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Abstract

Mohammad GHOUSEIN

Modeling and Boundary Observer design of Two Phase CO2 Heat
Exchanger

In this work, we consider estimation of the thermodynamic properties (Pressure, Enthalpy, Tem-
perature) and mass flow rates along the pipes of a concentric heat exchanger tube in which we
have CO2 as the working refrigerant. The transport phenomena is modeled using Navier-Stokes
equations in 1D for both hot and cold sides, where we consider single and two phase flows. The
estimation is done with a PDE observer that uses measurements taken at the tube boundaries to
construct the required profiles along the tubes. The convergence of this observer is proved using
Lyapunov analysis, then the simulation results are validated experimentally on the refrigeration
test apparatus built in CERN Switzerland.

Key words: Boundary Observers, Boundary Control, Hyperbolic partial differential equa-
tions, fluid dynamics, Equations of State(CO2), Numerical Simulation Methods
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General Introduction

Heat Exchangers are widely used in many industrial domains like food production, chemical
plants, oil refineries and they also represent an important tool for cooling and heating of houses
, companies, cars,.. etc. An extensive study on the control of such units is thus vital in order to
have lower rates of energy consumption while maximizing the heat transfer rates. In the past
decades, fluorocarbons(C2F6, C3F8,R134a) were used as the working fluids for heat exchangers,
but nowadays CO2 cooling has become an interesting technology due to the several advantages
that CO2 has over other fluids. CO2 has high heat transfer capabilities , high latent heat, low
pressure drop, low viscosity (ability to use small size pipes), this allows a network of long small
piping over large distances and then it’s the best choice for HEP detectors cooling in CERN [20].
The above important facts motivate our work, to model and build estimation techniques for heat
exchanger plants that use CO2 as its working fluid.

Consequently, we consider a long concentric tube pipe as our system in which (two phase -single
phase) or (single phase-single phase) carbon dioxide exchange heat through the wall interface. In
Chapter 1, the state of the art for the whole work is presented starting with various models found
in the literature for modeling of single and two phase flows (3D models,Two fluid models, Homo-
geneous Equilibrium models). In Chapter 2, the chosen model is established with the necessary
assumptions, an approximation of the Equation of state (EoS) is also discussed with the numerical
scheme used in the simulations, then the simulation results are shown and discussed. In Chapter
3, the boundary observer is built by linearizing the system to take advantage of linear and quasi-
linear hyperbolic systems studied in the literature, then the observer is built on these linearized
dynamics.In addition, the estimation error exponential convergence is proved using Lyapunov
analysis techniques and confirmed by simulations. In Chapter 4, the actual plant is presented
with the tests done at CERN and our results are compared against the experimental data. The
designed observer captures the dynamics of the real plant with correction of the modeling errors
starting from different initial conditions. In Chapter 5, our conclusion on the work is given with
the perspectives and future work.
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Chapter 1

The state of the Art

1.1 Introduction

Two phase flow is a flow of vapor and liquid usually inside a tube. It can take various forms and
configurations. The aim of this chapter is to discuss the types of two phase flow regimes, as well
as the general way of physical modeling used to deal with such systems.

1.2 Physical Modeling

In this section, we first address the behavior of a fluid moving in a horizontal tube with a phase
change, which means that we have a combination of liquid and vapor at the same time inside the
tube. As shown in Fig (1.1), different flow regimes can be divided into two groups: (a) those in
which vapor flows as a continuous stream, and (b) those in which vapor segments are separated
from each other by liquid. The time averaged fraction of the tube that is occupied by vapor is the
void fraction α. From experiments, it is observed that vapor flows continuously for α > 0.5. At
high void fraction and low vapor flow rate, the liquid is smooth and stratified. As we increase
the vapor flow rate, waves appear on the liquid-vapor interface, continue increasing will lead the
liquid to climb up the tube wall and the flow is (annular). At high vapor flow rate, the liquid is still
on the walls but some liquid droplets are entrained in the vapor flow and this flow is (annular-
mist flow). At low void fraction α < 0.5, the continuity is broken (Slug flow), in this type of flow
the slug moves faster than the liquid. At lower void fractions, the vapor is contained in the liquid
in the form of elongated bubbles (Plug flow). Further decreasing the void induces the (bubbly
flow): in this regime the interface between the liquid and vapor is not significant, bubbles and
liquid flow at approximately the same speed.
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FIGURE 1.1: Vapor-liquid flow regimes [8]

1.2.1 3D Two Fluid Model

As described above, different flow regimes have their own characteristics which seek a general
way of modeling. The basic modeling strategy found in the literature is to consider a control
volume in which liquid and vapor are separated by an interface, through this interface mass, mo-
mentum, heat and volume exchange occurs : this is the so called "Two fluid Models". The deriva-
tion of the most general equations in which there is variations in (x,y,z,t) and non-thermodynamic
equilibrium between the phases (i.e mass, momentum, heat and volume exchange don’t happen
instantaneously, there is some time for the transition) comes from the basic laws of physics: con-
servation of mass, conservation of momentum (Newton’s second law), conservation of energy (1st
law of thermodynamics) and the 2nd law of thermodynamics (Entropy never decrease). At this
step in modeling we consider only continuum assumptions and all our state variables are well
defined. The derivation is done in [21] [14], for the multi-phase case and the results are given by:

Conservation of mass
∂ρk
∂t

+∇.(ρkvk) = 0 (1.1)

Conservation of momentum

∂(ρkvk)

∂t
+∇.(ρkvk ⊗ vk) = (−∇.pk +∇.τk + ρkbk) (1.2)

Conservation of Energy

∂(ρk(ek + 1
2v

2
k))

∂t
+∇.(ρk(ek +

1

2
v2
k)) = ∇.((τk − pkI).vk − qk) + ρk(rk + bk.vk) (1.3)

Where k = g (gas, vapor) or k = l (liquid)
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ρk : density of each phase vk : velocity of each phase
pk : pressure of each phase τk : stress tensor on each phase
ek : Internal energy of each phase qk : heat transfer between the the phases
rk : External heat source bk : Body forces on each phase (gravity for example)

In [14] the author proved that energy transport is equivalent to the entropy transport. These
entropy relations are used by several authors to derive relaxation terms as we will see later.

Equations (1.1) - (1.3) are bulk equations for the phases, but in multi-phase flow, phases interact
with each other through an interface. The assumptions made that the we consider the interface
has no mass, then it has no momentum and no kinetic energy but it has internal energy. By taking
a control volume attached to the interface and also applying the basic laws of physics we get:

Interface Relations

Mass relation: Mass entering interface = Mass leaving the interface:

ρg(vg − vi).ng + ρl(vl − vi).nl = 0 (1.4)

Momentum relation: Here we notice the appearance of the surface tension with its two com-
ponents: the tangential one (caused by curvature of the interface) and normal one (caused by
temperature gradients). Applying the sum of forces on the interface we get:

0 = ρgvg ⊗ (vg − vi).ng + ρlvl ⊗ (vl − vi).nl − (τg − pgI).ng − (τl − plI).nl −∇sσ − 2σHs,g (1.5)

Energy relation: The interface has internal energy but no kinetic energy, hence the variation of the
internal energy inside the interface is given by:

∂(es)

∂t
+∇s.(vies) = −ρg(eg +

1

2
v2
g)(vg − vi).ng − ρl(el +

1

2
v2
l )(vl − vi).nl + (τg − pgI).vg.ng

+(τl − plI).vl.nl − qgng − qlnl + rs + 2σHs,g.ng.vi + vi.∇sσ
(1.6)

where:

• vi: Interface velocity

• ng, nl : Unit normal to the interface in direction outwards of phase g and l respectively

• σ : Surface tension

• Hs,g : Algebraic value of the minimum curvature of the interface

• es : Internal energy of the interface

• rs : Heat by the source varying the internal energy of the interface

Equations (1.1) - (1.3) and (1.4) - (1.6) are the basic equations for the two phase modeling. It is
noticed that the dimension of the system is very large: we have variations in (x,y,z,t) and interface
relations where we have a lot of unknowns. Then to reduce complexity, averaging techniques are
applied.
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1.2.2 Averaging and The 1D Two Fluid Model

There exists various types of averaging. Spatial averaging consists of averaging the physical quan-
tities over a given domain (like cross-section of the tube in our case) [21] i.e instead of having vari-
ations in (x,y,z,t), if we average along the cross-section we have variation in (x,t)). Time averaging
consists in looking at a given point in space and averaging the quantities over time. Ensemble
averaging consists of averaging the quantities at a given time and at a given location taking into
account all the possible realizations of the flow [14]. Averaging always implies a lose of infor-
mation on the flow but in some applications we are not concerned on knowing every detail of
the flow in (x,y,z,t), so averaging may reduce the complexity of the equations. To take into ac-
count the tube cross-section, we use area averaging as most of the literature on the 1D model. For
the interface, and considering non-equilibrium models (different pressure, temperature, veloci-
ties, chemical potentials between the phases), the interface exchange (mass,momentum,heat and
volume) are modeled by relaxation terms.

Some useful definitions:

• Relaxation time: time needed by the system to go into equilibrium after being perturbed.

• Chemical potential: form of potential energy that can be absorbed or released during a chem-
ical reaction or phase change.

In the 1D two fluid model, the two phases are assumed to have separate pressures Pk, tempera-
tures Tk, chemical potentials µk and velocities vk. The system can be moved towards equilibrium
by employing relaxation terms. The model equations are given by:

Mass Conservation
∂(αgρg)

∂t
+
∂(αgρgvg)

∂x
= K(µl − µg) (1.7)

∂(αlρl)

∂t
+
∂(αlρlvl)

∂x
= K(µg − µl) (1.8)

Momentum Conservation

∂(ρgαgvg)

∂t
+
∂(ρgαgv

2
g)

∂x
+ αg

∂Pg
∂x

+ ∆Pig
∂αg
∂x

+ F (vg − vl) = ρgαggx + fw,g + viK(µl − µg) (1.9)

∂(ρlαlvl)

∂t
+
∂(ρlαlv

2
l )

∂x
+ αl

∂Pl
∂x

+ ∆Pil
∂αl
∂x
− F (vg − vl) = ρlαlgx + fw,l − viK(µl − µg) (1.10)

Energy Conservation

∂(ρgαgHg − αgPg)
∂t

+
∂(ρgαgvgHg)

∂x
+ Pivi

∂αg
∂x

= ρgαgvggx +Qw,g −H(Tg − Tl)

−PiJ(Pg − Pl) + viF (vl − vg) + Eg,iK(µl − µg)
(1.11)

∂(ρlαlHl − αlPl)
∂t

+
∂(ρlαlvlHl)

∂x
+ Pivi

∂αl
∂x

= ρlαlvlgx +Qw,l +H(Tg − Tl)

+PiJ(Pg − Pl)− viF (vl − vg)− Eg,iK(µl − µg)
(1.12)

Pressure Relaxation
∂αg
∂t

+ vi
∂αg
∂x

= J(Pg − Pl) (1.13)



Chapter 1. The state of the Art 5

where k = g (gas, vapor) or k = l (liquid)

• Hk : total Enthalpy (Hk = hk + 1
2v

2
k) and hk : specific enthalpy

• Qw,k : heat transfer from the wall to the phase k

• αk : void fraction of the phase k

• fw,k: friction done by the wall

• gx: projection of the gravitational acceleration on the tube axis

• H,J, F,K: relaxation constants

• Pi: interface pressure and ∆Pik = Pk − Pi

• Eg,i = µ∗ + 1
2v

2
i and µ∗ is the effective interface chemical potential.

In addition it’s necessary for the second law of thermodynamics to be satisfied. If we neglect the
velocity relaxation, it was proved by [9] that the second law will be obeyed if:

• H ≥ 0

• J ≥ 0

• K ≥ 0

• min(Pg, Pl) ≤ Pi ≤ max(Pg, Pl)

• min(µg, µl) ≤ µ∗ ≤ max(µg, µl)

Note that ∆Pik in the momentum equations is the correction pressure term, which plays an im-
portant role in the model hyperbolicity because in the absence of this term the model becomes non
hyperbolic, which leads to a lack of existence of a stable mathematical model as well as a loss of
the stability of numerical methods [16].

This hyperbolicity condition [16] is satisfied (neglecting pressure relaxation ) if we take:

∆P = δ
αgαlρgρl
ρgαg + ρlαl

(vg − vl)2 (1.14)

with δ = 0.2.

In addition, the velocity of the interface can be taken as the average value:

vi = αgvg + αlvl (1.15)

This general model is found and studied by many authors with slight differences on the assump-
tions. For example, [13] studies the effect of all relaxation terms neglecting the velocity,[15] pro-
vides a numerical study considerenig pressure and velocity relaxation, [4] models CO2 depressur-
ization pipelines and also [19] uses this model in studying the transition in metastable liquids. In
addition, [2] present this general model in presenting CO2 transportation along pipelines.

1.2.3 Homogenous Equilbrium Model

This model is the most simplified form that can be obtained from the above two fluid model,
wherein the two phases are assumed to travel together at the same velocity and behave as single
phase with properties that are defined as a weighted average of the properties of the individual
phases. First the following assumptions are taken:
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• No relative motion between the phases (v = vg = vl))

• Phase change, transfer of volume, heat transfer between the phases happen instantaneously
(i.e we have thermodynamic equilibrium (P = Pg = Pl, T = Tg = Tl, µ = µg = µl)

• Body forces are neglected (gravity)

Then the model equations can be written as follows:

Mass Conservation
∂ρ

∂t
+
∂(ρv)

∂x
= 0 (1.16)

Momentum Conservation
∂(ρv)

∂t
+
∂(ρv2 + P )

∂x
= fw (1.17)

Energy Conservation
∂(ρH − P )

∂t
+
∂(ρvH)

∂x
= Qext (1.18)

where:

• ρ : Average density of the mixture (ρ = αgρg + αlρl)

• v: Fluid velocity

• P : Pressure of the system

• H : Total Enthalpy (H = h+ 1
2v

2)

• Qext: External Heat Source

• fw : Wall friction

The model is completed by an equation of state as density, pressure and enthalpy are thermody-
namically related (for instance, ρ = f(P, h)): this relation is discussed in details in the coming
chapters.

1.3 Conclusion

In this chapter we have seen several two phase models, these models emerges from the fundamen-
tal laws of physics. We seek a control oriented model that can capture the necessary dynamics of
the system so that we can design our boundary observer based on it. In the next chapter, the mod-
eling phase is extensively explained with all the assumptions taken and numerical simulations
done.
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Chapter 2

Problem Formulation and Model
Implementation

2.1 Introduction

The aim of this chapter is to describe the heat exchanger considered and the transport equations
used in modeling. The model is prepared for simulation by discussing the approximation of the
Equation of State (EoS) for CO2 in the two and single phase regions as well as the numerical
scheme used in the implementation. At the end, the simulation results are presented and dis-
cussed.

2.2 Problem formulation

We are interested in building boundary observation techniques capable of estimating distributed
thermodynamic profiles from boundary measurements for a concentric tube heat exchanger found
in CERN, Switzerland. The basic idea of heat exchangers is that we have two fluids (hot and cold)
and they are exchanging heat through an interface (wall).

FIGURE 2.1: CO2 Two phase heat exchanger (Evaporator)

As shown in Fig (2.1), on the hot side CO2 enters in liquid state and remains liquid at the outlet.
On the cold side, CO2 enters in a two-phase state and leaves in two-phase. The interesting thing
in this system is the change of phase behavior inside the outer tube, which makes the detailed
modeling more complicated as the liquid is changing into vapor as it flows into the exchanger.
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2.2.1 Model Equations

Besides the complexity in dealing with two-phase flows as seen in Chapter 1 (two fluid model
equations), CO2 has a very important characteristics: the ratio of liquid density to vapor den-
sity (ρl/ρv) is small [18], this results in more homogeneous two phase flows. It’s reasonable to
assume that liquid and vapor phases are mixed and propagate at the same velocity, this will de-
crease the complexity of modeling the two phase side. As a result the following assumptions are
taken:

• Homogenous flow for both liquid and two phase fluids

• Neglect kinetic and potential energies

• Neglect wall thickness and assume overall heat transfer coefficient

• Heat exchanger is in a vacuum insulation from the outside

Then using the Homogenous Equilbrium model (1.16)-(1.18), the model equations are as follows:

Cold fluid (Two phase)

Mass Conservation
Ac
∂ρc
∂t
− ∂ṁc

∂x
= 0 (2.1)

Momentum Conservation

∂ṁc

∂t
− ∂

∂x
(
ṁc

2

ρcAc
)−Ac

∂Pc
∂x

+
f2ṁc|ṁc|
2DHρcAc

= 0 (2.2)

Energy Conservation

Ac
∂(ρcHc − Pc)

∂t
− ∂(ṁcHc)

∂x
= πD1α(TH − TC) (2.3)

Hot fluid (Single phase)

Mass Conservation
AH

∂ρH
∂t

+
∂ṁH

∂x
= 0 (2.4)

Momentum Conservation

∂ṁH

∂t
+

∂

∂x
(
ṁH

2

ρHAH
) +AH

∂PH
∂x

+
f1ṁH | ˙mH |
2D1ρHAH

= 0 (2.5)

Energy Conservation

AH
∂(ρHHH − PH)

∂t
+
∂(ṁHHH)

∂x
= −πD1α(TH − TC) (2.6)

with k = C (cold fluid) , k = H (hot fluid):

ρk : density (Kg/m3)
Pk : pressure (Pa)
Hk : specific enthalpy (J/kg)
ṁk : mass flow rate (Kg/s)
T k : temperature (K)
α : overall heat transfer coefficient (W/m2.K)
AH , Ac : inner and outer tubes cross-sectional area (m2)



Chapter 2. Problem Formulation and Model Implementation 9

D1, D2, DH : inner, outer, hydraulic tube diameter respectively (m)
fk : friction coefficient

Remarks:

• the hot fluid is assumed to be propagating in the +ve x-axis direction and cold fluid in the
-ve x-axis direction.

• since CO2 has a very low viscosity it’s natural for our model equations to be like the Euler
equations for invicisd flow, adding the heat exchange term between the two fluids.

2.3 Equation of State (EOS)

Most vapor compression cycles are studied on a pressure-enthalpy diagram (P-h diagram) pre-
sented in Fig(2.2).

FIGURE 2.2: CO2 Pressure-Enthalpy Diagram

Choosing P and h as our states, all thermodynamic properties can be calculated. The above
equations (2.1)-(2.6) involve density and temperature: these properties and all there necessary
partial derivatives are calculated from an equation called the equation of state (i.e ρ = ρ(P, h),
T = T (P, h)). This equation changes from one region to the other (i.e the equation in the liquid
region is different from the two phase region). We choose a range of pressures (2MPa− 3MPa),
which is almost the range used in CERN, to deal with two phase flows and our objective is to
calculate ρ, T , ∂ρ

∂P , ∂ρ∂h in each region.
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2.3.1 Two phase region

The properties at the saturation line (T sat, ρsatv , ρsatl , hsatl ,hsatv ) and all the necessary partial deriva-
tives are calculated ( for the range of pressures stated above ) using Coolprop library [3] and fitted
by polynomials of degree 5 in Matlab.

T = T sat(p)( Temperature only depends on pressure ) x =
h−hsatl

hsatv −hsatl
( Quality )

α = 1

1− (h−hsatv )ρsatv
(h−hsat

l
)ρsat
l

( Void Fraction ) ρ = αρsatv + (1− α)ρsatl ( Density )

∂ρ
∂h = − ρ2

T sat
dT sat

dp
( Clausius-Clapeyron Equation ) ∂ρ

∂p =
∂

∂p
(αρsatv + (1− α)ρsatl )

The errors between the polynomials approximations and the Coolprop values are shown in Fig
(2.3). The approximations shown in Fig (2.4) are very accurate with a relative error less than 0.01%.
This type of approximation is used because Coolprop library is very slow in Matlab and there is
no high level interface for computing thermodynamic partial derivatives in the two phase region.

FIGURE 2.3: Relative error: Two Phase Properties

FIGURE 2.4: CO2 Two Phase Properties
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2.3.2 Liquid region

Fig (2.2) shows that in the liquid region, temperature and density almost don’t depend on pres-
sure. Taking a point on the saturation curve and making 1st Order Taylor expansion along con-
stant enthalpy lines is thus a good approximation.

FirstP sat(h), T sat(h), ρsat(h), dT
sat(h)
dp , dρ

sat(h)
dp where calculated using polynomials of degree 5. Then

the properties in the liquid region are calculated as:

T (P, h) = T sat(h) +
dT sat

dp
(P − psat(h)) ρ(P, h) = ρsat(h) +

dρsat

dp
(P − psat(h))

∂ρ
∂P and ∂ρ

∂h are calculated deriving ρ(P, h) with respect to pressure and enthalpy, respectively.
These equations are simulated and compared against Coolprop library values. The results are
shown in Fig (2.5) and Fig (2.6).

FIGURE 2.5: Relative error: Liquid Region Properties

FIGURE 2.6: CO2 Liquid Properties
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The relative error for the liquid region approximation in total is less 10%, which gives us a good
approximation as we are using simple Taylor expansion to approximate the complex Equation of
State for carbon dioxide.

2.4 Model Implementation

Equations (2.1)-(2.6) were implemented using the Finite Volume Method (FVM). This method con-
sists in dividing the space into a set of control volumes of equal or different sizes and then integrat-
ing the conservation equations on each control volume [17]. (FVM) is very efficient when dealing
with conservation laws because it’s ensured that every conserved quantity (energy ,mass,momentum)
is conserved in each control volume. Yet some problems happens when implementing the momen-
tum equations, because in these equation we have a pressure gradient that drives the flow. The
authors in [17] argued that implementing the velocity field on the same grid as the pressure field
may lead to a nonphysical solution in which we may have certain oscillations called the "Che-
querboard Oscillations" and the solution suggested is to implement the momentum equations on
a staggered grid mainly for the velocity to be calculated from the difference of pressures between
two adjacent cells.

FIGURE 2.7: Finite Volume Grid

As shown in Fig (2.7), we have two grids: the upper grid is for mass and energy equations im-
plementation and the staggered grid is for the momentum equations. ψi is the average thermody-
namic property in the control volume i (enthalpy,density,pressure..) and ψ̂ is the interface value
approximated using an upwind scheme as follows:

ψ̂i = (1− δi)ψi−1 + δiψi and δi =

{
1 if ṁi ≤ 0

0 if ṁi > 0

The equations of the discretized model are written in the section (A.1.1) of the appendix. With the
following boundary conditions:

HH(0, t) = HH
in Hc(L, t) = HC

in

PH(0, t) = PHin Pc(L, t) = PCin

ṁH(L, t) = ṁH
out ṁc(0, t) = ṁC

out

(2.7)

2.5 Simulation results

The simulation results are presented in Fig (2.8),Fig (2.9) and Fig (2.10) using constant boundary
conditions and an average values for the heat transfer and friction coefficients.
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HH(0, t) = 180KJ/Kg Hc(L, t) = 200KJ/Kg PH(0, t) = 3MPa f1 = 10 f2 = 15
Pc(L, t) = 2.2MPa ṁH(L, t) = 0.02Kg/s ṁc(0, t) = 0.02Kg/s nx = 60 dt = 0.1s
α = 100W/m2.K L = 17.655m D1 = 12mm D2 = 33.4mm

Ode15s in Matlab is used to solve the equations because the model is highly stiff .

FIGURE 2.8: Steady state: Pressure - Enthalpy

FIGURE 2.9: Pressure - Mass flow rate
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FIGURE 2.10: Quality-Temperature

2.5.1 Discussion

The system is simulated until steady state is reached starting with constant profile initial condition
for all the states. At steady state, for the hot side: both enthalpy and temperature decrease with
the length since the hot fluid is loosing energy to the cold fluid and this appears in the steady
state plots where the hot inlet temperature was (THin = −8.577 ◦C) and outlet (THout = −14.5 ◦C).
For the cold fluid, the cold fluid is gaining energy so its enthalpy should increase in the -ve x-axis
direction (cold fluid is flowing from x=L to x=0), since we have two phase flow the temperature
should remain constant at the saturation temperature and this is verified as the cold fluid enters at
(-16.22 ◦C) and leaves at (-16.67 ◦C), which are approximately the same temperatures. The small
decreases is due to the pressure drop. The gained energy by the cold fluid increase the quality
and this what happens in the steady state quality plot. Regarding pressure drop, the pressure
should decrease with the direction of the flow (hot and cold pressure plots). Concerning transient
behavior, mass flow rate should be the same along the tube at steady state, this is confirmed by
the mass flow plots where the (ṁin = ṁout = 0.02Kg/s) for both fluids. The output pressure
stabilizes without oscillations and settles into steady state. The same happens for both hot and
cold outlet temperatures.

2.6 Conclusion

The model shows a good behavior in simulation conserving the first and second law of thermo-
dynamics. We are reasonably satisfied with the model simulation, and thus use it for the observer
design. In the coming chapter, the observer architecture is presented with all the simulation re-
sults.
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Chapter 3

Observer Design

3.1 Introduction

As we are concerned with estimating the thermodynamic properties of two phase CO2 fluid flow-
ing in one tube and exchanging heat with another liquid CO2 flowing in the opposite direction,
our system of equations falls in the category of a system of first order hyperbolic nonlinear partial
differential equations describing the conservation laws. Hyperbolic systems and especially linear
and quasi-linear hyperbolic systems are well studied by the control community due to their wide
range of applicability in several domains, the existence of the so called Riemann invariants which
is a powerful tool for the proof of classical solutions, analysis and control [1]. These systems are
of the following general form:

∂tξ(x, t) + Λ(x)∂xξ(x, t) = F (x)ξ(x, t) (3.1)

where t ∈ R+ is the time variable, x ∈ [0, 1] is the spatial variable, ξ : R+ × [0, 1] → Rn, F and Λ
are in C0([0, 1]; Rn×n) . Λ(x) = diag(λ1..λn) is a diagonal matrix with λk < 0 for k ∈ {1...m} and
λk > 0 for k ∈ {m+ 1, ..n}.
The above formalization means that we have m waves ξ−(x, t) propagating from right to left
and (n-m) waves ξ+(x, t) propagating from left to right. Let’s also consider the following static
boundary condition:

ξ−(1, t) = G1ξ−(0, t)

ξ+(0, t) = G2ξ+(0, t)
(3.2)

Where G1 and G2 are (m ×m) and (n −m) × (n −m) constant matrices respectively. The prob-
lem of controllability and observability for quasilinear hyperbolic systems is considered in [12].
The stability conditions for system (3.1) with boundary conditions (3.2) are proved by [22] using
a Lyapunov candidate. The authors in [22] provide stability conditions and propose the reduction
of infinite linear matrix inequality (LMI) coming from the Lyapunov analysis to a finite number
by using a polytopic approach. The problem of dynamic boundary control stabilization was ad-
dressed in [6].

Concerning boundary observers, the idea is less investigated in the literature. The first approach
was to discritize the system and then apply basic laws from control theory, but by discritization we
may loose some vital information on the dynamics of the system and the observability and con-
trollability depend on the spatial discritization step. Besides, in distributed parameter estimation
problems it’s impossible to obtain measurements at every position along the domain. It’s more
natural for sensors to be placed at the boundaries (at the extremities of the tube in our case). In [5]
a boundary observer of rightward hyperbolic equations is designed using Lyapunov analysis and
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in [23] an infinite-dimensional Luenberger-type observer is proposed using the same Lyapunov
candidate used for the exponential stability of one dimensional balance laws in [7].

To take benefit of the theory done on linear and quasilinear systems seen above, linearization is
taken as our best choice. As a result the observer is built on these linearized dynamics, as detailed
in this chapter.

3.2 Linearization

The system of equations (2.1)-(2.6) is linearized close to the steady state reached by the nonlinear
model as follows:

HH(x, t) = HS
H(x) + ∆HH(x, t) Hc(x, t) = HS

c (x) + ∆Hc(x, t)

PH(x, t) = PSH(x) + ∆PH(x, t) Pc(x, t) = PSc (x) + ∆Pc(x, t)

ṁH(x, t) = ṁH,S
out + ∆ṁH(x, t) ṁc(x, t) = ṁC,S

out + ∆ṁc(x, t)

(3.3)

Using a Taylor expansion of order 1 and given that for each fluid we have a continuously differen-
tiable equation of state ρ = f(P,H) and T = g(P,H) (discussed in Chapter 2 ) and also considering
approximating the non-differentiable function absolute (abs(x)) in the momentum equations by a
differentiable function |x| ≈

√
x2 + ε for a very small ε > 0, the system is simplified to:

AS(x)
∂W

∂t
+BS(x)

∂W

∂x
+ CS(x)W = 0 (3.4)

where:

W =



∆ṁH(x, t)
∆PH(x, t)
∆HH(x, t)
∆ṁc(x, t)
∆Pc(x, t)
∆Hc(x, t)

 AS(x) =



0 a12 a13 0 0 0
1 0 0 0 0 0
0 a32 a33 0 0 0
0 0 0 0 a45 a46

0 0 0 1 0 0
0 0 0 0 a65 a66



BS(x) =



1 0 0 0 0 0
b21 b22 b23 0 0 0
0 0 b33 0 0 0
0 0 0 −1 0 0
0 0 0 b54 b55 b56

0 0 0 0 0 b66

 CS(x) =



0 0 0 0 0 0
c21 c22 c23 0 0 0
c31 c32 c33 0 c35 c36

0 0 0 0 0 0
0 0 0 c54 c55 c56

0 c62 c63 c64 c65 c66


Note that:

• the superscript S is for steady state

• The entries of the matrices AS(x), BS(x), CS(x) are given in section A.2.1 of the appendix.

The linear system with space varying coefficients (3.4), is simplified by averaging over the whole
domain the matrices (AS(x) ,BS(x), CS(x)). System (3.4) then becomes:

ĀS
∂W

∂t
+ B̄S

∂W

∂x
+ C̄SW = 0 (3.5)

Where ĀS , B̄S , C̄S are the average of AS(x), BS(x), CS(x) over the whole space, respectively.
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3.2.1 Linearized model simulation

In simulation, linearization error between the systems (2.1)-(2.6) and (3.5) is addressed. The two
systems are simulated starting with the same initial condition. This initial condition is considered
far enough from the steady state. The relative errors plotted are of the following form:

ε
H/C
X (t) =

∫ 1
0 |X

H/C
NL (x, t)−XH/C

L (x, t)|dx∫ 1
0 X

H/C
S (x)dx

where X is the mass flow rate, pressure or enthalpy.
Note:

• XNL: represents the output of the nonlinear model

• XL: represents the output of the linearized-averaged model

• The numerical scheme used in the simulation for approximating the first order spatial deriva-
tive ∂W

∂x is the forward and backward finite difference depending on the flow direction.

The results are presented in figure (3.1).

FIGURE 3.1: Output Relative Error

The error plots above, show that the linearization is highly accurate. The error in the different
plots is less than 10%. We can conclude that the non linearity didn’t play an important role in our
working range and the linearized-averaged model (3.5) captures all the necessary dynamics of the
system.
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3.3 Observer Architecture

The averaged linearized system (3.5), is now manipulated in a control oriented way in preparation
for the observer design .The idea here is to diagonalize system (3.5) in order to decouple the space
derivative of the states from each other. First system (3.5) is multiplied by ¯(AS)−1 and we have
that:

∂W

∂t
+M

∂W

∂x
= NW (3.6)

Where M = ¯(AS)−1B̄S and N = − ¯(AS)−1C̄S . ¯(AS)−1 is full rank as long as the density ρ is not
constant with respect to time. Then the state W is transformed into the decoupled state U by the
transformation T as follows:

W = TU

Λ = T−1MT

F = T−1NT

(3.7)

Such that: Λ = diag{λ1..λ6} and F is arbitrary, where (λ1 > 0, λ3 > 0, λ5 > 0) and (λ2 < 0, λ4 <
0, λ6 < 0). For each fluid we have mass and energy flow in one direction and momentum in the
reverse direction. As hot and cold go in opposite directions, we have 3 positive and 3 negative
Eigenvalues. Then system (3.6) becomes:

∂U

∂t
+ Λ

∂U

∂x
= FU (3.8)

Note: The state U has no physical meaning, so in order to implement the boundary conditions
for the transformed system, the sign of the eigen values is used. If the eigen value is positive
then there should be a boundary condition implemented at 0 and if it is negative the boundary
condition is implemented at 1. Then the boundary conditions of (3.8) are as follows:

U1(0, t) = g1(t) U2(1, t) = g2(t)

U3(0, t) = g3(t) U4(1, t) = g4(t)

U5(0, t) = g5(t) U6(1, t) = g6(t)

(3.9)

g1, g2, g3, g4, g5, g6 are calculated using the transformation T : U(0, t) = T−1W (0, t) and U(1, t) =
T−1W (1, t).

System (3.8) with boundary conditions (3.9) is proved observable and controllable by [17] and as
our objective is to estimate the state U from boundary measurements, then the only information
we have is coming from the boundary. A natural choice for the observer architecture is:

∂Û

∂t
+ Λ

∂Û

∂x
= FÛ (3.10)

Let’s define the following left and right matrices

Ml =

 1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0

 Mr =

 0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1
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with Ul(0, t) = MlT
−1W (0, t), Ur(1, t) = MrT

−1W (1, t). The observer boundary conditions be-
come

Ûl(0, t) = Ul(0, t) + 13×3MrL(U(0, t)− Û(0, t))

Ûr(1, t) = Ur(1, t) + 13×3MlL(U(1, t)− Û(1, t))
(3.11)

where L = diag{L1, .., L6}, 13×3 : ones matrix (3 × 3) . The inflow boundary conditions are thus
corrected by the error of the outflows boundaries, and the same is done for the outflow observer
boundaries which are corrected by the errors of the inflow boundaries. All the errors are weighted
by the observer gains L1 to L6.

3.3.1 Global Exponential Stability (GES)

In this section, we prove the global exponential convergence of the observer (3.10) with boundary
conditions (3.11). This is done by proving the exponential convergence of the estimated error
ε(x, t) = U(x, t)− Û(x, t) towards zero. Let us start by considering the error dynamics:

∂ε

∂t
+ Λ

∂ε

∂x
= Fε (3.12)

with the following boundary conditions:

εl(0, t) = −13×3MrLε(0, t)

εr(1, t) = −13×3MlLε(1, t)
(3.13)

The authors in [11] consider the problem of stability and control synthesis for first order quasi-
linear hyperbolic systems. The exponential stability is proved by a Lyapunov candidate con-
strained by satisfying certain set of MIs (Matrix inequalities).

Definition 3.1. System (3.12)-(3.13) is said to be Globally Exponentially Stable if there exist γ > 0
and C > 0 such that for every initial condition ε0 ∈ L2((0, 1);R6) the solution of the system
(3.12)-(3.13) satisfies:

|ε(t, .)|L2((0,1);R6) ≤ Ce−γt|ε0|L2((0,1);R6) (3.14)

Consider the following Lyapunov candidate, similar to the one used in [11]:

V (ε) =

∫ 1

0
εT (x)|Λ|−1Q(x)ε(x)dx (3.15)

where µ ∈ R , |Λ|−1 = diag[1/|Λi|] and Q(x) = diag[qie
−sign(Λi)2µx] for all i ∈ {1, . . . , 6}. The

convergence of our observer can be inferred from the following theorem.

Theorem: Consider the system of PDEs (3.12) with boundary conditions (3.13). Suppose that there
exist γ > 0, µ ∈ R, and a positive definite matrix Q(x) > 0 such that for all x ∈ [0, 1] we have:

F T |Λ|−1Q(x) + |Λ|−1Q(x)F − 2µQ(x) ≤ −2γ|Λ|−1Q(x) (3.16)



Chapter 3. Observer Design 20



−q0
2 + αL2

2 αL2L4 αL2L6 0 0 0
∗ −q0

4 + αL2
4 αL4L6 0 0 0

∗ ∗ −q0
6 + αL2

6 0 0 0
0 0 0 −q1

1 + βL2
1 βL1L3 βL1L5

0 0 0 ∗ −q1
3 + βL2

3 βL3L5

0 0 0 ∗ ∗ −q1
5 + βL2

5

 ≤ 0 (3.17)

where q0
i and q1

i for i ∈ {1, . . . , 6} are the diagonal entries of Q(0) and Q(1) respectively, α =
q0

1 + q0
3 + q0

5 and β = q1
2 + q1

4 + q1
6 .

Then (3.12) with (3.13) is (GES). The proof is done in section (A.2.2) of the appendix.

3.4 Simulation Results

The performance of the proposed observer architecture is evaluated with simulations by compar-
ing against the output of the nonlinear model. The model starts at steady state and is excited by
step variations in the inlet hot temperature (this kind of boundary change is realistic when dealing
with the real system as discussed in Chapter 4).

The observer gains are calculated as follows:

• Equation (3.16) is an infinite LMI. To calculate the matrix Q(x), the polytopic approach pro-
posed by [11] is used.

• In the polytopic approach, first µ > 0 and γ > 0 are chosen, then equation (3.16) is solved
using the Yalmip toolbox (Matlab) to calculate Q(0).

• LMI (3.16) is rechecked for Q(1) and Q01 to satisfy negative definiteness. Where, Q01 is
obtained from Q(x) by substituting x = 0 in the ith entry if (sign(Λi) < 0), and x = 1
otherwise.

• In (3.17), we proceed by trial and error. We first ensure that the diagonal elements are nega-
tive and then adjust the gains to satisfy the MI.

Equation (3.16) is solved for µ = 1.5 and γ = 0.01s−1, and the values of the observer gains obtained
are :

L1 = 0.0092 L2 = 0.3276
L3 = 0.0104 L4 = 0.2141
L5 = 0.0058 L6 = 0.3943

The simulation is done in 3 scenarios: First starting close to steady-state by a near estimated
initial condition, second starting with far estimated initial condition and the last one checking the
robustness of the observer by adding noise to the measurements. In all 3 scenarios, a step decrease
(1.7 ◦C) in the hot inlet temperature is applied at T = 1500s.

• First Scenario: Initial Condition Close to Steady State

The set of initial conditions used is:

TH(0, x) = TSH(x) T̂H(0, x) = TSH(x) + 0.23 ◦C
TC(0, x) = TSC (x) T̂C(0, x) = TSC (x) + 0.12 ◦C
PH(0, x) = PSH(x) P̂H(0, x) = TSH(x) + 0.15MPa

PC(0, x) = PSC (x) P̂C(0, x) = PSC (x) + 6000(Pa)

ṁH(0, x) = 0.02Kg/s ˆ̇mH(0, x) = 0.02Kg/s

ṁC(0, x) = 0.02Kg/s ˆ̇mC(0, x) = 0.0194Kg/s
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FIGURE 3.2: Enthalpy-Pressure Estimation

FIGURE 3.3: Mass Flow Rate, Temperature and Quality Estimation
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FIGURE 3.4: Estimation Error (Near Initial Condition)

The boundary conditions are the same as used in (2.7), but at T=1500s a filtered step de-
crease of (1.7 ◦C) in the input hot temperature is done. As shown in Fig (3.2) and (3.3), the
observer converges with slight overshoot. Regarding the estimation errors in Fig (3.4), we
have an exponential decay towards zero, but with small amplitude oscillations at the start.
The spikes are due to the intersection of the model with the estimated values. When the
step is triggered, an increase in the error happened since the step is very fast so the observer
takes time to react and then the error starts again to decay. The decay rate predicted is γ=
0.01 s−1 while we get 0.0033 s−1 (from the simulation), this issue should be addressed in
future works.

• Second Scenario: Far Estimated initial Condition
The set of initial conditions used is:

TH(0, x) = TSH(x) T̂H(0, x) = TSH(x)− 2.23 ◦C
HC(0, x) = HS

C(x) ĤC(0, x) = HS
C(x)− 30(KJ/Kg)

PH(0, x) = PSH(x) P̂H(0, x) = TSH(x) + 0.05MPa

PC(0, x) = PSC (x) P̂C(0, x) = PSC (x) + 6000(Pa)

ṁH(0, x) = 0.02Kg/s ˆ̇mH(0, x) = 0.021Kg/s

ṁC(0, x) = 0.02Kg/s ˆ̇mC(0, x) = 0.0196Kg/s
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FIGURE 3.5: Enthalpy-Pressure Estimation

FIGURE 3.6: Mass Flow Rate, Temperature and Quality Estimation
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FIGURE 3.7: Estimation Error (Far Initial Condition)

Since the pressure interval is constrained between [2MPa,3MPa], then the range of tempera-
tures will be also constrained and as the mass flow rate is constant along the tubes at steady
state, it remain to change the estimated quality by modifying the cold enthalpy. The cold
enthalpy is decreased by (30KJ/kg). As shown in Fig (3.5)-(3.6), the observer still converges
toward the model, starting with high amplitude oscillations. Error convergence is also expo-
nential in Fig (3.7), but since the convergence rate is constant, the observer take longer time
to converge because of the high estimation error at the beginning , this appears clearly in the
temperature plots (3.6).
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• Third Scenario: Addition of Noise Measurements

The set of initial conditions used are the same as the second scenario.

FIGURE 3.8: Enthalpy-Pressure Estimation

FIGURE 3.9: Mass Flow Rate, Temperature and Quality Estimation
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FIGURE 3.10: Estimation Error (Addition of Noise Measurements)

An additive white Gaussian noise is added to the measurements used by the observer such
that the signal to noise ratio (SNR = 100), the simulated results are plotted in Fig (3.8)-(3.9)-
(3.10). The error plots show that the observer converges exponentially to a minimum value
determined by the noise amplitude (steady state error). The noises are attenuated and we
can deduce that our observer is reasonably robust against measurement noises.

3.5 Conclusion

The simulation results clearly agrees with the theory made on the observer exponential conver-
gence. The next step is to validate our observer experimentally on the actual system found at
CERN, Switzerland. This is extensively explained in the next chapter.
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Chapter 4

Experimental Validation

4.1 Introduction

The previous chapters have shown the extensive theory of the observer design. As the simulation
results were reasonably logical, a mission to CERN, Geneve was ordered to validate experimentally
our work. The aim of this chapter is to show the overall experimental setup of the system with
the experiments done on it. As a result, our model is adapted to this setup and the results are
compared against the experimental values.

4.2 Experimental Setup

First the real simulator that uses PLC to control the plant is presented in Fig (4.1).The cold fluid
is pumped by the pump (LP3004) to the transfer lines and then heated by means of two heaters
(EH7027) and (EH7028) to have the hot fluid. Both hot and cold fluid exchange heat through these
lines and finally the hot fluid is cooled down by the chiller (HX3082) to be pumped again by the
pump. The point of interest for us in this system is the transfer line, this line is the concentric
tube exchanger and sensors located at the boundaries are our measurement sensors.The real plant
setup is presented in Fig (4.2), Fig (4.3) and Fig (4.4) . This system was build to run educative
experiments for developing and improving CO2 cooling technology. It’s seen that the transfer line
in Fig (4.2) is long enough for the heat exchange, not straight but can be assumed straight due to
the very low pressure drop as we will see in the next sections.
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FIGURE 4.1: PLC Control Program

FIGURE 4.2: 15KW CO2 Cooling System
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FIGURE 4.3: Sensors

FIGURE 4.4: Pump- Mass flow meter- Chiller

4.2.1 Experiment and Collected Measurements

The above system is designed to work with two phase, but for technical reasons we were allowed
to make the experiments in single phase only. As a result liquid is circulated everywhere in the
system: both the cold and hot fluids enter at liquid phase and remain so.

As the considered system is the transfer line that carry the hot and cold fluids, the sensors that are
located at the boundaries of the tube are:

• FT3020: Measure the inlet cold mass flow rate
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• PT3012: Measure the inlet cold pressure

• TT3020: Measure the inlet cold temperature

• PT7022: Measure the outlet cold pressure

• TT7022: Measure the outlet cold temperature

• PT7056: Measure the inlet hot pressure

• TT7056: Measure the inlet hot temperature

• PT3072: Measure the outlet hot pressure

• TT3060: Measure the outlet hot temperature

All the sensors are shown on the figure (4.1). In addition, the 3 variables that can be controlled
are:

• Hot inlet temperature (Controlled by the amount of heat added by the heaters to the cold
fluid)

• Outlet hot pressure (Set by the accumulator level)

• Inlet Cold mass flow rate (Controlled by the pump speed)

Once the system has reached a steady state, the chosen control parameter is the hot inlet temper-
ature. We vary manually the heating power by several increase and decrease steps trying to have
some rich input that can excite all frequencies, the experimental results measured by the sensors
are presented in Fig (4.5) and Fig (4.6).

FIGURE 4.5: Temperature-Pressure measurments
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FIGURE 4.6: Mass flow rate Cold in

The experiment is done by modulating the heating power as follows: increase, decrease, in-
crease, increase, decrease as observed in the hot temperature plot Fig (4.5). The severe oscilla-
tions in the pressure measurements are due to problems in the pump damper, these oscillations
amplitude are greater than the pressure drop along the tube, which makes taking pressures at
both boundaries as boundary condition almost impossible.

The proposed solution was: first to smooth the data and then use the valve (AV7023) to calculate
the inlet mass flow rate on the hot side by using the equation of the valve . This calculated inlet
hot mass flow rate is used as a boundary condition.

• Data Smoothing

The data is smoothed by the function movmean in Matlab that takes the average value on a
user defined window. The window used for pressures is 500 (due to the oscillations) and for
the temperatures is 50. The sampling time is taken the same as the measurements 1(s). The
results are presented in Fig (4.7) and Fig(4.8):

FIGURE 4.7: Smoothed Data- Temperatures
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FIGURE 4.8: Smoothed Data- Pressures

• Hot inlet Mass flow rate

The inlet hot mass flow rate is approximated by a simple equation using the pressure drop
across the valve (AV7023) as:

ṁH
in = 14.5 ∗

√
PCout − PHin (4.1)

where 14.5 (g/s) is the nominal mass flow rate across the valve at a pressure difference of 1
bar (given from the data sheet of the valve). Then ṁH

in is calculated and smoothed see Fig
(4.9).

FIGURE 4.9: Inlet Hot Mass Flow Rate

4.3 Model Adaptation

To adapt with the experimental setup discussed above, the model presented in chapters 2 and 3 is
changed as follows:

• The two flows are liquid at pressures between (5Mpa-7Mpa), thus only liquid calls are used
to calculate the thermodynamic properties
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• hot fluid propagates in the outer tube and the cold fluid is in the inside tube

• the boundary conditions are changed from (inlet enthalpy-inlet pressure-outlet mass flow)
to (inlet enthalpy-inlet mass flow-outlet pressure)

HH(0, t) = HinH Hc(L, t) = HinC

ṁH(0, t) = ṁH
in ṁC(L, t) = ṁC

in

PH(L, t) = PHout PC(0, t) = PCout

(4.2)

• the model equations (2.1)-(2.6) are slightly modified on the friction pressure drop fṁ|ṁ|
2DρA

which becomes Afṁ|ṁ|

4.3.1 Heat Transfer and Friction Coefficient Calculations

It’s realized during experiments, that the pressure drop on both hot and cold tubes is almost
∆Pnom = 0.05 bars at mass flow rates (52 g/s) and (47 g/s) respectively. Using this fact the
friction coefficient can be obtained at nominal conditions as:

fnom =
∆Pnom

ṁnom|ṁnom|
(4.3)

For the overall heat transfer coefficient, since the flows are completely liquid, the heat transfer
calculation is much simpler than that of the two phase. The idea is to calculate the heat transfer
coefficient for both fluids at steady state by Gnielinski correlation [10] and then use a mass flow
rate correction to calculate it dynamically. This results in the following equation:

α =
1

1

αSH(
ṁH
ṁS
H

)0.8
+ 1

αSC(
ṁC
ṁS
C

)0.8

(4.4)

where αSH and αSC are the hot and cold steady state heat transfer coefficients respectively.

4.3.2 Model Validation

Since the impact of linearization is evaluated previously (Chapter 3), and as our objective is to
validate the observer, the model is linearized directly and simulated. By this method, we can infer
the accuracy of the linearization when compared to real data. Furthermore, linear steady state
distribution is assumed with:

HS
H(x) =

(HH
out −HH

in)

L
x+HH

in

PSH(x) =
(PHout − PHin )

L
x+ PHin

HS
C(x) =

(HC
in −HC

out)

L
x+HC

out

PSC (x) =
(PCin − PCout)

L
x+ PCout

(4.5)

We use inlet temperatures, mass flow rates and outlet pressures as boundary conditions (dis-
cussed above). The model evaluation is thus only on the outlet temperatures.
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Table 4.1: Numerical values and heat exchanger dimensions

L = 17.665(m) D1 = 12(mm) D2 = 33.4(mm)
HH
in = 210(KJ/Kg) HH

out = 185(KJ/Kg) HC
in = 171(KJ/Kg)

HC
out = 197(KJ/Kg) PHin = 51.17(bar) PHout = 51(bar)

PCin = 64.2(bar) PCout = 64.1(bar) ṁS
C = 0.047(Kg/s)

ṁS
H = 0.052(Kg/s) αSH = 370(W/(m2.K) αSC = 1738(W/(m2.K)

f1 = 9706(m−2.Kg−1) f2 = 12813(m−2.Kg−1) nx = 80(Space− discritization)

Linearization and averaging are discussed in Chapter 3, we use the same equations (3.3)-(3.5). The
initial condition is the same as the steady state distribution (4.5) and the results are presented in
Fig (4.10).

FIGURE 4.10: Outlet Temperatures

Fig (4.10) shows that despite our assumptions, the linearized model outputs are very close to
the measured data. The simulation and the measured outputs have the same behavior but the
accuracy is better for the cold fluid since we have a measurement from the inlet cold flow meter
(FT3020). In contrast, we don’t have inlet hot mass flow but we do approximate it using the valve
equation (4.1). This appears to be the cause of the slight difference between the measured and
simulated outlet hot temperatures.

4.4 Observer Validation

The theory of the observer architecture is all discussed in Chapter 3. It appears that some measure-
ments are not available in the experimental setup. As our model is very close to the experiments,
the missing measurements i.e output mass flow rates, inlet pressures (we can’t rely on these mea-
surements above due to oscillations) are taken from the model to serve in the calculation of the
boundary conditions for the observer. As in Chapter 3, the observer gains are calculated from
(3.16) and (3.17) with the parameters from Table (4.1), and the boundary conditions are calculated
using the transformation T. The results are presented in Fig (4.11).
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FIGURE 4.11: Estimated Outlet Temperatures

FIGURE 4.12: Estimation Errors

Fig (4.11) shows that the observer corrects the modeling errors and converges more accurately to
the experimental data than the linearized-averaged model. In contrast, the estimation error in Fig
(4.12) didn’t show the requested exponential decay.

4.5 Conclusion

The linearized-averaged model is validated by experiments, this shows that the nonlinearity
didn’t play an important role. In addition, the observer corrects the modeling errors using mea-
surements taken at the boundaries.
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Chapter 5

Conclusion

In this work, the overall objective was to build a boundary observer for two phase CO2 heat
exchanger found at CERN, Switzerland. The task of this observer is to estimate the thermodynamic
profiles along the tubes of the heat exchanger using measurements taken from the sensors located
at the boundaries.

We model the system by using 1D Navier Stokes equations instead of the complex models found
in the fluid dynamics literature (3D models, two fluid models..), then the system is linearized
around a chosen steady state. The observer is built on these linearized dynamics.

Using a Lyapunov candidate, the estimation error is proved to converge exponentially to zero.
This result was assessed by Matlab simulations.

To confirm our results experimentally, test experiments were held at the long CO2 heat exchanger
found at CERN but only for single phase flows. Comparison between the real data and simula-
tions shows that the model is significant to predict the dynamical behavior of the flow, then by
implementing our observer using the real measurements from the sensors, the observer corrects
the modeling errors and converge more accurately to the real data. However, the estimation error
didn’t converge exponentially to steady state, this needs further investigation.

To conclude, complex systems can be modeled simply, by the deep knowledge of the behavior
of the real system, this will facilitate the control part. In addition, a special care should be taken
when solving the (MI) coming from the Lyapunov analysis, this will have a huge impact on the
desired performance of the observer.

For future work, our first step is to investigate the illogical behavior of the experimental estimation
error before publishing a paper on the results of this Internship . Also, it’s interesting to validate
the observer on two phase flow. Further more, extending the approach to nonlinear hyperbolic
systems for conservation laws, these laws are profiting as they govern the motion of many physical
systems, which fall in our interest.
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Appendix A

Model Implementation and Observer
Design

A.1 Problem Formulation and Model Implementation: Chapter 2

A.1.1 Model Implementation

The equations of the discretized model are:
Hot fluid 

dhHi
dt =

AHi ṁ
H
i (hHi−1−hHi )

V H(AHi ρ
H
i +BHi )

+
ṁHi −ṁHi+1

V H(AHi ρ
H
i +BHi )

− AHi πD1dxα(THi −TCi )

V H(AHi ρ
H
i +BHi )

dPHi
dt =

ρHi (ṁHi −ṁHi+1)

V H(AHi ρ
H
i +BHi )

− ṁHi B
H
i (hHi −hHi−1)

V H(AHi ρ
H
i +BHi )

+
BHi πD1dxα(THi −TCi )

V H(AHi ρ
H
i +BHi )

dṁHi
dt = −(

ṁ2,H
i+1

ρHi
− ṁ2,H

i

ρHi−1
)

1

AHdx
+

AH(PHi−1−PHi )

dx − f1ṁH | ˙mH |
2D1ρHAH

(A.1)

Cold fluid


dhCi
dt =

ACi ṁ
C
i+1(hCi+1−hCi )

V C(ACi ρ
C
i +BCi )

+
ṁCi+1−ṁCi

V C(ACi ρ
C
i +BCi )

+
ACi πD1dxα(THi −TCi )

V C(ACi ρ
C
i +BCi )

dPCi
dt =

ρCi (ṁCi+1−ṁCi )

V C(ACi ρ
C
i +BCi )

− ṁCi+1B
C
i (hCi+1−hCi )

V C(ACi ρ
C
i +BCi )

− BCi πD1dxα(THi −TCi )

V C(AHi ρ
C
i +BCi )

dṁCi
dt = (

ṁ2,C
i

ρCi+1
− ṁ2,C

i−1

ρCi
)

1

ACdx
+

AC(PCi+1−PCi )

dx − f1ṁCi |
˙mCi |

2DHρCAC

(A.2)

Where (for both fluid the same definition):
Ai = ∂ρi

∂p |hi
Bi = ∂ρi

∂h |Pi
dx : width of the control volume
V = A ∗ dx : volume of the control volume
DH = D2 −D1: hydraulic Diameter



Appendix A. Model Implementation and Observer Design 38

A.2 Observer Design: Chapter 3

A.2.1 Steady State Coefficients-Linear model

The nonlinear system (2.1)-(2.6) is linearized using first order Taylor expansion and we have the
following matrices seen in chapter 3.

All the coefficients are computed at steady state:

AS(x) =



0 a12 a13 0 0 0
1 0 0 0 0 0
0 a32 a33 0 0 0
0 0 0 0 a45 a46

0 0 0 1 0 0
0 0 0 0 a65 a66


a12 = AH( ∂ρ∂P |h)H a13 = AH( ∂ρ∂h |P )H

a32 = −AH a33 = AHρH

a45 = AC( ∂ρ∂P |h)C a46 = AC( ∂ρ∂h |P )C

a65 = −AC a66 = ACρC

BS(x) =



1 0 0 0 0 0
b21 b22 b23 0 0 0
0 0 b33 0 0 0
0 0 0 −1 0 0
0 0 0 b54 b55 b56

0 0 0 0 0 b66


b21 = 2ṁH

AHρH
b22 = AH −

ṁ2
H( ∂ρ

∂P
|h)H

AHρ
2
H

b23 = − ṁ2
H( ∂ρ

∂h
|P )H

AHρ
2
H

b33 = ṁH

b54 = − 2ṁC
ACρC

b55 = −AC +
ṁ2
C( ∂ρ

∂P
|h)C

ACρ
2
C

b56 =
ṁ2
C( ∂ρ

∂h
|P )C

ACρ
2
C

b66 = −ṁC

CS(x) =



0 0 0 0 0 0
c21 c22 c23 0 0 0
c31 c32 c33 0 c35 c36

0 0 0 0 0 0
0 0 0 c54 c55 c56

0 c62 c63 c64 c65 c66


• c21 = f1

(2ṁ2
H+ε)

AHρH
√
ṁ2
H+ε
− 2 ṁH

AHρ
2
H

• c22 = −f1
ṁH
√
ṁ2
H+ε( ∂ρ

∂P
|h)H

AHρ
2
H

− ṁ2
H( ∂ρ

∂P
|h)Hz

AHρ
2
H

+ 2ρHzṁ
2
H

( ∂ρ
∂P
|h)H

AHρ
3
H
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• c23 = −f1
ṁH
√
ṁ2
H+ε( ∂ρ

∂h
|P )H

AHρ
2
H

− ṁ2
H( ∂ρ

∂h
|P )Hz

AHρ
2
H

+ 2ρHzṁ
2
H

( ∂ρ
∂h
|P )H

AHρ
3
H

• c31 = (dhdz )H

• c32 = απD1( ∂T∂P |h)H = −c63

• c33 = απD1(∂T∂h |P )H = −c64

• c35 = −απD1( ∂T∂P |h)C = −c65

• c36 = −απD1(∂T∂h |P )C = −c66

• c54 = f2
(2ṁ2

C+ε)

ACρC
√
ṁ2
C+ε

+ 2 ṁC
ACρ

2
C

• c55 = −f2
ṁC
√
ṁ2
C+ε( ∂ρ

∂P
|h)C

ACρ
2
C

+
ṁ2
C( ∂ρ

∂P
|h)Cz

ACρ
2
C
− 2ρCzṁ

2
C

( ∂ρ
∂P
|h)C

ACρ
3
C

• c56 = −f2
ṁC
√
ṁ2
C+ε( ∂ρ

∂h
|P )C

ACρ
2
C

+
ṁ2
C( ∂ρ

∂h
|P )Cz

ACρ
2
C
− 2ρCzṁ

2
C

( ∂ρ
∂h
|P )C

ACρ
3
C

• c62 = −(dhdz )C

A.2.2 Global Exponential Stability : Proof

Taking the time derivative of (3.15) we have:

V̇ =

∫ 1

0
∂tε

T |Λ|−1Q(x)εdx+

∫ 1

0
εT |Λ|−1Q(x)∂tεdx

=

∫ 1

0
(εTF T − ∂xεTΛT )|Λ|−1Q(x)εdx+

∫ 1

0
εT |Λ|−1Q(x)(Fε− Λ∂xε)dx

=

∫ 1

0
εTF T |Λ|−1Q(x)εdx+

∫ 1

0
εT |Λ|−1Q(x)Fεdx−

∫ 1

0
∂xε

TΛT |Λ|−1Q(x)ε+ εT |Λ|−1Q(x)Λ∂xεdx

Noting that |Λ|−1Q(x) = Q(x)|Λ|−1 and |Λ|−1Λ = Ǐ6 = diag[sign(Λi)], then

V̇ =

∫ 1

0
εTF T |Λ|−1Q(x)ε+ εT |Λ|−1Q(x)Fεdx−

∫ 1

0
∂xε

T Ǐ6Q(x)ε+ εT Ǐ6Q(x)∂xεdx

Using the expansion: ∂x(εT Ǐ6Q(x)ε) = ∂xε
T Ǐ6Q(x)ε+ εT Ǐ6Q(x)∂xε+ εT

−2µQ(x)︷ ︸︸ ︷
Ǐ6∂x(Q(x)) ε implies that

V̇ = −[εT Ǐ6Q(x)ε]10︸ ︷︷ ︸
≤0

+

∫ 1

0
(εTF T |Λ|−1Q(x) + |Λ|−1Q(x)F − 2µQ(x)︸ ︷︷ ︸

≤−2γ|Λ|−1Q(x))

)εdx

The constraints (3.16) and (3.17) guarantee that V̇ ≤ −2γV and for t ∈ R+ we have V (ε(t, .) ≤
e−2γtV (ε0). To finalize the proof (3.15) implies that:

λmin|ε|2L2((0,1);R6) ≤ V (ε) ≤ λmax|ε|2L2((0,1);R6) (A.3)
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where (λmin, λmax) are the minimum and maximum Eigen values of the matrix (|Λ|−1Q(x)) for all
x ∈ [0, 1], respectively. We obtain the (GES) since:

λmin|ε|2L2((0,1);R6) ≤ e
−2γtV (ε0) ≤ λmaxe−2γt|ε0|2L2((0,1);R6)

⇔ |ε|L2((0,1);R6) ≤
√
λmax
λmin

e−γt|ε0|L2((0,1);R6)

(A.4)

which implies (3.14) and completes the proof.
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