model for fluid flow networks,
leading to a classical state-space representation with delays to take into account
the transport phenomena in the pipes of the network. Describing the flow in the
branches of the network as isothermal Euler equations, we consider the transport of
both density and momentum. The hyperbolic characteristics of the system of PDEs
is used to find a solution described by delayed equations. Applying conservation
laws in the nodes of the network, we finally obtain a delay differential equation
describing the fluid dynamics of the complete system.

This chapter is organized as follows. Section 2 presents the physical equations
that model the flow inside the pipelines. A time-delay model, found by the method
of characteristics, describes the isothermal Euler equations in terms of delayed equa-
tions in Section 3. Both linear and nonlinear approximations are taken into account.
The conservation principles are introduced at the nodes in Section 4, providing a
state-space description in terms of delay differential equations from which we ob-
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tain the dynamics of the network. Numerical simulations of the time delay system
are presented in Section 5.

2 Isothermal Euler Equations

A classical model for gas flow in pipe networks is provided by isothermal Euler
equations [14, 13]. For such equations the temperature is constant and the pressure
is given by the following state equation (e.g. for perfect gases):

P =
ZRT
Mg

ρ, (1)

where Z is the natural gas compressibility factor, R the universal gas constant, T the
absolute gas temperature, Mg the gas molecular weight, and P(x, t) and ρ(x, t) are
the pressure and density of the gas, respectively. We consider a mono-dimensional
description of the flow in terms of the space variable x. To simplify the notation, we
define the speed of sound constant a2 =ZRT/Mg and the isothermal Euler equations
are:

∂ρ

∂ t
+

∂q
∂x

= 0, (2)

∂q
∂ t

+
∂

∂x

(
q2

ρ
+a2

ρ

)
= − fg

q | q |
2Dρ

, (3)

where q(x, t) is the momentum, fg is the friction factor, and D is the diameter of the
pipe. The first equation states the conservation of mass and the second equation is
the momentum equation.

The flux of the Euler equations is thus defined as [26]:

F =

(
q

q2

ρ
+a2ρ

)
,

and its Jacobian is

A(ρ,q) =

(
0 1

a2− q2

ρ2 2 q
ρ

.

)
. (4)

The eigenvalues of the Jacobian matrix A(ρ,q), namely the characteristic velocities,
are

λ1,2 =
q
ρ
±a. (5)

The system of isothermal Euler equations (2) and (3) can be diagonalized us-
ing the Riemann invariants, some quantities that have the interesting property of
remaining constant along special trajectories called the characteristic curves. This
invariance property is crucial in the control design. The Riemann invariants are de-
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fined by the change of coordinates [14]:

ξ1,2(ρ,q) =−
q
ρ
∓a ln(ρ), (6)

and we assume that the characteristic velocities (5) satisfy λ2 < 0 < λ1 (subsonic
case), which characterizes the system as a strictly hyperbolic PDE. We can also ex-
press the physical variables ρ and q in terms of the Riemann coordinates as follows:

ρ = exp
(

ξ2−ξ1

2a

)
, (7)

q = −ξ1 +ξ2

2
exp
(

ξ2−ξ1

2a

)
. (8)

With the new coordinates (ξ1, ξ2), the system (2)-(3) can be written in the fol-
lowing diagonal form:

∂Ξ(x, t)
∂ t

+Λ(Ξ)
∂Ξ(x, t)

∂x
= S(Ξ), (9)

where Ξ(x, t) .
= [ξ1 ξ2]

T , and

Λ(Ξ) =

[
− ξ1+ξ2

2 +a 0
0 − ξ1+ξ2

2 −a

]
. (10)

The source term is then defined by:

S(Ξ) =−
fg

8D
(ξ1 +ξ2)|ξ1 +ξ2|

(
1
1

)
, (11)

The initial and boundary conditions are given by

ξ1(x,0) = φ1(x), (12)
ξ2(x,0) = φ2(x), (13)
ξ1(0, t) = u1(t), (14)
ξ2(L, t) = u2(t). (15)

3 Time Delay Model

There is a connection between the boundary problems for one-dimensional hyper-
bolic partial differential equations, namely with a single space coordinate account-
ing for wave propagation, and functional equations. These functional equations may
be defined as difference, delay-differential or even integral or integro-differential



Control-Oriented Modeling of Fluid Networks: A Time-Delay Approach 5

Fig. 1 Wave Propagation

equations [23], [24]. Conservation laws are typically described by nonlinear hyper-
bolic PDE belonging to the “lossless” (or conservative) class.

This connection between two different mathematical objects, the hyperbolic
PDEs and the functional equations, has been considered in many studies. For in-
stance, in [6] delayed differential equations are derived to describe the propagation
phenomena in power lines. On the other hand, in [25] neutral differential models
are developed for different hyperbolic conservation laws (namely, circulating fuel
in nuclear reactors, control of an overhead crane with flexible cable, etc.). From a
different perspective, [30] proposes a distributed time-delay system to describe large
convective flows modeled by linear time-varying partial differential equations (e.g.
Euler or Navier-Stokes equations). In the recent work [18] the equivalence between
systems described by a single first-order hyperbolic partial differential equation and
systems described by integral delay equations is stated.

Consider the flow propagation in a pipe described in Fig. 1, with boundary condi-
tions ξ1(0, t) and ξ2(L, t). In this section, we develop a model based on the nonlinear
hyperbolic system described by isothermal Euler equations expressed in terms of the
Riemann invariants:

∂

∂ t

[
ξ1
ξ2

]
+

[
λ1 0
0 λ2

]
∂

∂x

[
ξ1
ξ2

]
=

[
−α(ξ1 + ξ̄2)

2

−α(ξ̄1 +ξ2)
2

]
, (16)

Where λ1 and λ2 are the characteristic velocities of the hyperbolic system. We av-
eraged the quantities ξ1 and ξ2 as ξ̄1 and ξ̄2 (i.e., average equilibrium values in the
pipe volume), respectively, to avoid the internal coupling between the two waves
and allow finding a solution in terms of a time-delay equation. Note that this ap-
proximation is not strictly necessary, as an equivalent functional equation with a
delayed kernel can be derived for the coupled case, but we addopt it here to sim-
plify the derivations and focus on the major transport effects. We first consider the
linearized case and then investigate the impact of the squared term.

3.1 Linear Approximation

Our approach extends the results in [30] to the multiple variable case and is based
on the method of characteristics. This method makes it possible to reduce a partial



6 David Novella-Rodriguez, Emmanuel Witrant and Olivier Sename

differential equation to a system of ordinary differential equations; see for instance
[12] for more details. Here, this method provides the functional equations related to
the isothermal Euler equations in Riemann coordinates.

To apply the method of characteristics to the isothermal Euler equations, a linear
approximation of the source term (11) is first adopted. From (6) and assuming a
mono-directional flow, namely q > 0 (and ρ > 0 by definition), we have:

|ξ1 +ξ2|=−(ξ1 +ξ2). (17)

Taking into account the averaged terms in (16) and from the assumption (17), it
is possible to obtain a linearization around the equilibrium point (ξ̄1, ξ̄2) as:

S(Ξ)' 2α

[
(ξ̄1 + ξ̄2) 0

0 (ξ̄1 + ξ̄2)

][
ξ1
ξ2

]
. (18)

where α =
fg

8D . We thus obtain the following decoupled PDE system:

∂

∂ t

[
ξ1
ξ2

]
+

[
λ1 0
0 λ2

]
∂

∂x

[
ξ1
ξ2

]
= 2α

[
(ξ̄1 + ξ̄2) 0

0 (ξ̄1 + ξ̄2)

][
ξ1
ξ2

]
. (19)

With the previous assumptions and taking into account the PDE system (19) the
solution for each wave can be found by the method of characteristics [12, 30]. First,
the propagation wave ξ1 satisfies:

∂ξ1

∂t
+λ1

∂ξ1

∂x
= 2α(ξ̄1 + ξ̄2)ξ1, (20)

with the initial and boundary conditions (12) and (14), respectively. We can con-
struct a characteristic curve s1 emanating from (0, t0, u1(t0)) and look for a solution
to the following characteristic equations:

dt
ds1

= 1, (21)

dx
ds1

= λ1, (22)

dz1

ds1
= 2α(ξ̄1 + ξ̄2)z1(s1), (23)

which satisfies the initial conditions t(0) = t0, x(0) = 0, and z1(0) = u1(t0). A simple
integration of the ODE system leads to

t = s1 + t0, (24)
x = λ1s1, (25)

z1 = u1(t0)e2α(ξ̄1+ξ̄2)s1 . (26)

After an appropriate change of variables, we obtain the following solution:



Control-Oriented Modeling of Fluid Networks: A Time-Delay Approach 7

ξ1(x, t) = ξ1

(
0, t− x

λ1

)
e

2α(ξ̄1+ξ̄2)
x

λ1 . (27a)

Similarly, applying the method of characteristics to the second propagation wave
leads to:

ξ2(x, t) = ξ2

(
L, t− (L− x)

λ2

)
e

2α(ξ̄1+ξ̄2)
(L−x)

λ2 . (27b)

Note that λ1 and λ2 are of opposite sign and ξ1 and ξ2 are propagated in oppo-
site directions. Note also that these results still holds for time-varying characteristic
velocities, which would result in time-varying time-delays.

From (27a) and (27b) at their boundaries, it is thus possible to describe the flow
transport by the following difference equations:

ξ1(L, t) = ξ1 (0, t−h1)e2α(ξ̄1+ξ̄2)h1 , (28a)

ξ2(0, t) = ξ2 (L, t−h2)e2α(ξ̄1+ξ̄2)h2 , (28b)

where hi = L/λi.

3.2 Nonlinear Approximation

Calculating the characteristics of (16) without linearizing, we obtain a solution for
the PDE hyperbolic system (16) using the following ODE system:

dt
ds1

= 1, (29)

dx
ds1

= λ1, (30)

dz1

ds1
= −α(z1 + ξ̄2)

2, (31)

which satisfies the initial conditions

t(0) = t0, x(0) = 0, z1(0) = u1(t0). (32)

Integrating this ODE system implies that:

t = s1 + t0, (33)
x = λ1s1, (34)

z1(s1) = −ξ̄2 +
z1(0)+ ξ̄2

αs1
(
z1(0)+ ξ̄2

)
+1

. (35)

Finally substituting the initial conditions (32) in (35) leads to:
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Fig. 2 Network Topology

ξ1(x, t) =−ξ̄2 +
ξ1(0, t− x

λ1
)+ ξ̄2

α
x

λ1

(
ξ1(0, t− x

λ1
)+ ξ̄2

)
+1

(36a)

Similarly, for the nonlinear approximation of the second wave, we obtain the
following result:

ξ2(x, t) =−ξ̄1 +
ξ2(L, t− (L−x)

λ2
)+ ξ̄1

α
(L−x)

λ2

(
ξ2(L, t− (L−x)

λ2
)+ ξ̄1

)
+1

. (36b)

Taking into account the flow propagation of the waves described in Fig. 1 and equa-
tions (36a) and (36b) computed at the boundaries, we finally obtain the following
delayed nonlinear equations:

ξ1(L, t) = −ξ̄2 +
ξ1(0, t−h1)+ ξ̄2

αh1
(
ξ1(0, t−h1)+ ξ̄2

)
+1

(37a)

ξ2(0, t) = −ξ̄1 +
ξ2(L, t−h2)+ ξ̄1

αh2
(
ξ2(L, t−h2)+ ξ̄1

)
+1

. (37b)

4 Network Model

The previous approximation of Euler’s equations describes the flow transport in
each pipe. The network model is obtained by considering a node as a finite control
volume to which the pipes are connected. It is then possible to obtain a dynamical
model for the fluid network, in terms of the transported variables. Fig. 2 shows a
possible geometry of the networks studied in this work. Analyzing the dynamics of
the transported variables in a specific node N of the network, the flow enters from
the pipes connected to the nodes Xk and goes out to the pipes connected to the nodes
Yk. The propagation delay

h(Xk, N)
1

(
respectively, h(N, Yk)

2

)
is linked to the pipe length L and the characteristic velocity
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λ
(Xk, N)
1

(
respectively, λ

(N, Yk)
2

)
.

4.1 Conservation at the Nodes and Fluid Capacitance

Taking into account the conservation for the physical variables ρ and q at a node N
with nin ingoing pipes and nout outgoing pipe, the mass conservation at the intersec-
tion is stated as follows:

nin

∑
i=1

q(Xi,N)(L, t) =
nout

∑
i=1

q(N,Yi)(0, t), ∀t > 0. (38)

This condition is similar to Kirchhoff’s law and is usually referred to as a Rankine-
Hugoniot condition at the node [1, 2]. An additional coupling condition for the
intersections is that the pressure inside each node is uniform (and thus the same at
each extremity of the connected pipes), namely:

a2
ρ
(Xi,N)(L, t) = a2

ρ
(N,Yk)(0, t) = constant ∀i = 1, . . . ,nin, ∀k = 1, . . . ,nout (39)

With the transformations (7) and (8), we can use (39) to state that ∀i = 1, . . . ,nin and
∀k = 1, . . . ,nout , we have:

ξ
(Xi,N)
1 (L, t)−ξ

(Xi,N)
2 (L, t) = ξ

(N,Yk)
1 (0, t)−ξ

(N,Yk)
2 (0, t) = constant, (40)

The constraint (38) implies that

nin

∑
i=1

ξ
(Xi,N)
1 (L, t)+ξ

(Xi,N)
2 (L, t) =

nout

∑
k=1

ξ
(N,Yk)
1 (0, t)+ξ

(N,Yk)
2 (0, t) . (41)

A dynamics is introduced to model the fluid capacitance as a time-varying state
associated with the node. Denoting the fluid capacitance as C f , it follows that at
node N:

Ṗ(t)N = qN/C f (42)

⇔ ρ̇(t)N = −
Mg

ZRTC f
qN =−

Mg

ZRTC f

(
nin

∑
i=1

ξ
(Xi,N)
1 (L, t)+ξ

(Xi,N)
2 (L, t)

−
nout

∑
k=1

ξ
(N,Yk)
1 (0, t)+ξ

(N,Yk)
2 (0, t)

)
ρ

N (43)

where we used (1) with the isothermal hypothesis, (7), (8) and (41). Note that C f
could also be node-dependent to capture large changes in the network configuration.
It is then possible to represent the node with an equivalent Bond graph description
composed of a 0-junction (using constant effort and the fact that the sum of the



10 David Novella-Rodriguez, Emmanuel Witrant and Olivier Sename

Fig. 3 Expanded Bond Graph Representation of the Node

inflows is equal to the sum of the outflows) and a C-element. Fig. 3 shows the
equivalent Bond graph representation for a node. The constraints (40) and (43) are
then satisfied if we define the effort as e = ξ1− ξ2 and the flow as f = ξ1 + ξ2 for
each junction.

Choosing the internal state of the node as eN and expressing (43) in terms of eN

using (7)-(8), we have that:

ėN =−αc

(
nin

∑
i=1

ξ
(Xi,N)
1 (L, t)+ξ

(Xi,N)
2 (L, t)−

nout

∑
k=1

ξ
(N,Yk)
1 (0, t)+ξ

(N,Yk)
2 (0, t)

)
(44)

ξ
(Xi,N)
1 (L, t)−ξ

(Xi,N)
2 (L, t) = ξ

(N,Yk)
1 (0, t)−ξ

(N,Yk)
2 (0, t) = eN (45)

where αc = aMg/ZRTC f . The node is thus well defined by an algebro-differential
system of equations and the corresponding Riemann invariants are computed in each
branch by adding or subtracting the effort and flow. Note that the flow inertia and
friction are already taken into account within the Euler equations with friction.

4.2 State-Space Representation

The previous bond-graph description can be expressed as a classical state-space
representation, as follows. Considering that ξ1 enters the node from the left and
that ξ2 enters the node from the right, we wish to establish a mapping between the
inputs {ξ (X ,N)

1 (L, t), ξ
(N,Y )
2 (0, t)} and the outputs {ξ (N,Y )

1 (0, t), ξ
(X ,N)
2 (L, t)}, where

we used the notation X and Y (without subscripts) to denote the column vectors con-
taining all the inflow or outflow components, respectively. The effort relationships
(40) and (45) imply that:
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ξ
(X ,N)
1 (L, t)

ξ
(N,Y )
1 (0, t)

]
−

[
ξ
(X ,N)
2 (L, t)

ξ
(N,Y )
2 (0, t)

]
= 1(nin+nout )×1eN

⇔

[
ξ
(X ,N)
2 (L, t)
−ξ

(N,Y )
1 (0, t)

]
=−1(nin+nout )×1eN +

[
ξ
(X ,N)
1 (L, t)
−ξ

(N,Y )
2 (0, t)

]
(46)

where 1i× j is a vector of ones of size i× j. Considering (44), the node dynamics is
then:

ė(t)N = −αc

([
11×nin 11×nout

][ ξ
(X ,N)
1 (L, t)
−ξ

(N,Y )
2 (0, t)

]
+
[
11×nin 11×nout

][ ξ
(X ,N)
2 (L, t)
−ξ

(N,Y )
1 (0, t)

])

= −αceN−2αc
[
11×nin 11×nout

][ ξ
(X ,N)
1 (L, t)
−ξ

(N,Y )
2 (0, t)

]
(47)

We thus obtained a state-space description where (47) describes the state dynamics
and (46) determines the output [

ξ
(X ,N)
2 (L, t)
−ξ

(N,Y )
1 (0, t)

]

from the input (direct feedthrough)[
ξ
(X ,N)
1 (L, t)
−ξ

(N,Y )
2 (0, t)

]

and the state eN .

4.3 Interconnections and Delays

We can now consider the interconnections on node N with its predecessors X and
successors Y . The linear approximation of the pipe propagation waves and the de-
layed equations (28a) and (28b) along with the previous node description imply
that:

ė(t)N = −αceN−2αc
[
11×nin 11×nout

]
u(t) (48)[

ξ
(X ,N)
2 (L, t)
−ξ

(N,Y )
1 (0, t)

]
= −1(nin+nout )×1eN +u(t) (49)

with
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u(t) =

 ξ
(X ,N)
1

(
0, t−h(X ,N)

1

)
e2α(ξ̄1

(X ,N)
+ξ̄2

(X ,N)
)h(X ,N)

1

−ξ
(N,Y )
2

(
L, t−h(N,Y )

2

)
e2α(ξ̄1

(N,Y )
+ξ̄2

(N,Y )
)h(N,Y )

2

 (50)

Each node is thus defined by a delay differential equation with a direct feedthrough
of the interconnection variable u(t) on the output. This interconnection variable is
obtained from the outputs of the predecessors (terms in ξ

(X ,N)
1 ) and of the successors

(terms in ξ
(N,Y )
2 ).

The nonlinear approximation is obtained in a similar way by taking into account
the functional equations (37a) and (37b). The delayed differential equation is then
given by (48)-(49) with the interconnection:

u(t) =


−ξ̄2

(X ,N)
+

ξ
(X ,N)
1 (0,t−h(X ,N)

1 )+ξ̄2
(X ,N)

αh(X ,N)
1

(
ξ
(X ,N)
1 (0,t−h(X ,N)

1 )+ξ̄2
(X ,N)

)
+1

ξ̄1
(N,Y )− ξ

(N,Y )
2 (L,t−h(N,Y )

2 )+ξ̄1
(N,Y )

αh(N,Y )
2

(
ξ
(N,Y )
2 (L,t−h(N,Y )

2 )+ξ̄1
(N,Y )

)
+1

.

 (51)

5 Simulations Results

Consider the network configuration shown in Fig. 4, corresponding to an air ventila-
tion network, where the speed of sound constant is a= 347m/s. The network param-
eters are given in Table 1. The inflow (i.e. boundary conditions) is considered as con-

Parameter Pipe 1 Pipe 2 Pipe 3
Length (L) 100m 200m 300m

Diameter (D) 0.4m 0.2m 0.4m
Friction factor ( fg) 0.008 0.0012 0.003

Table 1 Pipe Parameters of the Network

stant and the initial conditions are ρ(t,0) = 1.16 kg/m3 and q(t,0) = 23.2 kg/m2 s.
We perform numerical simulations of the network model derived in the previous
sections and compare the linear and nonlinear delay differential equations in Fig. 5.
The results are presented for each node of the network in terms of the physical
variables, density and momentum, which can be found directly from the Riemann
invariants by using the transformation (7) and (8), respectively. According to the
network parameters, the time delays and friction terms are presented in Table 2.

We can clearly observe the propagation delays on these simulation, as well as the
oscillations due to wave reflections and coupling at the nodes. It is also interesting
to note the closeness between the linear and the nonlinear models, which suggests
that linear control approaches may provide satisfactory results despite the nonlinear
characteristic of the friction phenomenon.



Control-Oriented Modeling of Fluid Networks: A Time-Delay Approach 13

Fig. 4 Network Example

Parameter Value Parameter Value Parameter Value Parameter Value
h(1)1 0.2725 h(1)2 0.3058 β (1) 0.9470 β (5) 0.9407
h(2)1 0.5450 h(2)2 0.6116 β (2) 0.9678 β (6) 0.9640
h(3)1 0.8174 h(3)2 0.9174 β (3) 0.9521 β (7) 0.9464
h(4)1 0.1362 h(4)2 0.1529 β (4) 0.9967 β (8) 0.9963

Table 2 Simulation Network Parameters

6 Conclusion

A time-delay approach is used in this work to find a model for the flow in fluid
networks. The model of the flow is taken from the isothermal Euler equations. The
hyperbolic characteristics of the PDE system are taken into account in order to di-
agonalize the system. The method of characteristics is considered to find functional
equations related to the isothermal Euler equations. By decoupling the incoming and
outgoing waves and averaging the source term on the appropriate components, two
approximations are adopted to compute a delayed model of the flow, namely a linear
approximation and a nonlinear one. Taking into account the conservative character-
istics at the nodes, a delay differential system of equations for the flow network is
finally given.
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