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a b s t r a c t

The robust controlled invariance describes the ability tomaintain, using suitable control actions, the state
of a system in a set for any value of the disturbances. By considering a class of monotone systems and
a multidimensional interval as target set, we obtain a simple characterization of the robust controlled
invariance. We then give a method to stabilize the state into a robust controlled invariant interval when
it is initialized outside of the target set. These results are applied to a model for the temperature control
in an intelligent building equipped with automated underfloor air distribution (UFAD) and implemented
in a small-scale experimental UFAD flat.
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1. Introduction

For autonomous systems, the notion of positively invariant
set describes the property that trajectories initialized in a set
remain inside this set forever. An extensive survey on the topic
of invariance can be found in Blanchini (1999). When a control
input is used to enforce the invariance, we talk about controlled
invariance, independently introduced in Basile and Marro (1969)
and Wonham and Morse (1970). An overview of the uses and
results on controlled invariant sets for linear systems is given in
Trentelman, Stoorvogel, and Hautus (2001). In this paper, we are
interested in the study of robust controlled invariance where the
robustness refers to bounded external disturbances.

In this paper, we deal with a class of nonlinear systems
satisfying amonotonicity property.Monotone systems are systems
which preserve partial orderings on the states, see Smith (1995)
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for autonomous systems and Angeli and Sontag (2003) for
controlled systems. We show that this monotonicity property,
associated with simple sets (multidimensional intervals), can
be used to obtain a characterization for the robust controlled
invariance, using only the extremal values of each state, control
and disturbance input. We also show how these robust controlled
invariant sets can be used to synthesize robust stabilizing
controllers for monotone control systems. To the knowledge of
the authors, there are very few works on (controlled) invariance
of monotone nonlinear systems: invariance of intervals for
autonomous monotone systems has been considered in Abate,
Tiwari, and Sastry (2009);methods for approximating themaximal
controlled invariant set for monotone discrete time systems
without disturbance are presented in Lara, Doyen, Guilbaud,
and Rochet (2007); a controller for reference tracking in a
monotone SISO system is synthesized under state constraints in
Chisci and Falugi (2006); finally, robust controlled invariance are
considered for a class of monotone systems with planar outputs
in Ghaemi and Del Vecchio (2014). Monotone systems can be
found in numerous fields such as molecular biology (Sontag,
2007), chemical networks (Belgacem&Gouzé, 1999),multi-vehicle
systems (Hafner, Cunningham, Caminiti, & Vecchio, 2013), or
thermal dynamics in buildings, which is the application considered
in this paper. We consider an underfloor air distribution (UFAD)
system based on a 4-room small-scale experiment of a flat. We
apply the results developed in the paper to that system and report
the results obtained on our experimental platform.
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The paper is organized as follows. In Section 2, we introduce the
class of systems we consider. In Section 3, we establish a certain
number of results on robust invariance and robust controlled
invariance. In Section 4, we show how our characterization of
robust controlled invariant interval allows us to synthesize robust
stabilizing controllers. Finally these methodological results are
applied to the temperature control of a UFAD model and tested on
a small-scale experimental flat in Section 5.

2. Monotone control systems

We consider a class of nonlinear systems given by:

ẋ = f (x, u, w), (1)

where x ∈ Rn, u ∈ Rp and w ∈ Rq denote the state, the control
input and the disturbance input, respectively. The vector field f is
assumed to be locally Lipschitz. The trajectories of (1) are denoted
by Φ(·, x0,u,w) where Φ(t, x0,u,w) is the state reached at time
t ∈ R+

0 from the initial state x0 ∈ Rn, under control and distur-
bance inputs u : R+

0 → Rp and w : R+

0 → Rq. When the control
inputs of system (1) are generated by a state-feedback controller
u : Rn

→ Rp, the dynamics of the closed-loop system is given by
ẋ = fu(x, w) = f (x, u(x), w) and its trajectories are denoted by
Φu(·, x0,w).

2.1. Monotonicity

The subsequent developments of this paper require the system
(1) to satisfy some monotonicity property and we particularly
focus on the subclass of cooperative systems. For a variable z ∈

{x, u, w} with z ∈ Rm, the partial orderings ≽z, ≼z, ≫z and ≪z
represent the classical componentwise inequalities ≥, ≤, > and
< on Rm. These orderings can be extended to functions z, z′

:

R+

0 → Rm where z≽z z′ if and only if z(t) ≽z z′(t) for all t ≥ 0.
Given z and z ∈ Rm with z ≽z z, [z, z] denotes the interval such
that z ∈ [z, z] if and only if z ≽z z ≽z z. FollowingAngeli and Sontag
(2003), we now introduce the notion of cooperative system using
the partial orderings ≽x, ≽u and ≽w .

Definition 1 (Cooperative System). System (1) is cooperative if for
all x≽x x′, u≽u u′, w≽w w′, it holds for all t ≥ 0, Φ(t, x,
u,w) ≽x Φ(t, x′,u′,w′).

In a cooperative system, a variable (state or input) affects a
state always in a positive way, as shown by the following
characterization which is a generalization of the Kamke condition
to systems with inputs.

Proposition 2 (Angeli & Sontag, 2003). System (1) is cooperative
if and only if for all i ∈ {1, . . . , n}, for all x≽x x′ with xi =

x′

i, u≽u u′, w ≽w w′, it holds fi(x, u, w) ≥ fi(x′, u′, w′).

In the following, we shall make the following assumption for
system (1).

Assumption 3. System (1) is cooperative with bounded control
and disturbance inputs: u ∈ [u, u] and w ∈ [w, w].

Assumption 3 is crucial for our robustness analysis since we can
focus on studying the behavior of the system only for the extremal
values of the variables: all other behaviors are necessarily bounded
by the extremal behaviors.

2.2. Additional assumptions

Some of the results presented in the following sections need
additional requirements on system (1). The following assumption
is necessary for all main results presented in this paper.
Assumption 4. System (1) satisfies the local control property:
any component of the control input directly influences a single
component of the state in (1).

With this assumption, system (1) can then be written as ẋi =

fi(x, ui, w) for all i ∈ {1, . . . , n}, where ui represents all input
components with a direct influence on xi (i.e. ui can be a vector,
a scalar or the empty set).

We also extend the definition of a static input-state character-
istic introduced in Angeli and Sontag (2003) to systems with both
control and disturbance inputs. The following assumption is op-
tional as it is only useful for secondary results: the main results
can still be applied if it is not satisfied.

Assumption 5. System (1) has a static input-state characteristic
kx : Rp

× Rq
→ Rn: for each pair (u, w) of constant control and

disturbance inputs, (1) has a unique globally asymptotically stable
equilibrium kx(u, w).

3. Robust invariance for monotone systems

In this section, we present and characterize several notions
of robust invariance and focus on finding the associated inputs
and state intervals. Some of the results of this section were
previously presented in Meyer, Girard, and Witrant (2013) with
less generality.

3.1. Robust invariance

A robust invariant is a set such that if the state of the system
is initialized in this set then it remains in the set forever, for all
values of the control and disturbance inputs. Restricting this notion
to intervals, we have the following definition.

Definition 6 (Robust Invariance). An interval [x, x] is robust
invariant if, for all x0 ∈ [x, x],u ∈ [u, u],w ∈ [w, w], it holds
for all t ≥ 0, Φ(t, x0,u,w) ∈ [x, x].

Thus, if the initial state is in a robust invariant interval, this interval
contains all reachable states from this initial condition. However,
this does not mean that all points in this interval are reachable.
In order to minimize the quantity of non-reachable states in the
interval, one can look for the minimal robust invariant interval
(where minimality refers to the set inclusion), which is useful in
the subsequent study as we can restrict the analysis of system (1)
to that region.

Theorem 7. Under Assumption 3, [x, x] is robust invariant if and
only if f (x, u, w) ≼x 0 and f (x, u, w) ≽x 0. In addition, if As-
sumption 5 holds, then the minimal robust invariant interval is
[kx(u, w), kx(u, w)].
Proof. [x, x] is robust invariant if and only if for any element x of
the boundary of [x, x], the flow Φ(t, x,u,w) does not leave the in-
terval. This is equivalent to having the vector field at x point inside
the interval for all u ∈ [u, u] andw ∈ [w, w]. By considering the el-
ements of the boundary x and x, it is clear that the conditions above
are necessary. Let us show that they are also sufficient under As-
sumption 3. By Proposition 2, we have for all i ∈ {1, . . . , n}, u ∈

[u, u], w ∈ [w, w] and x ∈ [x, x] with xi = xi, fi(x, u, w) ≤

fi(x, u, w) ≤ 0 and for all i ∈ {1, . . . , n}, u ∈ [u, u], w ∈ [w, w]

and x ∈ [x, x] with xi = xi, fi(x, u, w) ≥ fi(x, u, w) ≥ 0. Therefore,
[x, x] is robust invariant. Now, let us assume that Assumption 5
holds. By definition, we have f (kx(u, w), u, w) = 0 and f (kx(u, w),
u, w) = 0. From what precedes, [kx(u, w), kx(u, w)] is robust in-
variant. Also, any robust invariant interval would contain kx(u, w)
and kx(u, w) as these are globally asymptotically stable equilibria
for constant inputs u = u,w = w and u = u and w = w, respec-
tively. Hence, the robust invariant interval [kx(u, w), kx(u, w)] is
minimal with respect to set inclusion. �
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Note that in the absence of Assumption 5, there may not exist a
minimal robust invariant interval.

3.2. Robust controlled invariance

For the definition of robust controlled invariance, we now take
advantage of the control input u to counteract the influence of the
disturbance w.

Definition 8 (Robust Controlled Invariance). Interval [x, x] is robust
controlled invariant if there exists a controller u : [x, x] → [u, u]
such that for all x0 ∈ [x, x], w ∈ [w, w], it holds for all t ≥

0, Φu(t, x0,w) ∈ [x, x]. We call u an invariance controller in [x, x].

The following result characterizes robust controlled invariant
intervals based on the sign of the vector field f .

Theorem 9. Under Assumptions 3 and 4, [x, x] is robust controlled
invariant if and only if f (x, u, w) ≼x 0 and f (x, u, w) ≽x 0.

Proof. We prove necessity by contrapositive. Assume that there
exists i ∈ {1, . . . , n} such that fi(x, u, w) > 0. By Proposition 2,
it follows that ∀u ∈ [u, u], fi(x, u, w) ≥ fi(x, u, w) > 0. Thus no
value of the control input u can make the vector field at x point
inside the interval, making it non-invariant. We can have a similar
reasoning if there exists i ∈ {1, . . . , n} such that fi(x, u, w) < 0.
Let us now prove sufficiency. By Assumption 4, we have that for all
i ∈ {1, . . . , n}, fi(x, u, w) = fi(x, ui, w) with independent inputs
ui ∈ [ui, ui]. Then, by Proposition 2, we have that for all i ∈

{1, . . . , n}, w ∈ [w, w] and x ∈ [x, x] with xi = xi, fi(x, ui, w) ≤

fi(x, ui, w) ≤ 0 and for all i ∈ {1, . . . , n}, w ∈ [w, w] and x ∈ [x, x]
with xi = xi, fi(x, ui, w) ≥ fi(x, ui, w) ≥ 0. Since the ui are
independent, it follows from the previous inequalities, that for any
state x on the boundary of the interval [x, x], there exists a value
of the control input u(x) ∈ [u, u] such that the vector field at x
points inside the interval for any value of the disturbance. Using
such controller u, we can always force the flow toward the interior
when the state reaches the boundary of the interval. This implies
the robust controlled invariance of the interval. �

Theorem 9 states that if the extremal values of the controller
can maintain the system in [x, x] for the extremal values of the
disturbances, then the invariance in the interval is satisfied. Let
us remark that in the absence of Assumption 4, the conditions are
still necessary but not sufficient.We now give a characterization of
the invariance controllers, where ui denotes the vector of all input
components with a direct influence on the state xi.

Proposition 10. Under Assumptions 3 and 4, let [x, x] be a robust
controlled invariant. A controller u : [x, x] → [u, u] is an invariance
controller in [x, x] if and only if for all i ∈ {1, . . . , n}:

ui(x) ∈


U i(x) if xi = xi,
ui, ui


if xi ∈ (xi, xi),

U i(x) if xi = xi

(2)

where U i(x) = {ui ∈ [ui, ui]| fi(x, ui, w) ≤ 0},

U i(x) = {ui ∈ [ui, ui]| fi(x, ui, w) ≥ 0}.

Proof. It is necessary and sufficient that for all x on the boundary
of the interval [x, x], the vector field fu of the closed-loop ẋ =

fu(x, w) at x points inside the interval for all values of the
disturbance. From Assumption 4, this is the case if and only if
fi(x, ui(x), w) ≤ 0 (respectively fi(x, ui(x), w) ≥ 0) for all w ∈

[w, w] whenever a state component xi reaches xi (respectively xi).
Using the monotonicity of fi with respect to the disturbance w, we
obtain the conditions given in the proposition. �
Since [x, x] is a robust controlled invariant, it is easy to show from
Theorem 9 and Proposition 2 that for all x ∈ [x, x] such that xi = xi
(respectively xi = xi), we have ui ∈ U i(x) (respectively ui ∈ U i(x)).
Then, the necessary and sufficient conditions given by (2) admit a
very simple realization:

ui(x) = ui + (ui − ui)
xi − xi
xi − xi

. (3)

Let us remark that this controller is affine and decentralized in
the sense that the value of input ui(x) only depends on state
component xi. Then ui(x) = ui(x′) when xi = x′

i and Proposition 2
implies that the closed-loop system ẋ = fu(x, w) with controller
(3) is cooperative. Indeed, for all x≽x x′, xi = x′

i, w ≽w w′,
it holds fu i(x, w) ≥ fu i(x′, w′). Note that in Proposition 10, no
assumption on the regularity of the controllers is needed and
we can also consider discontinuous realizations of (2) such as a
classical bang–bang controller.

3.3. Robust local stabilizability

In this section we introduce the notion of robust local
stabilizability, which is closely related to the results on robust
controlled invariance presented in Section 3.2.

Definition 11 (Robust Local Stabilizability). The state x∗ is robustly
locally stabilizable if for all ε > 0, there exist δ > 0 and u :

B(x∗, ε) → [u, u] such that for all x0 ∈ B(x∗, δ), w ∈ [w, w],
it holds for all t ≥ 0, Φu(t, x0,w) ∈ B(x∗, ε), where B(x∗, r)
denotes the ball of radius r centered at x∗.

Definition 11 can be explained as follows: the target state x∗ is
robustly locally stabilizable if for any small ball around the state x∗,
there exists another ball of initial states such that the system can
be robustly controlled to stay in the first ball. Thus with a minor
modification, the robust local stabilizability of x∗ can be obtained
with small robust controlled invariant intervals around x∗. This
consideration leads to the following result.

Theorem 12. Under Assumptions 3 and 4, x∗ is robustly locally
stabilizable if f (x∗, u, w) ≪x 0 and f (x∗, u, w) ≫x 0. If x∗ is robustly
locally stabilizable, these conditions are satisfied with non-strict
inequalities.

Proof. For the first implication, we choose a ball B(x∗, ε) of
radius ε centered on x∗. Using the continuity of f , there exist
two states x, x ∈ B(x∗, ε) with x≪x x∗ and x≫x x∗ such that
f (x, u, w) ≪x 0 and f (x, u, w) ≫x 0. Thus [x, x] ⊆ B(x∗, ε) is a
robust controlled invariant interval as in Definition 8 and we then
obtain Definition 11 by choosing δ such that the ball of initial states
B(x∗, δ) ⊆ [x, x]. We prove the second part of the theorem by
contrapositive. We assume that there exists i ∈ {1, . . . , n} such
that fi(x∗, u, w) > 0. Using the continuity of f , we can choose ε > 0
such that for all x ∈ B(x∗, ε), fi(x, u, w) > 0. If we take w = w,
then we can use Proposition 2 to extend this inequality to any u:
for all u ∈ [u, u], x ∈ B(x∗, ε), fi(x, u, w) > 0. This means that if
the state is inB(x∗, ε) andw = w, then for any value of the control
input the trajectory of the system will leave B(x∗, ε). This implies
that x∗ is not robustly locally stabilizable. This results is similarly
obtained if we initially assume that there exists i ∈ {1, . . . , n} such
that fi(x∗, u, w) < 0. �

4. Robust stabilization

In the previous section, we have addressed the problem of
synthesizing a controller in order to maintain the state of system
(1) in a given interval. The next step is to synthesize a controller
thatwill bring the state in this interval if the initial state lies outside
the interval.
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Let [x0, x0] be an interval of initial states and let [xf , xf ] ⊆

[x0, x0] (with x0 ≪x xf and xf ≪x x0) be the target interval, i.e. the
interval where we should steer the state of (1).

Definition 13. A controller u : [x0, x0] → [u, u] is said to be
a stabilizing controller from [x0, x0] to [xf , xf ], if for all x0 ∈

[x0, x0], w ∈ [w, w], there exists T ≥ 0, such that for all t ≥ T , it
holds Φu(t, x0,w) ∈ [xf , xf ].

Note that in Definition 13 we are interested in the set stability in
finite time and not in its asymptotic stability.We aim to synthesize
stabilizing controllers under the following assumption.

Assumption 14. There exist continuously differentiable functions
X : [0, 1] → Rn and X : [0, 1] → Rn, respectively strictly
decreasing and increasing with dX

dλ (λ) ≪x 0 and dX
dλ (λ) ≫x 0 for all

λ ∈ [0, 1], such that X(0) = xf , X(1) = x0, X(0) = xf , X(1) = x0
and for all λ ∈ [0, 1], f (X(λ), u, w) ≫x 0, f (X(λ), u, w) ≪x 0.

4.1. Choice of the functions X and X

Assumption 14 and Theorem 9 imply that for all λ, λ′
∈ [0, 1],

the interval [X(λ), X(λ′)] is a robust controlled invariant. Themain
idea of our approach is to use this parameterized family of robust
controlled invariants to drive the state to [xf , xf ]. Two examples of

candidates for such functions X and X are presented below.
The first choice consists in simple linear functions: X(λ) =

λx0 + (1 − λ)xf and X(λ) = λx0 + (1 − λ)xf . The first part of
Assumption 14 clearly holds. It remains to check that the second
part holds for all λ ∈ [0, 1]. This is always the case if the sets {x ∈

Rn
| f (x, u, w) ≫x 0} and {x ∈ Rn

| f (x, u, w) ≪x 0} are convex.
Otherwise, the condition can easily be verified numerically.

For the second possible choice, let us assume that Assumption 5
holds and that there exist u0, uf , u0, uf ∈ [u, u] (with
u0 ≪u uf ≪u u and u≪u uf ≪u u0) such that x0 = kx(u0, w), xf =

kx(uf , w), x0 = kx(u0, w), and xf = kx(uf , w). Let

U(λ) = λu0 + (1 − λ)uf , X(λ) = kx(U(λ), w)

U(λ) = λu0 + (1 − λ)uf , X(λ) = kx(U(λ), w). (4)

We can then show the following result.

Proposition 15. Under Assumptions 3–5, let us assume that:
• f is continuously differentiable, for all x ∈ Rn, u ∈ Rp, w ∈ Rq;
• the matrix of partial derivatives ∂ f /∂x is invertible;
• ∂ fi/∂ui > 0, for all i ∈ {1, . . . , n}.
Then, the functions defined by (4) satisfy Assumption 14.

Proof. It is shown in Angeli and Sontag (2003) that kx ismonotone.
It is thus straightforward to show that X and X are decreasing and
increasing, respectively. Moreover, note that f (X(λ),U(λ), w) =

0. By the implicit function theorem it follows that X is continuously
differentiable and that
∂ f
∂x

×
dX
dλ

(λ) = −
∂ f
∂u

×
dU
dλ

(λ)

where the partial derivatives are evaluated at X(λ),U(λ), w.
Assumptions 3 and 4 imply that for all i ∈ {1, . . . , n}
n

j=1

∂ fi
∂xj

dX j

dλ
(λ) = −

∂ fi
∂ui

dU i

dλ
(λ) > 0.

Then, X decreasing and Assumption 3 yields

∂ fi
∂xi

dX i

dλ
(λ) > −


j≠i

∂ fi
∂xj

dX j

dλ
(λ) ≥ 0
Fig. 1. Smallest elements of the parameterized family of robust controlled
invariants [X(λ), X(λ′)] containing state x.

which implies that dX i
dλ (λ) ≠ 0, hence X is strictly decreasing.

Similarly, we can show that X is continuously differentiable and
strictly increasing: the first part of Assumption 14 thus holds. For
the second part, ∂ fi/∂ui > 0 and U(λ) ≪u u give for all λ ∈ [0, 1]:

f (X(λ), u, w) ≫x f (X(λ),U(λ), w) = 0.

A similar fact holds for X . �

4.2. Stabilizing controller synthesis

Let us assume that Assumption 14 holds, and define the
functions λ, λ : [x0, x0] → [0, 1] given by

λ(x) = min{λ ∈ [0, 1] | X(λ) ≼x x},

λ(x) = min{λ ∈ [0, 1] | X(λ) ≽x x}. (5)

In other words, [X(λ(x)), X(λ(x))] is the smallest interval of the
parameterized family [X(λ), X(λ′)] containing x, as illustrated in
Fig. 1. The main idea of our stabilization approach is to use a
controller u that renders each interval [X(λ(x)), X(λ(x))] invariant
and makes λ(x) and λ(x) act like Lyapunov functions to show that
the state reaches the target interval [xf , xf ] = [X(0), X(0)] in finite
time.

Theorem 16. Under Assumptions 3, 4 and 14, the controller u
defined by (5) and

ui(x) = ui + (ui − ui)
X i(λ(x)) − xi

X i(λ(x)) − X i(λ(x))
(6)

is a stabilizing controller from [x0, x0] to [xf , xf ].

Proof. From Assumption 14, there exists α > 0 such that for all
i ∈ {1, . . . , n}, λ ∈ [0, 1],

fi(X(λ), u, w) ≤ −α. (7)

Since X is strictly increasing with dX
dλ (λ) ≫x 0 and continuously

differentiable, then X
−1
i is well defined, strictly increasing and

continuously differentiable on [xf i, x0 i]. Then there exists β > 0
such that for all i ∈ {1, . . . , n},

∀xi ∈ [xf i, x0i],
d
dxi

X
−1
i (xi) ≥ β. (8)

Although it is not necessary for the robust stabilization, to simplify
the notations of the proof we assume that the domain of defini-
tion of the function X

−1
i can be extended to [x0 i, x0i] while keep-

ing its properties of continuous differentiability andmonotonicity.
This means that X

−1
i takes negative values for xi < xf i. Then, if

we introduce λi : Rn
→ [0, 1] such that λi(x) = X

−1
i (xi) and
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λ0 a constant function equal to zero, the function λ can now be
written as the maximum of continuously differentiable functions:
λ(x) = maxi∈{0,...,n}(λi(x)).

Let I(x) = {i ∈ {0, . . . , n} |λi(x) = λ(x)}. Let x0 ∈ [x0, x0],w ∈

[w, w], x = Φu(., x0,w), t ∈ R+

0 and i ∈ I(x(t))\{0}. We have

dλi

dt
(x(t)) =

dX
−1
i

dxi
(xi(t)) ∗ fi(x(t), ui(x(t)),w(t)).

Since i ∈ I(x(t)), we have xi(t) = X i(λ(x(t))) and we can use (6),
Proposition 2 and (7) to obtain:

fi(x(t), ui(x(t)),w(t)) ≤ fi(X(λ(x(t))), ui, w) ≤ −α.

Inequalities (8) then imply that d
dt λi(x(t)) ≤ −αβ , for all i in

I(x(t))\{0}. Since λ(x) = maxi∈{0,...,n}(λi(x)), where the functions
λi are continuously differentiable, its upper right Dini derivative is
given by Blanchini and Miani (2007):

D+λ(x(t)) = max
i∈I(x(t))

dλi

dt
(x(t)).

When λ(x(t)) > 0, the index 0 is not in I(x(t)) and λ is strictly
decreasing: D+λ(x(t)) ≤ −αβ . When λ(x(t)) = 0, we have
0 ∈ I(x(t)) and D+λ(x(t)) = 0, hence if the state is in the tar-
get interval, it remains in it. From Blanchini and Miani (2007), we
have for all t ∈ R+

0 :

λ(x(t)) − λ(x(0)) =

 t

0
D+λ(x(s))ds.

If λ(x(s)) > 0 for all s ∈ [0, t], it follows that λ(x(t)) − λ(x(0))
≤ −αβt and then t < λ(x(0))/αβ . Hence, there exists T ∈

[0, λ(x(0))/αβ] such that λ(x(T )) = 0. Similarly, we can show
that there exists T ∈ [0, λ(x(0))/αβ] such that λ(x(T )) = 0.
Thus u is a stabilizing controller with the finite stabilization time
T = max(T , T ). �

We have presented a particular stabilizing controller given by (6).
Even though (6) is based on the affine and decentralized controller
(3), this stabilizing controller is neither affine nor decentralized.
There exist many other stabilizing controllers: it is for instance
sufficient to choose the control input u(x) such that the functions
λ(x) and λ(x) defined by (5) are strictly decreasing. Note that the
maximal stabilization time 1/αβ may be tuned by a suitable choice
of X and X (see (7) and (8)).

5. Regulation of underfloor air distribution

The UnderFloor Air Distribution (UFAD) is an alternative solution
to traditional ceiling ventilation in buildings, offering improve-
ments in terms of both flexibility and energy consumption (Bau-
man & Daly, 2003). As sketched in Fig. 2, a flat equippedwith UFAD
has an underfloor plenum where the air is cooled down and then
sent into each room. The excess of air in the rooms is pushed into
the ceiling plenum and sent back to the underfloor plenum to be
cooled down again. In this section, we illustrate our previous re-
sults on an application of temperature regulation in a flat equipped
with UFAD.

5.1. System description

The system considered is based on a 4-room small-scale exper-
iment of a flat corresponding to Fig. 2. Our focus is the tempera-
ture regulation in each room. This is done by acting on the speed of
the underfloor fans sending cold air into each room. The system is
subject to two types of disturbances. The discrete disturbances are
Fig. 2. 4-room flat equipped with underfloor air distribution.

binary variables describing the state of heat sources in each room
and of doors between the rooms. The continuous disturbances are
all other exogenous inputs: the temperatures of the outside, ceiling
plenum and underfloor plenum.

Assuming the uniformity of the temperature in each room, we
introduce a 0-dimensional model of the temperature variations,
meaning that the variations along the spatial dimensions are
neglected. This model is derived from the energy and mass
conservation equations in each room i:
dTi
dt

=


j∈N ∗

i

ai,j(Tj − Ti) + δsibi(T
4
si − T 4

i )

− ciui(Tu − Ti) +


j∈Ni

δdijdi,j max(0, Tj − Ti)3/2 (9)

where all constant parameters a, b, c, d are positive, Ni is the set
of indices of rooms adjacent to room i and N ∗

i = {Ni, u, c, o}
represents all spaces in contact with room i through a wall
(neighbor rooms, underfloor, ceiling and outside). The four heat
transfers described by (9) are: the thermal conduction through the
walls of room i, the radiation from a heat source (a lamp in our
application) of temperature Tsi and binary state δsi , the controlled
ventilation ui ∈ [−1, 0] sending cold air from the underfloor
(Tu < Ti) and the air flow going through a door when it is open
(δdij = 1). A detailed description of the hypotheses used to obtain
(9) is given in Meyer et al. (2013) andWitrant, Di Marco, Park, and
Briat (2010).

For the 4-room flat in Fig. 2, the dynamics of the whole system
are written similarly to (1): Ṫ = f (T , u, w, δ), where the four-
dimensional vector field f follows (9) on each of its components
and depends on the state T ∈ R4, the control input u ∈ R4, the
exogenous input w = (Tu, Tc, To) considered as a disturbance to
our system and the discrete disturbance δ ∈ R8 containing one
heat source per room and four doors. It is shown in Meyer et al.
(2013), Meyer, Nazarpour, Girard, and Witrant (2014) and Meyer
(2015) that this model satisfies Assumptions 3–5.

5.2. Control application

In this section, we illustrate the robust stabilization (Section 4)
and the robust controlled invariance (Section 3.2) in a control
experiment on the small-scale flat sketched in Fig. 2. An
identification procedure was conducted in Meyer et al. (2014) to
adapt the theoretical model (9) to the measured behavior of the
experiment. Due to the large number of parameters influencing
the system, we omitmost numerical details of this experiment and
focus on the method and qualitative comments. More technical
details on such experiments can be found in Meyer et al. (2014).

The inequalities in Theorem 9 define two subsets of the state
space that contain the extrema of an interval which is robust
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Fig. 3. Room temperature (blue circles), controlled ventilation (−u ∈ [0, 1], green crosses), stabilization intervals (dashed red), target interval (horizontal plain lines) and
switching times (vertical lines: plain when related to the room).
controlled invariant. Its lower bound needs to be in W = {T ∈ R4
|

f (T , u, w, δ) ≽x 0} and its upper bound in C = {T ∈ R4
| f (T , u,

w, δ) ≼x 0}. Taking into consideration the forecast on the exoge-
nous temperatures w, the chosen robust controlled invariant in-
terval is such that Tf = (24, 26, 26, 27) and Tf = (21, 21, 21, 21).

For robust stabilization, we need to find two functions T and T
satisfying Assumption 14. We choose the first solution presented
in Section 4.1: the linear functions between the extrema of the
target interval and those of the minimal robust invariant interval
(T (1) = kx(u, w, δ) and T (1) = kx(u, w, δ)) from Theorem 7.

The control strategy is implemented with the stabilizing
controller described by (5) and (6). When the state reaches the
target interval, this controller corresponds to the decentralized
affine controller described by (3). The switching scenario of the
disturbances is as follows: t = 0min, lamps 2 and 3 on; t = 3min,
doors 1–2 and 2–3 open; t = 6 min, lamp 4 on, door 3–4 open;
t = 12 min, lamp 3 off, doors 2–3 and 3–4 closed; t = 18 min,
all lamps off, all doors closed; t = 34 min, all lamps on, all doors
open.

The results from this experiment are displayed in Fig. 3. The
vertical lines represent the switching times of the discrete distur-
bances (plain when related to the room, dashed otherwise). The
blue curves with circles correspond to the measured temperature
in each room. The horizontal red lines are the boundary of the tar-
get interval and the dashed red curves are the intervals used in
the robust stabilization. If we refer to the notations of the stabiliz-
ing controller (6), these red curves correspond to the boundaries
(T i(λ(T )) and T i(λ(T ))) of the family of robust controlled invari-
ant intervals. The temperatures are measured in Celsius with the
left axis. The right axis refers to the controlled ventilation (−ui ∈

[0, 1]) displayed as the green curve with crosses.
We can see in Fig. 3 that the stabilization is achieved after 6min:

when the stabilization interval coincides with the target interval
(in this example, it is the case from the beginning for the lower
bound). We can note that a control input saturates only when
the state variable of the corresponding room is equal to one of
its limits (dashed curves): room 1 at first, then room 3 until the
stabilization is achieved. After the stabilization, the controller is
able tomaintain all state variables in their respective intervals even
in the extremal cases of the discrete disturbances (last two steps),
which is consistent with the choice of a robust controlled invariant
interval.
6. Conclusion

In this paper we give a constructive approach of the robust
controlled invariance for an interval, which is the ability to control
a system to maintain its state in this interval for any value of the
disturbances. We then introduce a method to robustly stabilize
the system into such an interval for any initial condition. These
results apply to a class of monotone systems with local control
and are then tested for the temperature control in a small-scale
experimental flat equipped with underfloor air distribution. This
monotonicity property is not restricted to buildings or temperature
control and can be found in many other applications, such as
molecular biology, chemical reactions or multi-vehicle systems.

The focus of this paper is on the ability to control (either
for invariance or stabilization in an interval) and the results
presented above leave a large degree of freedom in the choice of the
feedback control strategy to meet the performance specifications
of the application: the only requirement on the controller is to
use its extrema when the state reaches the boundary of the
interval. Therefore the next step of our work, focused on UFAD
regulation, is to develop control strategies optimizing comfort
and energy consumption while guaranteeing the robustness
properties.
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