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A B S T R A C T

This paper describes an identification technique for control-oriented linear time-invariant models of the coupled
dynamics of the electron temperature and the poloidal magnetic flux for advanced operational tokamak
scenarios. The actuators consist of two neutral beam injectors, an electron cyclotron current drive and the ohmic
coil that provides the loop voltage at the plasma surface. The model is identified using a combination of
subspace and output-error methods for state-space multiple-input and multiple-output system identification.
This identification is applied on sets of simulated data from the METIS tokamak simulator with parameters
typical of the DIII-D tokamak, and the results of the identification are presented.

1. Introduction

The tokamak is a magnetic confinement device used to heat and
confine a Deuterium-Tritium plasma. The aim of tokamak research is
to build reliable power production system using thermonuclear fusion
(Wesson & Campbell, 2011). There exists a number of currently
operational tokamak devices as JET, DIII-D, TCV and JT-60U that are
used for experimental research.

In the past years, one of the main challenges for research in
controlled fusion has been the development of advanced tokamak
operational scenarios to design economically attractive steady-state
reactors. The heating of the tokamak machine comes from the electric
currents obtained from several sources. The main sources of current in
a tokamak are the ohmic coils and the external heating systems. A
schematic of the coils and the magnetic fields in a tokamak is shown in
Fig. 1. There are several plasma parameters, such as the safety factor,
magnetic flux, electron and ion temperatures, plasma rotational
velocity, etc., that define the plasma state. A key issue for advanced
tokamak scenarios is the simultaneous control, in real time, of several
plasma parameter profiles. The shape of the safety factor profile is
important both for plasma thermal transport and magnetohydrody-
namics (MHD) stability, and the electron temperature profile deter-
mines the plasma resistivity that governs the evolution of the safety
factor profile. Building appropriate control-oriented dynamical models
for the coupled evolution of these profiles is therefore important to
design model-based controllers for high-performance steady state

tokamak scenarios.
The safety factor is related to the poloidal magnetic flux. The

dynamics of the poloidal magnetic flux profile can be represented by a
resistive diffusion, a parabolic equation with spatially distributed
rapidly time-varying coefficients. Model-based methods for feedback
control of the safety factor profile (also called the q-profile) using
Multiple-Input and Multiple-Output (MIMO) finite dimensional sys-
tems are developed in Boyer et al. (2013), Boyer et al. (2014), Laborde
et al. (2005), Vu, Nouailletas, Lefèvre, and Felici (2016), and using
control algorithms based on infinite dimensional control theory are
developed in Bribiesca Argomedo and Witrant (2013), Bribiesca
Argomedo, Prieur et al. (2013), Gaye and Moulay (2013), Gaye,
Autrique et al. (2013).

The poloidal magnetic flux and the electron temperature are known
to be highly coupled (Wesson & Campbell, 2011). The heat transport
equation can be presented as a one dimensional linear non-homo-
geneous partial differential equation with time-varying distributed
diffusion coefficient and source term. The coefficients in this equation
are not well known and there is no consensus about their mathematical
formulation. Only some empirical models are developed for these
coefficients. An estimation of the thermal diffusion and of the source
term of the heat transport model is presented in Mechhoud, Witrant,
Dugard, and Moreau (2015) and simplified model for the temperature
profile obtained by using neural networks is presented in Witrant and
Brémond (2011).

Several works have been dedicated to the integrated control of the
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magnetic and kinetic parameters in tokamak plasmas. A simple control
algorithm based on the singular value decomposition of the experi-
mentally deduced linear static response model was used in Laborde
et al. (2005). Then, in order to cope with fast kinetic dynamics, a two-
time-scale dynamic plasma model was built by performing system
identification with experimental data (Moreau et al., 2008, 2011). Such
a dynamic model is based on the theory of singular perturbations and
has two components. First is the slow components that consists of the
dynamics of the magnetic parameters (poloidal magnetic flux, safety
factor) and the slow part of the kinetic parameters (plasma density,
temperature, toroidal velocity). The fast component consists of the fast
dynamics of the kinetic parameters. This linearized identified model is
used to control advanced tokamak scenarios in Moreau et al. (2013). A
method for profile control of the electron temperature and the safety
factor based on a real-time estimation of linearized static plasma
profiles is explored in Kim and Lister (2012). First principle model-
based control for the current profile and the electron temperature
profile is used in Barton, Wehner, Schuster, Felici, & Sauter (2015c)
and physics-based control of the plasma safety factor profile and stored
energy is used in Barton J.E. (2015), Barton J. (2015).

Approximate nonlinear physics-based models of the plasma dy-
namic evolution are being used in several simulators like CRONOS
(Artaud et al., 2010; Basiuk et al., 2003), RAPTOR (Felici & Sauter,
2012; Felici et al., 2011), ASTRA (Pereverzev & Yushmanov, 2002).
These simulators are complex computer codes that have been devel-
oped to model the plasma dynamics and predict the evolution of the
plasma. Some of the parameters in these simulators are calculated from
first principles, but others like the heat diffusivity, are empirically or
semi-empirically estimated. For example, in Geelen, Felici, Merle, and
Sauter (2015) a nonlinear least squares optimization method is used
for automated parameter identification in RAPTOR, where the model
parameters for the electron heat diffusivity and the electrical conduc-
tivity are estimated based on experimental data. In RAPTOR simulator
it is also possible to obtain linear models directly from a linearisation of
the nonlinear models around a trajectory or operating points. The
linear model is obtained by calculating the Jacobian matrices computed
by complex predictive RAPTOR simulation, while in this paper
identification techniques are used to obtain the model.

Building a linear model of the coupled evolution of the q-profile and
the electron temperature profile that can be used in a real-time control
algorithm with minimum CPU time is the main goal of this paper.
Using the system identification approach, this model can be obtained
using only measurements of the inputs and outputs. Thus, an exact
knowledge of the physics of the system is not required. In comparison
with the nonlinear models used in plasma simulators, the model
obtained by system identification is linear and fast, and does not
require an accurate knowledge of all the parameters that would be

required in a first-principle model. The identified system is obtained in
state-space form, the most suitable for control design. The simplicity
and generality of the system identification approach makes the
technique easily adaptable to other tokamak machines with different
parameters and different inputs. The identified model represents the
dynamics of the kinetic and the magnetic states of the plasma
combined in one system. The main goal of this kind of representation
is to get a system that can be used for the simultaneous control of
various parameters.

The linearized model for the evolution of kinetic and magnetic
parameters in tokamaks implies a complex MIMO system. It contains
several inputs such as the heating and current drive actuators (H&
CD), and several outputs represented by the Galerkin coefficients of the
kinetic and magnetic profiles at discrete points of the plasma radius.

In Moreau et al. (2008), Moreau et al. (2011), Moreau et al. (2013),
the structure of the identified models was based on a singular
perturbation approximation that took advantage of the large ratio
between the time scales involved in the magnetic and kinetic diffusion
processes. Such two-time-scale models consist of a slow model and a
fast model, with their respective sets of eigenvalues and eigenfunctions
that were identified separately using an output-error identification
scheme. In the present work the two-time-scale approximation is not
used, so the system is more complex and could, in principle, be more
accurate. In order to identify a large set of eigenfunctions that could
lead to improved accuracy with respect to the two-time-scale models, a
combination of a subspace identification method and output-error
identification methods is used here. The subspace identification is a
powerful method for state-space identification of MIMO systems (Di
Ruscio,; Katayama, 2006; Ljung, 1998; Verhaegen & Dewilde, 1992).
It can be combined with the least square output-error method to get a
more accurate estimation of the model (Haverkamp, 2000; Suleiman
& Monin, 2007; Verhaegen & Verdult, 2007). This method can also be
used for the estimation of the safety factor, which is closely related to
the magnetic parameters.

The identification is performed using data provided by the METIS
code, a fast integrated tokamak simulation tool for the CRONOS suite
(Artaud et al., 2010). The METIS code is designed as a fast tokamak
simulator implemented in MATLAB®. A multiple experimental data
sets can be generated using the plasma simulator. These data sets are
simulating plasma discharges and the identification method can be
tested. In this work a nonlinear simulator is used to obtain the plasma
evolution in DIII-D tokamak.

The paper is organized as follows. The problem statements and
overview of the identification procedure are elaborated in Section 2.
The pre-processing of the data for the system identification is
presented in Section 3. The subspace identification method is pre-
sented in Section 4. In Section 5 the output-error method is presented
along with the estimation of the reference state. Section 6 presents the
simulation results of the identification method and comparisons
between the data simulated with the identified linear model and the
original data.

2. Problem statement and identification procedure

2.1. Problem statement

One of the key parameters to analyze the plasma stability and
performance is the safety factor q x t( , ), defined as:

q x t x t
x t

( , ) = − ∂Φ( , )
∂Ψ( , ) (1)

where Ψ and Φ are the poloidal and toroidal magnetic fluxes,
respectively, and x is a normalized spatial variable, x0 ≤ ≤ 1.
Another parameter that can be used for the control is the inverse of
the safety factor ι x t q x t( , ) = 1/ ( , ), which can be considered as a more
natural control variable since it is proportional to the spatial derivative

Fig. 1. Representation of the coils and magnetic fields in a tokamak.
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of the poloidal magnetic flux whose evolution is governed by a
parabolic equation. The control model of the magnetic flux is given
in Blum (1989). In a cylindrically symmetric plasma column, the time
evolution of the poloidal magnetic flux is given in normalized cylind-
rical coordinates in Witrant et al. (2007). In tokamaks, the poloidal flux
does not reach a stationary value even when the loop voltage and the
auxiliary power are kept constant. In fact, at the plasma edge, we have
V Ψ t t= −∂ (1, )/∂ext and this linear flux variation induces the ohmic
current in the plasma. Following (Moreau et al., 2008), therefore
introduce the transformation: Ψ x t Ψ x t Ψ t( , ) = ( , ) − (1, )r , so that the
true state Ψ x t( , )r is the internal poloidal flux that represents the
difference between the total poloidal magnetic flux and the total
poloidal flux at the plasma boundary. This variable can indeed be used
as a state variable of this system and is even a natural state variable of
this system. It is directly related to the safety factor profile (See in
Appendix) and can therefore be used for its control. The state equation
for the internal poloidal flux is given by:

⎧
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where R0 is the major radius of the plasma (assumed constant in time),
μ0 is the permeability of vacuum, η is the parallel electrical resistivity
of the plasma, Vext(t) is the plasma surface loop voltage, and j x t( , )ni is
the non-inductive current-density. This equation has a stable dynamics
and it can be linearized and used for the system identification
procedure.

The non-inductive current density is obtained by combining the
auxiliary heating and current drive sources (neutral beams, radio-
frequency or electron cyclotron waves, etc.) and the bootstrap current:

j x t j x t j x t( , ) = ( , ) + ( , )ni aux bs (3)

The dynamics of the magnetic parameters is known to be coupled with
the temperature of the electrons Te through the plasma resistivity and
the bootstrap current, both being highly dependent on the temperature.
This makes the dynamics of this system highly nonlinear and coupled.
In the same cylindrical approximation as for Eq. (2), the time evolution
of the electron temperature is given by Hinton and Hazeltine (1976)
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where χe is the electron heat diffusivity, ne is the electron density, and
Qe is the total electron heating power density. The electron heating
energy source (the algebraic difference between the supplied and lost
energies) is calculated as a sum of several contributions. The main
source of the electron heating comes from the auxiliary heating
sources. Transport coefficients depend on many plasma parameters
(temperature, q, etc.) as well as their radial derivative (e.g. temperature
gradients, magnetic shear, etc.). These dependencies are complex and
not fully known. In most of the cases empirical models must be used
based on experimental data.

The identified model represents the dynamics of the variations,
Ψ x t( , )͠r and T x t( , )∼

e of Ψ x t( , )r and T x t( , )e around the reference values,Ψr

and Te, subject to variations P t( )∼
and V t( )∼

ext of P(t) and Vext(t) around
the reference values P and Vext.

The control input P(t) represents the power of the heating and
current drive systems e.g.:

⎡

⎣
⎢⎢

⎤

⎦
⎥⎥P t

P t
P t
P t

( ) =
( )
( )
( )

NBI
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1

2

(5)

The first actuators are two deuterium neutral beam injectors: an off-

axis co-current NBI power PNBI1 and an on-axis co-current NBI power
PNBI2. The other two inputs are the power of electron cyclotron
current drive system (ECCD) PECCD and the loop voltage at the
plasma surface Vext(t).

The output data of METIS simulator are interpolated on a unique
radial grid for each parameter profile through a cubic-splines Galerkin
approximation to represent the finite developments (see Moreau et al.,
2008) as:

∑Ψ x t Ψ t a x( , ) = ( ) ( )r
k

n

rk k
=1

Ψ

(6)

∑T x t T t b x( , ) = ( ) ( )e
k

n

ek k
=1

T

(7)

where ak and bk are cubic splines for the magnetic profile and for the
temperature profile, respectively. For the spatial discretization of
Ψ x t( , )r , 11 spline functions (n = 11Ψ ) were used at radial knots
x = 0, 0.1, 0.2,…,1, and for the spatial discretization of T x t( , )e , 9 spline
functions (n = 9T ) were used at radial knots x = 0, 0.1, 0.2,…,0.8. The
factor x1/ that appears in (2) and (4) could lead to an ill defined central
value due to singularity in x=0 when spatial discretization is applied.
Spatial discretization methods dealing with systems with that kind of
structure can be found in Shen (1997), Witrant et al. (2007).

Based on the structure of this physical system (4), (2) and flux-
averaged plasma transport equations, a linearized gray-box model of
the system can be postulated in the form Moreau et al. (2008), Moreau
et al. (2011). This model can be presented in the standard state-space

form by defining X t Ψ t T t( ) = [ ( ) ( )]͠ ͠ ∼
r
T

e
T T and U t P t V t( ) = [ ( ) ( )]∼ ∼∼ T

ext
T :

X t AX t BU t˙ ( ) = ( ) + ( )͠ ͠ ∼
(8)

with:
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where t t t tΨ ( ) = [Ψ ( ), Ψ ( ),.., Ψ ( )]͠ ͠ ͠ ͠r r r rnΨ
T1 2 and T t T t T t T t( ) = [ ( ), ( ),.., ( )]∼ ∼ ∼ ∼

e e e en
T

1 2 T are
the state vectors representing the sets of the Galerkin coefficients of
Ψ x t( , )r and T x t( , )e , respectively. The derivation of the matrix structure
of the system using a Galerkin approach applied on (2) and (4), is given
in details in Moreau et al. (2008). This model is a lumped-parameter
state-space mathematical model of this physical system, with a set of
state variables Ψ ∈͠r nΨ and T ∈∼

e
nT and of inputs P ∈∼ 3 and Vext,

related by first-order differential equations. The matrices A ∈ n n
11

×Ψ Ψ ,
A ∈ n n

12
×Ψ T , A ∈ n n

21
×T Ψ and A ∈ n n

22
×T T are state matrices and

B ∈Ψ P
n

,
×3Ψ , B ∈Ψ V

n
, Ψ and B ∈T P

n
,

×3
e

T are input matrices to be
identified. In fact, the matrix BΨ V, in front of Vext does not need to be
identified, since it is known from the definition of Ψr in (2) and the
derivation of the matrices structure presented in Moreau et al. (2008).
The idea for the control is to reach the desired equilibrium values of the
safety factor by using only a limited number of actuators. Note that this
choice of actuators can easily be modified and the identification method
holds for any set of known inputs. Assuming a temporal discretization
with time step tΔ , at time stamps t t t[ , ,…, ]N1 2 where t t N t= + ( − 1)ΔN 1 ,
with the corresponding discrete-time data U U U[ , ,…, ]N1 2 and
X X X[ , ,…, ]N1 2 sampled from the continuous-time dynamics (8), and
applying zero-order hold on the inputs, the discrete system is then
obtained as

X t A X t B U t( + 1) = ( ) + ( )͠ ͠ ∼
d d (10)

where

∫A e B e Bdτ= , =d
AΔt

d
t

Aτ
0

Δ

(11)

The inverse of the safety factor can be considered as an output of the
system. It depends only on the plasma parameters and geometry, and
not explicitly on the heating and current drive power. Its linearized
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relation with the states of the system can be represented by:

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥ι t C

Ψ t
T t

˜( ) = ·
( )
( )

͠
∼ι

r

e (12)

The data collected for the identification were obtained from nonlinear
plasma simulations, using the METIS code. METIS includes an MHD
equilibrium and current diffusion solver, and combines plasma trans-
port nonlinearity with 0-D scaling laws and 1.5-D ordinary differential
equations. Despite its simplicity, it integrates basically all the complex
features of real tokamak physics in a simplified but comprehensive and
flexible way. The complexity of tokamak physics is restored through the
very large number of possible options and models that the code offers
for every elementary physical process (e.g. scaling laws, or fixing some
source or parameter profiles and evolving others, etc).

The simulation data were divided in two sets: one for identification
and another for the validation of the identified system. For the
evaluation of the MIMO system, the outputs of the simulated system
were compared with the original data obtained from the non-linear
METIS simulator. For each output the normalized root-mean-square
error (NRMSE) fit value is calculated as:

⎛
⎝⎜

⎞
⎠⎟fit

y t y t
y t y

(%) = 100 1 −
( ) − ( )
( ) − 〈 〉

%i
i i

i i (13)

where y is the original data, y is the estimated outputs of the model, y〈 〉
represents the mean value of the output and i represents the index of
the output.

2.2. Overview of the identification method

Eqs. (8)–(12) represent a gray-box model where most of the
dynamics of the system is unknown and only the value of the matrix
BΨ V, is known from the linearization and the discretization of (2) as
shown in Moreau et al. (2008). The identification of the lumped system
is performed using the outputs represented by the Galerkin coefficients.
For the identification of this state-space model a combination of two
identification methods is used. First a Multivariable Output Error State
sPace (MOESP) method (Verhaegen & Dewilde, 1992) is applied. The
model obtained by the MOESP method is not optimal for complex
systems and when the input signals are short, but it can be used to
initialize the model for the Output-Error (OE) method. A combination
of subspace and iterative least-square methods has been already used
in identification of MIMO state-space models (Verhaegen & Verdult,
2007). The MOESP method is also very useful to determine the order of
the system to be identified. The OE method initialized with the
previously identified system gives a more accurate identification of
the system dynamics. Before the identification, the data must be pre-
processed by removing the means from the inputs and the outputs, and
the original system must be transformed, through simple algebra, into
a system for the zero-mean pre-processed data.

Along with the identification methods, some constraints on the
eigenvalues of the system can also be introduced to reflect specific
properties of the physical system. An overview of the identification
cycle is presented in Fig. 2.

3. Pre-processing the data for system identification

The data that are used for estimation should be pre-processed by
removing the offsets before the identification (e.g. see Chapter 14 in
(Ljung, 1998)). Processed data describe the relationship between the
change in input signals and the change in output signals. The pre-
processing operation helps to estimate more accurately linear models
because the linear models identification methods cannot capture
arbitrary differences between the input and output signal levels. One
way of removing the offsets in the data is by removing from the system
variables the reference values corresponding to steady state equili-

brium around which the system has been linearized. The reference
values corresponding to a given set of steady inputs could be known in
the case where the so-called experimental data is obtained from non-
linear plasma simulators because the simulations could in principle be
extended until the plasma reaches an equilibrium. This is not the case,
however, if one uses real experimental data because, in most tokamaks,
the plasma does not reach a physical equilibrium state before the end of
the discharge even with steady inputs, so the measurements that can be
used for system identification consist only of transient data. For the
sake of generality, we shall assume that the reference values are not
known a priori, and use a technique to identify them. To bring the data
near the linearization point, the data are pre-processed by removing
the mean values:

t X t X t P t P t V t V( ) = ( ) − ( ) = ( ) − ( ) = ( ) −ext ext ext (14)

where X Ψ T= [ ]r
T

e
T T , P and V ext are the mean values of the

measured vectors. The model corresponding to the model of the zero-
mean data is:

X t t A t X B t U A t B t Δ X˙ ( ) = ˙ ( ) = ( ( ) + ) + ( ( ) + ) = ( ) + ( ) + t

(15)

where

Fig. 2. Overview of the method.
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The term Δ Xt represents an offset that should be considered when the
identification is performed. If the full state is measured and there is no
measurement noise (as in this case), the values of Δ Xt j are known and
can be calculated for each different measurement data set Xj repre-
sented by Ψ t( )r and Te(t).

In the black-box subspace based algorithms or in the case where
there is a measurement noise in the data, this offset should be
estimated considering a constant input to the system as in Bauer
(2000). In such identification procedures as the output-error method,
the system can be presented in a specific form where Δ Xt j can be
introduced as an additional input of the system.

4. Subspace identification

4.1. MOESP method for system identification

These simulations consist of multiple short input/output data sets.
In the different reference sets, the inputs of the MIMO system are
modulated in order to have a better estimation of the dynamics of the
system for each input/output channel.

Thus, linear-multivariable system identification techniques are
used where the multi-experiment data are merged together for one
identification cycle. Techniques for the multi-experiment case are
explained in Duchesne, Feron, Paduano, and Brenner (1996),
Suleiman and Monin (2007). Here the extension is done in a similar
way for the MOESP method. The subspace method is used to find an
initial system, i.e. approximations for the elements in the Ad, Bd and
Cd matrices, which will be used as initial values for the recursive
output-error identification. The identified system using the subspace
identification method is given by the discrete-time LTI system

t A t B t t C t( + 1) = ( ) + ( ) ( ) = ( )d d e d, (17)

where A ∈d
n n× , where n n n= +Ψ T is the state matrix,

B B B B= [ ] ∈d e d P d V d δ
n

, , , ,
×5 is the input matrix and C ∈d

n n×y is the
output matrix of the discrete system, where ny is the number of
outputs. In these experiments, the input data is

t P t V t( ) = [ ( ) ( ) 1]T
ext

T . The output data are combined as:
t Ψ t T t( ) = [ ( ) ( )]r

T
e
T T . Here the matrix Bd δ, is added to deal with the

additional constant input that should identify the offset that is obtained
due to the pre-processing of the data.

First, the output and input data are stored in Hankel matrices noted
as k N1, , and k N1, , , respectively.

The subscript 1 is the index of the first data sample and k denotes
the number of rows in the matrix. N represents the last data sample of
the experiment. The data equation in this work is extended to deal with
multiple data sets that are merged together. Techniques dealing with
multiple data sets in subspace identification methods are presented in
Duchesne et al. (1996), Suleiman and Monin (2007). The LQ decom-
position (where L is a lower triangular matrix) of the data matrix using
the MOESP method for multi-experiment data is obtained as:
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The calculation of L22 is fully explained in Katayama (2006).

4.2. Determining the order of the system

The identification data is extracted using the METIS code and
measurement noise is not present in the data. Thus, the order of the
system is estimated using the technique used for MOESP method for
noise-free data (Katayama, 2006).

By performing a singular value decomposition (SVD) on L22, we get

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥L WΣV W W Σ V

V
W Σ V= ≃ [ ] 0

0 0
=T

T

T
T

22 1 2
1 1

2
1 1 1

where, Σ is a diagonal matrix with singular values of L22 on its diagonal,
the columns of W are the left singular vectors and VT has rows that are
the right singular vectors obtained by SVD. Examining the elements of
the rectangular diagonal matrix Σ, a decision can be made about the
choice of the order of the system. The order of the system can in
principle be obtained by reducing Σ to the first n elements with highest
values, Σ diag σ σ σ= [ , ,…, ]n1 1 2 , where σ σ σ σ σ≥ ≥ …≥ > 0 ≈ ≈ …n n n1 2 +1 +2

In the case of this system, Σ was calculated by taking as outputs all
the 20 available measured outputs for Ψ x t( , )r and T x t( , )e at 11 and 9
radial points, respectively. The decision about the order of the system
using subspace methods is heuristic. The order of the system, n should
be taken such that the values of the eliminated elements of Σ are zero or
close to zero. The first 10 singular values of Σ are presented in Fig. 3.
From the singular values it can be concluded that the system can be
well represented if the order is taken to be n ≥ 4. Another criterion that
limits the order of the system is that the characteristic times of all the
identified eigenmodes should be larger than the sampling time. In
addition, the controlled system has only a few degrees of freedom
because there are only 4 available actuators.

We thus restricted, for the sake of simplicity and for the needs of
the control application, the order of the system and the number of
controlled outputs to a maximum of n n= = 8y . The sum of the first 8
singular values is 13.23, and it higher than 95% of the sum of all
singular values in Σ. Thus, for the outputs of the system, 4 outputs were
taken for the poloidal magnetic flux and 4 outputs for the electron
temperature in particular radii that are important for profile control.
This reduction of the number of outputs used for the identification
simplifies the identification process and reduces the number of
parameters that need to be estimated.

Once the order of the system has been selected, an estimate of the
extended observability matrix Γk is calculated as:

Γ W Σ=k 1 1
1/2

4.3. Eigenvalues constraints in subspace identification

The initial estimate of Ad using the MOESP method is given by
minimizing the cost function

J A Γ A Γ( ) = −Γ d d F0 1 (19)

Fig. 3. First 10 singular values of Σ that indicate the order of the model.
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where Γ Γ n k= (1: ( − 1), :)k y0 and Γ Γ n n k= ( + 1: , :)k y y1 . Here Γ i j( : ;:)k

stands for the submatrix of Γk which contains the columns from i-th to
j-th columns. · F denotes the Frobenius matrix norm. The solution of
this linear least-squares problem with the analytic minimum is

A Γ Γ=d 0
−1

1 . Some of the poles of Ad obtained from (19) may be
complex-conjugate, which may cause oscillations in the identified
system response. This physical system is diffusive and the differential
operator of the diffusion equation with diffusion coefficient is
Hermitian (Ramos, 1987), thus with real eigenvalues. Moreover the
experimental observation does not show oscillations in the data. For
these reasons we have chosen to constrain the eigenvalues in an
arbitrary small band close to the real axis. As we shall see later, the
systems identified within this constraint yield satisfactory simulations
of the original data, so there was no real need for introducing complex-
conjugate eigenvalues.

The technique of eigenvalue constraints for system identification
that is used in this work is elaborated in Miller and De Callafon (2013).
Using this method, the eigenvalues can be constrained by defining
Linear Matrix Inequalities (LMI) regions and incorporating them into
the subspace identification problem. The LMI-regions define convex
regions of the complex plane as LMIs.

An LMI region is a convex region of the complex plane, defined
in terms of a symmetric matrix α and a square matrix β, as:

z f z= { ∈ : ( ) ≥ 0} (20)

where

f z α βz β z( ) = + + T (21)

where z is complex conjugate of z. The concept of using LMI regions for
LMI-based synthesis is first introduced in Chilali and Gahinet (1996).
Here we present the central theorem that is given in Chilali and
Gahinet (1996):

Theorem 1. The eigenvalues of a matrix ∈ n n× lie within an LMI
region given by (20) if and only if there exists a matrix N ∈ n n× such
that:

N N α N β N β N= > 0, ⊗ + ⊗ ( ) + ⊗ ( ) ≥ 0T T T (22)

The concept of constraints based on LMI regions is incorporated in the
subspace identification problems with the methods based on the
extended observability matrix proposed by Miller and De Callafon
(2013).

In order to get a modified model that consists of eigenvalues close
to the real axis, the cost function (19) is modified as:

J M N Γ A N Γ N Γ M Γ N( , ) = − = −Γ d F F0 1 0 1 (23)

where N is a right-hand weighting matrix and M A N= d . The optimiza-
tion problem with convex constraints is stated as follows:

Given the estimate of the extended observability matrix Γ and the
LMI region described by parameters α and β,

J M N

α N β M β M

min ( , )

subject to: ⊗ + ⊗ + ⊗ ≥ 0;
Γ

T T (24)

N N= > 0T

with:

⎡
⎣⎢

⎤
⎦⎥β = 0 1

− 1 0 (25)

where α δ= 2 is a small number that limits the imaginary part of the
poles p ∈  of the identified system into an arbitrary small band
around the real axis in the complex plane represented by the set

p Im p δ δ= { ∈ : | ( ) | ≤ , ≥ 0} .
Once M and N have been found, the new estimate is calculated as:

A MN=d
−1. The convex optimization problem is solved using the

YALMIP toolbox for MATLAB (Löfberg, 2004). The matrices Cd and

Bd e, were obtained using the standard MOESP method (Katayama,
2006).

This identification method is not always sufficient for large MIMO
system. As will be seen in Section 5, the model obtained by the MOESP
for the problem discussed in this paper yields to some fitting errors
when comparing the simulated outputs with the original data.
However, this method provides a good guess for initializing the system.
We have therefore used this model as a starting point for an iterative
process in which the order of the system is fixed and the model
matrices are optimized in each iteration by performing an output-error
identification.

5. Output-error identification

5.1. Estimation of the state-space matrices

The output-error method is an iterative method (Verhaegen &
Verdult, 2007) and requires initial values of the parameters that are
estimated. The subspace identification method presented in Section 4
provides an initial model of the system. The model identified with the
subspace method can be easily transformed in a form such that the
output matrix Cd is an identity matrix C I=d ny. This representation of
the state space model is called an observable canonical form. It can be
used when direct measurement of the states = are available and
pre-process the data as explained in Section 3. Also the known values of
the matrices BΨ V, and Δ Xt at this stage are introduced. Representing
the system in this form avoids the need to identify the output matrix C,
which reduces the number of parameters that needs to be estimated.

Using an iterative method the vector θ vec A vec B= [ ( ) ( ) ]d
T

d P
T T

1 , that
contains all the unknown matrices A and Bp is estimated by minimiz-
ing the squared error between the measured states and the estimated

J θmin ( )K 1 (26)

∑ ∑J θ
K N

t t θ
K

E θ E θ( ) = 1 1 ( ) − ( , ) = 1 ( ) ( )K
i

K

i j

N

i j i j K
T

K1
=1 =1

1 2
2

1 1

i

(27)

where:

E θ E θ E θ E θ( ) = [ ( ) ( ) ⋯ ( ) ]K N
T

N
T

N
K T T

1
1

1
2

1 1K1 2 (28)

and

E θ
N

e e e N( ) = 1 [ (1) (2) ⋯ ( ) ]N
i

i

i T i T i
i

T T
1i

(29)

is the error vector where e j t t θ( ) = ( ) − ( , )i
i j i j 1 .

As in the subspace identification approach (see Section 4), the
output-error method is set for a multi-experiment data set, where
experiments with different modulations of the inputs are merged for a
better estimation of the dynamics of the MIMO system. In this
application, the multiple-cost approach (Leith, Murray-Smith, &
Bradley, 1993; Ljung, 1998) for the definition of the cost function
(26) is used. For the identification, there are the measured values of the
set: { , }j i j i, , with j N= 1, 2,…, i and i K= 1, 2,…, (K denotes the
number of experiments and Ni is the number of data samples in the i-
th experiment).

The estimated state and initial condition are given by:

t θ A θ t θ B θ t( + 1, ) = ( ) ( , ) + ( ) ( )

(0) = (0)
j d j d e e

j j

1 1 1 , 1

(30)

where the inputs are combined in one vector t t t( ) = [ ( ) ( ) 1]e
T

ext
T

and the matrix ∫B e B dτ=d e
Δt Aτ

e, 0
where B B B Δ X= [ ]e p v t j . The estimate

(30) is presented in a discrete form with a discretization time equal to
the sampling time of the experiments, Δt = 5 ms.

Using the estimate in (30), the minimization of (27) can be
performed by using a iterative gradient search method. In this
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application we use the Levenberg Marquardt method. The initial value
of θ1 for the optimization is the one obtained previously with the
MOESP method. In Fig. 4 the comparison between the outputs of the
identified systems with MOESP and output error methods are pre-
sented for a particular experiment. From the plots it can be easily
noticed that the results, obtained using only the MOESP subspace
method, are not satisfactory due to the low NRMSE fit value of the
compared outputs. Applying an additional optimization to the model,
using the output-error method, improves the performance of the
identified system.

5.2. Estimation of the reference steady-state

Once the best fitting model is obtained and the optimal discrete
representation of the system is transformed into a continuous-time
linear time invariant (LTI) model A B C[ , , ]ι , the reference equilibrium
values of the states as in Moreau et al. (2008) could be estimated.
Considering a constant input applied for a sufficiently long time,
U t U( ) = , the steady state values Ψr and Te are obtained. At steady
state the plasma is in equilibrium, and X can be calculated using the
steady state solution ( t˙ ( ) = 0) of (15), and estimating the offset by
(16) as:

X A B U U Δ X X= − [ ·( − ) + ] +t
−1 (31)

The reference equilibrium point for the inverse of the safety factor is
then:

ι C X= ι (32)

With this approximate estimation of the reference states, the reduced
states X͠ around the reference point can be found. The error of the
approximation can only introduce a constant offset both on the
controlled variables and their target values. It should therefore have
no effect on the control action, which depends only on their difference.

6. Identification results

For the identification of the model, 22 data sets from the METIS
tokamak simulator were provided. The plasma parameters were those
of a typical DIII-D steady state scenario that is described with more
details in Moreau et al. (2013). The toroidal field is 1.8 T, the central
plasma density is 5·1019 m−3 and the plasma current varies between
0.6 MA and 1.2 MA depending on the values of the heating and current
drive actuators. The simulations were divided into several groups
presented on Table 1. In each group, either a single input was
modulated or different inputs were modulated in order to have a better
estimation of the response of the system when the various inputs are
simultaneously varying. The inputs were modulated using pseudoran-
dom binary sequences in order to excite all the relevant frequencies

which provides an accurate model that is valid in a large frequency
range. In a real tokamak, such square wave excitation of the actuators,
and in particular of Vext, may not be possible due to the finite response
time of the actuators to their command. However, the response model
we are seeking here is to provide the response of the plasma to changes
in the actuator commands, rather than the response to the actual input
powers and surface voltage.

Half of the data set is merged to identify the model and the other
half is used for the validation stage. The simulation time for each data
set is 15 s and only the data after 2.5 s were used, i.e when the system
outputs reach values close to the reference values around which the
linear model is sought. The measurements are taken with a sampling
time of 0.005 s. The four actuators of the system, PNB1, PNB2, PECCD
and Vext have allowed ranges of variation between 0 − 5 MW,
2.5 − 10 MW, 0 − 4 MW and −0.2 − 0.5 V, respectively.

For the outputs of the system, 4 Galerkin coefficients were chosen
from the poloidal magnetic flux profile Ψ and the safety factor ι, at
knots x = [0, 0.4, 0.7, 0.9] and 4 Galerkin coefficients were chosen for
the electron temperature, Te at knots x = [0, 0.2, 0.3, 0.5]. Thus the
identified system is of order 8.

The characteristic time constants of the estimated system are:
7.69 s, 1.0 s, 0.75 s, 0.62 s, 0.13 s, 0.11 s, 0.07 s, 0.01 s. The estimated
A satisfies the eigenvalue constraints described in Section 4.2.
Simulations were included where only specific actuators were modu-
lated while the others are fixed for a better estimation of the columns of
BP that are related to these inputs. The calculated value of BΨ V, , which
is known from the physics of the problem, provides the response of the
poloidal magnetic flux to the most powerful actuator in the system,
Vext.

Note that this system is a linearized model that represents the
dynamics of the kinetic and magnetic profiles in a tokamak in a
relatively broad vicinity of the linearization point, since the reference
data set has a large variation of the actuators. Despite the highly
nonlinear dynamics of the physical system, this model can be used only
if the states of the system are in this broad vicinity, and therefore it is
restricted to profile control applications in a particular tokamak and
plasma scenario (toroidal magnetic field, plasma shape and average
density) but with relatively large power variations (several megawatts).
By taking the mean value of all the inputs used for the identification:
P = 2.3 MWNBI1 , P = 4.8 MWNBI2 , P = 1.1 MWECCD and V = 0.028 Vext as
reference inputs, the reference states of the identified system can be
calculated. Calculating the reference states for Ψ and Te using (31), we
get: Ψ = [2, 1.43, 0.61, 0.18]r

T Wb and T = [5.56, 5.31, 5.03, 3.94]e
T keV.

The results of the system identification can be evaluated by
comparing the data predicted by the identified model with the original
data. The inputs waveforms used in the simulation # 22 that is included
in the identification data are presented in Fig. 9 and the identification
results in Figs. 5 and 6. The results for simulation # 19, which is not
used for identification but only for validation, are also presented. The

Fig. 4. Comparison between the measured values of the simulated system and the
outputs of the identified system for the MOESP and the output-error methods for
simulation # 22 (see Table 1).

Table 1
Table of the nonlinear METIS simulations used for the system identification showing the
minimum and maximum values of the square-wave modulated inputs (simulation
numbers used for the identification: # 1, 2, 3, 4, 11, 14, 16, 17, 18, 21, 22).

sim. number V V( )ext P MW( )NBI1 P MW( )NBI2 PECCD (MW)

1 0.02 1.5 2.5 5
2–6 −0.030–0.120 1.5 2.5 5
7–8 0.02 1.5 0–5 5
9–10 0.02 1.5 2.5 2.5–7.5
11–12 0.02 0–5 2.5 5
13 0.02 1.5 0–5 2.5–7.5
14 0.02 0–4 2.5 2.5–7.5
15–18 0.02 0–4 0–5 2.5–7
19–20 −0.23–0.27 0–4 0–5 2.5–7.5
21 −0.030–0.120 0–4 2.5 2.5–7.5
22 −0.030–0.120 1.5 0–5 2.5–7.5
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input waveforms are presented in Fig. 10 and the evaluation results in
Figs. 7 and 8. In both simulations all the inputs were modulated and
the plots of the reference data (METIS simulation) are compared with
the output data predicted by the identified system. For each output of
the system, the fit parameter values varied from about 70 − 98% for
Ψ x t( , )r outputs and 60 − 88% for T x t( , )e . The quality of the fit is varying

Fig. 5. Plot ofΨ t( )r vs time for the simulation # 22 (see Table 1), The black dashed traces

represent the outputs of the simulation of the identified system and the red traces
represent the outputs of the original METIS simulation. The fit parameter defined in Eq.
(13) is indicated in each frame.

Fig. 6. Plot of Te(t) vs time for the simulation # 22 (see Table 1), The black dashed
traces represent the outputs of the simulation of the identified system and the red traces
represent the outputs of the original METIS simulation. The fit parameter defined in Eq.
(13) is indicated in each frame.

Fig. 7. Plot ofΨ t( )r vs time for the simulation # 19 (see Table 1), The black dashed traces

represent the outputs of the simulation of the identified system and the red traces
represent the outputs of the original METIS simulation. The fit parameter defined in Eq.
(13) is indicated in each frame.

Fig. 8. Plot of Te(t) vs time for the simulation # 19 (see Table 1), The black dashed
traces represent the outputs of the simulation of the identified system and the red traces
represent the outputs of the original METIS simulation. The fit parameter defined in Eq.
(13) is indicated in each frame.

Fig. 9. Plot of the four inputs (P and Vext) and the total plasma current (Ip) vs time for
simulation # 22 (see Table 1).

Fig. 10. Plot of the four inputs (P and Vext) and the total plasma current (Ip) vs time for
simulation # 19 (see Table 1).
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within these ranges for all different simulation data except for
simulations # 15 and # 20. The fit parameters for simulations # 15
and # 20 were also in the same range if the data is restricted to
t < 11.6 s, but they become poor at the end of the simulation

t(11 s < ≤ 15 s), yielding fit parameters around 24 − 45% for Ψ x t( , )r
and 55 − 58% for T x t( , )e . The results for simulation # 20 are presented
in Figs. 12 and 13 and the inputs in Fig. 11. This is explained by the
fact that the total power dropped down to 2.5 MW between 11.6 s and
15 s, which results in a low temperature plasma (T t(0, ) < 2.3 keVe ,
T t(0.2, ) < 2 keVe , T t(0.3, ) < 1.8 keVe , T t(0.5, ) < 1.24 keVe ) where non-
linearities become more important. The dynamics of the temperature is
faster than the dynamics of magnetic flux and when the temperature
states are out of the validity domain, this implies a bad estimation of
the magnetic flux states because of their strong coupling. Note that
when we have short temperature drops, the estimate remains reason-
ably accurate. The identification results have shown that a linearized
multivariable model of the coupled dynamics using a limited number of
actuators can be obtained and that the model fits the original data
satisfactorily when the power remains in the range of 2.5 − 16.5 MW. .

7. Conclusion

This identified LTI model can be used in future work for the control
of the coupled parameters in tokamaks. The identification scheme can
be easily adapted to different tokamaks and in different conditions
where the inputs are different than those used in this study.

The actuator variations used in METIS to obtain the identification/
validation data are quite large (several megawatts, fractions of a volt)
and typical of the variations that will be allowed during control
experiments, with plasma current varying between 0.6 MA and
1.2 MA. As long as the toroidal field and plasma shape do not change,
the identified model should then be appropriate for control applica-
tions. Otherwise, if a non-linear model is not available, the only way to
use the present approach is to perform series of linear model
identifications around different plasma reference profiles. Previous
approaches (Moreau et al., 2008, 2011, 2013) to the simultaneous
control of magnetic and kinetic variables in a tokamak based on the
same postulated linear system structure used singular perturbation
methods (a two-time-scale approximation) to divide the system into a
slow and a fast system that were identified separately. In contrast, the
linear model obtained here contains the whole coupled dynamics of the
electron temperature and the poloidal magnetic flux, which may be
more adequate for some tokamak machines, depending on the differ-
ence of the kinetic and magnetic time scales in a particular machine.
The identification method presented in this paper is faster than the one
presented in the previous approaches. The execution time of the
subspace identification takes about 10 s, while the iterative output-
error methods execution time takes about 180 s. This combination of
subspace and output-error methods could also be used within the two
time scale estimation. It can provide a better estimate of the respective
order of the slow and the fast models based on the information
contained in the low frequency and high frequency data set, respec-
tively.
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Fig. 11. Plot of the inputs (P and Vext) and the total plasma current (Ip) vs time and the
plasma for simulation # 20 (see Table 1).

Fig. 12. Plot of Ψ t( )r vs time for the simulation # 20 (see Table 1), The black dashed

traces represent the outputs of the simulation of the identified system and the red traces
represent the outputs of the original METIS simulation. The fit parameter defined in Eq.
(13) is indicated in each frame. In this simulation at 11.6 s, the total power drops down
to 2.5 MW.

Fig. 13. Plot of Te(t) vs time for the simulation # 20 (see Table 1), The black dashed
traces represent the outputs of the simulation of the identified system and the red traces
represent the outputs of the original METIS simulation. The fit parameter defined in Eq.
(13) is indicated in each frame. In this simulation at 11.6 s, the total power drops down
to 2.5 MW.
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Appendix A. Estimation of the safety factor profile

While the poloidal magnetic flux Ψr is a natural choice to describe the plasma state, control objectives are generally formulated in terms of the
safety factor (Barton et al., 2013; Bribiesca Argomedo et al., 2013a) or its inverse (Moreau et al., 2013). A change of variable is then necessary to
convert Ψr into the controlled variable. For example, the relation between ι x t( , ) and Ψ x t( , )r can be written as in Moreau et al. (2011):
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1 ∂ ( , )

∂
r
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r

(A.1)

where the normalized radius is defined as x Φ Φ= ( / )max
1/2 and Φ t Φ t( ) = (1, )max is the toroidal flux inside the magnetic separatrix. The inverse of the

safety factor can be presented by finite expansions on a different set of basis functions (Moreau et al., 2013). The approximation of ι with the basis
function α x x da dx( ) = (1/ )( / )k k , where ak are the cubic splines for Ψr defined in Section 2, is obtained as

∑ι x t
Φ t

α x Ψ t( , ) = − 1
2 ( )

( ) ( )
max k

n

k rk
=1 (A.2)

If Φmax is assumed to be constant, which is a good approximation when the toroidal field and the plasma shape are fixed, a matrix Cι for the
relation between ι t( ) and Ψ t( ) can be found as:

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥ι t C X C

Ψ t
T t

˜( ) = · = [ 0]
( )
( )

͠
͠

∼ι ι Ψ
rk

ek
, r

(A.3)

Once the model for the dynamics ofΨr and Te is identified, the relation between ι and the states is approximated by (A.3) using the expression (A.2)
to define the matrix Cι Ψ, r.
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