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Abstract— Models describing natural phenomena can depend
on parameters that cannot be directly measured, hence the
necessity to develop inverse techniques to determine them. The
goal of this paper is to utilize such a technique to enable
better initialization of ice sheet models for Antarctica. This
will enable models to produce better forecasts as part of climate
studies. The parameter of interest is the basal sliding coefficient,
which characterizes the contact of the ice sheet with the bed
underneath. A Lyapunov based approach is proposed to control
the convergence of the 1D inhomogeneous transport model
toward a feasible equilibrium matching the measurements. This
method results in a new update law for the coefficient inversion.
The results, which show an improved convergence toward the
observed ice thickness, are compared with a currently used
inverse method.

I. INTRODUCTION

Antarctica has been the subject of numerous studies as
it encompasses a large variety of phenomena that impact
reality around us. The understanding and study of past and
future behavior of the Antarctic ice sheet requires a good
initialization of the models used to simulate the dynamics of
the ice. Initializing such models with the observed surface
topography and velocity field requires the knowledge of basal
characteristics of the ice sheet. Such characteristics cannot
be directly measured. In this paper, the focus is on the basal
sliding coefficient As that describes the sliding of ice sheets
over the basal bed. Using a constant As in ice sheet models
forward in time leads to a simulated ice sheet that is not
necessarily in close agreement with the observed one. Alter-
natively, spatial variations of the basal sliding coefficients can
be obtained through an iterative method, thus guaranteeing
a simulated ice sheet close to the observation. Our method
utilizes the misfit between the simulated and observed ice
thickness in order to modify As. It will be compared to that
of Pollard and DeConto [1] as their method also uses such
a misfit to iteratively update the basal sliding coefficient.
This parameter can be constrained by noticing that it acts
as a transport coefficient for the ice thickness h, a quantity
whose space distribution is measured for Antarctica. The
evolution of h can be modeled by a diffusive nonlinear partial
differential equation (PDE) [2]. This fact is exploited here
using a Lyapunov-based technique to find the distribution
of As that ensures the stability and exponential convergence
of the modeled h toward its measured value. In fact, this
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convergence analysis was first introduced by A. M. Lyapunov
in 1892 [3] when studying the properties of motion, which
is of course described by PDEs. Since then, the Lyapunov
method has been widely used, e.g. see [4], [5] and [6],
and has not only included motion but a diverse array of
phenomena [7], [8].
Ice-sheet models can vary depending on their complexity,
from models solving the full Stokes equations [9] to simpler
models where the Shallow-Ice approximation (SIA) [10], the
Shallow-Shelf approximation (SSA) [11], or a combination
of the two [12] is used. Such models can also vary in the
number of spatial dimensions considered, from spatially dis-
tributed depth-dependent 3D models [9] to depth-integrated
1D models [13]. In this paper we propose a first proof of
concept based on the one dimensional case, and as we are
interested in the ice in contact with the bedrock we decided
to investigate models with SIA. This approximation does
not include sliding, as the ice is considered to be frozen
to the bedrock. In order to induce sliding a sliding law can
be added by either choosing a nonlinear Weertman sliding
law [14] or a linear Coulomb friction law [15]; we decided
to use the former. We thus propose a law based on Lyapunov
analysis that will pave the way to extend the study to hybrid
and two dimensional ice-sheet models, which will in turn
enable the initialization of models like the fast Elementary
Thermomechanical Ice Sheet model (f.ETISh) [16].
It is worthy to mention that our approach does not imply
finding a Lyapunov function that will prove convergence
relative to a given control law. In fact, the reverse is done as
a simple Lyapunov function is chosen and an appropriate
update law is calculated in order to fulfill the required
conditions for convergence.
The performance of the proposed method is compared with
the one of Pollard and DeConto [1] in terms of cumula-
tive absolute error, difference between the simulated and
observed ice thickness, convergence time and the estimated
As. The robustness with respect to the initial value of basal
sliding coefficient As0 is also investigated.
This paper is organized as follows: in Section 2, the one
dimensional nonlinear ice diffusion equation is introduced
and simplified under SIA assumptions. Section 3 shows the
linearization of the PDE. In Section 4, Lyapunov analysis
is carried out and an appropriate update law guaranteeing
convergence is chosen. Section 5 presents the simulations
carried out on the linear and nonlinear systems and the
obtained results are discussed.



TABLE I
SYSTEM VARIABLES.

Symbol Description Units
ȧ Surface mass balance m a−1

A Temperature-dependent coefficient Pa−3 a−1

As Basal sliding coefficient m a−1 Pa−1

As0 Initial value of basal sliding coefficient m a−1 Pa−1

Ās Observed basal sliding coefficient m a−1 Pa−1

b Bedrock elevation m
d Diffusion coefficient m2 a−1

g Gravitational acceleration m s−2

h0 Initial value of ice thickness m
h Ice thickness m
h̄ Observed ice thickness m
t Time a
x Spacial variable m
u Vertical mean horizontal velocity m a−1

vb Basal sliding velocity m a−1

∆h Error on the observed ice thickness m
ρ Ice density kg m−3

τb Basal drag Pa
τd Driving stress Pa

II. REFERENCE MODEL AND PROBLEM
FORMULATION

The one-dimensional evolution of ice thickness is de-
scribed by the following diffusive PDE:

ht =
(
d(h+b)x

)
x + ȧ (1)

Where h is the ice thickness, b the bedrock elevation, d
the diffusion coefficient and ȧ the surface mass balance.
All partial derivatives are denoted by t and x subscripts;
e.g. ∂ f

∂x = fx. SIA enables the use of the following set of
relationships: 

d =−uh(h+b)−1
x

u = vb +
2.A
5 hτ3

d

vb = Asτb|τb|
τb ≈ τd =−ρgh(h+b)x

(2)

Where A is a temperature-dependent coefficient, g the gravi-
tational acceleration, u the vertical mean horizontal velocity,
vb the basal sliding velocity, ρ the ice density, τb the basal
drag and τd the driving stress. A list of variables can be
found in Table I.
Substituting (2) into (1) gives:

ht =
(
ρ2g2Ash3(h+b)x|(h+b)x|

)
x

+
(

2
5 Aρ3g3h5(h+b)3

x

)
x
+ ȧ

∀ ∈ [x1,x2] and t ∈ [0,T ]
h(x1, t) = h(x1) and h(x2, t) = h(x2)

h(x,0) = h(x)+∆h

(3)

where ∆h is some error on the observed ice thickness h.
Our estimation problem is formulated as finding the dis-
tributed profile As(x) such that the solution of (3) converges
toward h (which is supposed to be an equilibrium). The
nonlinear nature of (3) clearly does not allow us to find an
analytical solution directly and we propose to use As as a

feedback gain that stabilizes the linearized dynamics through
an iterative method.

III. LINEARIZED DYNAMICS

Linearizing the dynamics around an equilibrium point is
a common practice when dealing with PDEs. A first order
Taylor series expansion around the equilibrium h = h and
As = As is carried out. A similar approach was done for
another diffusive system in [17]. As previously stated, the
aim of this paper is to find As. Expanding (3) gives:

ht = f (As,Asx ,h,hx,hxx) = ρ2g2(Asxh3(h+b)x|(h+b)x|
+3Ashxh2(h+b)x|(h+b)x|+2Ash3(h+b)xx|(h+b)x|

)
+

2
5
ρ3g3A

(
5hxh4(h+b)3

x +3h5(h+b)xx(h+b)2
x
)
+ ȧ

(4)

The linearization is carried out as follows:

ht = f̄ +(As−As)
∂ f̄
∂As

+(Asx−Asx)
∂ f̄

∂Asx
+(h−h)

∂ f̄
∂h

+(hx−hx)
∂ f̄
∂hx

+(hxx−hxx)
∂ f̄

∂hxx
+ ȧ

(5)

where f̄ = f (As,Asx,h,hx,hxx).
Denoting Ãs =As−As, Ãsx =Asx−Asx, h̃= h−h, h̃x = hx−hx
and h̃xx = hxx−hxx, and noticing that h̃t = ht (due to the fact
that ht = 0 as it represents the equilibrium of the system) we
obtain the linearized dynamics as:

h̃t = c2Ãs + c3Ãsx + c4h̃+ c5h̃x + c6h̃xx (6)

where the coefficients c2 to c6 are detailed in Appendix A.
Note that c1 = f̄ + ȧ = ht = 0.
The boundary and initial conditions become:{

h̃(x1, t) = h̃(x2, t) = 0
h̃(x,0) = ∆h

(7)

IV. LYAPUNOV ANALYSIS

This section is divided into two parts: the first part deals
with the choice of an appropriate Lyapunov function, while
the second part focuses on finding As which improves the
system convergence.

A. Lyapunov Function Candidate and its Derivative

The Lyapunov function is often chosen to be an energy-
like function that needs to be dissipated with time. In the
case of the system described by (6)-(7) a natural choice is:

V =
1
2

∫ x2

x1

h̃2dx (8)

Theorem 1: The time derivative Vt of the function V given
by (8) verifies:

Vt =
∫ x2

x1

h̃(c3Ãs)xdx+
1
2

∫ x2

x1

h̃2c4dx−
∫ x2

x1

c6h̃2
xdx (9)

∀ t ∈ [0,T ] along the solutions of (6)-(7) with the transport
coefficients given in Appendix A.



Proof: Differentiating (8) with respect to time gives:

Vt =
∫ x2

x1

h̃htdx = T1 +T2 +T3 +T4 (10)

where: 
T1 =

∫ x2
x1

h̃
(
c2Ãs + c3Ãsx

)
dx

T2 =
∫ x2

x1
c4h̃2dx

T3 =
∫ x2

x1
c5h̃h̃xdx

T4 =
∫ x2

x1
c6h̃h̃xxdx

(11)

Integration by parts is performed on T3 and T4 to allow h̃2

to appear inside the integrals. First, T3 becomes:

T3 =
∫ x2

x1

c5h̃h̃xdx =−1
2

∫ x2

x1

c5x h̃2dx (12)

Notice that due to the boundary conditions, terms like
(c5h̄2)

∣∣∣x2

x1
= 0. The same applies to all subsequent integra-

tions. Then, T4 can be expressed as:

T4 =
∫ x2

x1

c6h̃h̃xxdx =
∫ x2

x1

(1
2

c6xx h̃2− c6h̃2
x
)
dx (13)

Thus, (10) can be written as:

Vt =
∫ x2

x1

h̃
(
c2Ãs + c3Ãsx

)
dx−

∫ x2

x1

c6h̃2
xdx

+
∫ x2

x1

h̃2(c4−
1
2

c5x +
1
2

c6xx

)
dx

=
∫ x2

x1

h̃(c3Ãs)xdx+
1
2

∫ x2

x1

h̃2c4dx−
∫ x2

x1

c6h̃2
xdx

(14)

where the last equality is obtained by noticing that c4 −
1
2 c5x +

1
2 c6xx =

1
2 c4 (see Appendix B for more details).

B. Design of the Basal Sliding Coefficient

Using the Lyapunov function discussed in the previous
section, the convergence of (6)-(7) is assured with the
following theorem:

Theorem 2: If there exists α and γ > 0 such that:

1
2

c4(x)(1−α)−γ< 0 ∀ x ∈ [x1,x2] (15)

then choosing:

Ãs =−
1
c3

h̃
∫ x

x1

c4(l)dl (16)

guarantees the exponential convergence of (6)-(7) and:∫ x2

x1

h̃(x, t)dx≤
∫ x2

x1

h̃(x,0)dx e−γt (17)

Proof: Let Ãs as in (16) and replacing it in (9) gives:

Vt =−
∫ x2

x1

(
h̃2c4 + h̃h̃x

∫ x

x1

c4(l)dl
)

dx

+
1
2

∫ x2

x1

h̃2c4dx−
∫ x2

x1

c6h̃2
xdx

(18)

Using integration by parts, the first integral becomes:

−
∫ x2

x1

(
h̃2c4 + h̃h̃x

∫ x

x1

c4(l)dl
)

dx =−1
2

∫ x2

x1

h̃2c4dx (19)

Replacing (19) in (18) gives:

Vt =−
∫ x2

x1

c6h̃2
xdx (20)

Notice that c6(x)≥ 0 from (27) in Appendix A. This enables
the use of Wirtinger’s inequality [18] on the above integral:

−
∫ x2

x1

c6h̃2
xdx≤−

c6min

C

∫ x2

x1

h̃2dx (21)

where c6min is the minimum of c6(x) and C = (x2−x1)
2

π2 . We
now have:

Vt ≤−γ
∫ x2

x1

h̃2dx (22)

This concludes the proof as we have found:

α= 1 and γ=
c6min

C
=

c6min π2

(x2− x1)2
(23)

V. METHOD EVALUATION ON SIMULATIONS
AND MEASUREMENTS

A. Iterative Calculations of As

The results of Theorem 2 are used to obtain an iterative
calculation of As as follows. Notice that

∫ x2
x1

c4(l)dl is ac-
tually c7 (Appendix B), which when divided by c3 reduces
to:

1
c3

∫ x2

x1

c4(l)dl =
3
h

As +2Aρgh|(h+b)x| (24)

Equation (16) thus becomes:

Ãs =−h̃
(3

h
As +2Aρgh|(h+b)x|

)
(25)

Since As is our variable of interest and not known apriori,
we consider an iterative update law to have the equilibrium
state of the nonlinear model (3) converging toward h. The
equilibrium of the linearized dynamics (6)-(7) is thus updated
toward a solution of the nonlinear dynamics (3). This is done
with the following algorithm:
• Start with an initial guess of As and initialize the

nonlinear system with h = h.
• Run the system with the last calculated As to get close

to an equilibrium (e.g. during a time period sufficiently
large with respect to γ) and obtain h.

• At iteration i calculate Ãs as in (25) and update As using:

Asi+1 = Asi − Ãsi ∀ x ∈ [x1,x2]

if Asi+1(x)< 0 then Asi+1(x) = Asi(x)
else if Asi+1(x)< Asmin then Asi+1(x) = Asmin

else if Asi+1(x)> Asmax then Asi+1(x) = Asmax

Asi+1 = Asi+1
(26)

• Stop the simulation after a predetermined maximum
number of iterations or if

∫ x2
x1
|h̃|dx ≤ ε, where ε > 0

is an arbitrarily small scalar constant.



Inverse problems can be ill posed as a unique solution might
not exist [19]. It is a common practice to add a regularizing
term in order to impose some degree of smoothness to
the solution [20]. In our case we used a simple space
averaging filter to smooth As after each update. This filtering
also helps in rejecting high frequency variations and avoids
numerical instabilities when solving for h. Also, As is kept
bounded between Asmin = 1×10−10 m a−1 Pa−2 and Asmax =
1× 10−5 m a−1 Pa−2 which respectively represent the hard
bedrock and the slipperiest deformable sediment.

B. Simulation Results

Fig. 1. Block diagram of the numerical experiment used to evaluate the
estimation method on fictitious data. The blocks in gray represent phase
1 (synthesis of fictitious data), while those in white represent phase 2
(estimation). n and N are the iteration number and the maximum number
of iterations, respectively.

Fig. 2. Estimation for linear dynamics for three different profiles of Asre f
using fictitious data: comparison of Asre f (full orange) and As (dotted blue).
As0 (dashed purple) is the initial value of As.

The general set-up of the experiments consists of two
phases. In the first phase a reference basal sliding coefficient
Asre f is chosen and starting from an initial ice thickness h0
the system is allowed to relax until it reaches steady state,
thus giving us a reference ice thickness hre f which will be
treated as our observation. Then in phase two, hre f , (25),
and (26) are used to obtain As by updating the system after
a fixed number of iterations. The simulations are stopped
once a tolerance error is reached or after a predetermined
number of iterations. This process is shown in Fig.1.

First, we evaluate our update law on the linearized model
(6)-(7). The Crank-Nicolson method is used to discretize the

Fig. 3. Estimation of nonlinear dynamics, for two different profiles of Asre f
using fictitious data: comparison of Asre f (crossed orange) and As (dotted
blue for Method 1 and dashed red for Method 2). As0 (dashed purple) is
the initial value of As for both methods.

Fig. 4. Comparison of the evolution of the sum of the absolute error for
Method 1 (blue) and Method 2 (red) for two different profiles of Asre f using
fictitious data.

system. Here, we test the ability of the method to retrieve a
chosen Asre f . Figure 2 shows the results obtained for three
different Asre f . It is very clear that our feedback law manages
to retrieve the reference in all three cases.

Second, the same is done for the nonlinear system and
two update laws are tested: the method proposed by Pollard
and DeConto and our newly proposed feedback law (defined
as Method 1 and Method 2, respectively). During this test, a
time step dt = 10 years is used and the updates are done after
every 100 iterations for both methods. Like in the previous
case, Asre f is chosen and in Fig.3 we see that both methods
are able to retrieve the reference. However, our method offers
an improvement in the convergence rate and in the level of
the error as is apparent in Fig.4.

Fig. 5. Estimation of nonlinear dynamics, for two different profiles of As0
using real data: comparison of the evolution of the sum of the absolute error.
Upper sub-plot: using As0 = 10−7 m a−1 Pa−2, Method 1 in dark blue and
Method 2 in red. Lower sub-plot: using As0 = 10−9 m a−1 Pa−2, Method 1
in light blue and Method 2 in orange.



Fig. 6. Robustness of each method with respect to a change in As0 using
real data: upper sub-plot, for Method 1, in dark blue As0 = 10−7 m a−1 Pa−2

and in dashed light blue As0 = 10−9 m a−1 Pa−2. Lower sub-plot, for
Method 2, in red As0 = 10−7 m a−1 Pa−2 and in dashed orange As0 =
10−9 m a−1 Pa−2 .

Fig. 7. Nonlinear system using real data, distribution of the error over a
cross-section.

C. Experimental Results

Both methods are now evaluated on real data from the
Bedmap2 dataset [21]. The chosen resolution is 10 km, the
time step is dt = 10 years, updates are done after every 100
iterations, and the length of each simulation is 10,000 years.
A standard Matlab solver (ode15s) is used to solve the
nonlinear system described by (3) using the method of lines.
The test focuses on the improvement in convergence and
robustness in regards to As0. Each method is tested with two
different initial conditions As0 (10−7 and 10−9 m a−1 Pa−2).
In Fig. 5 we notice that Method 2 improves convergence
in both cases, while producing less error. In Fig. 6 we see
that Method 2 is more robust as the change in As0 produces
less variations in As compared to Method 1. Also, Method
2 seems to better capture the dynamics of the system, and
variations in As are more focused in the middle of the cross-
section while being more consistent towards the boundaries.
Next we look at the distribution of the error for both methods
when As0 = 10−9 m a−1 Pa−2. In Fig. 7 the histograms
of both methods show that low-magnitude errors are more
dominant for Method 2.

The last test is done by adding noise to hre f and observ-
ing its effect on As. Figure 8 shows that the addition of
measurement noise will increase the cumulative error but
without destabilizing the system, and that our estimate of As
does not deviate significantly from the one obtained from the
noiseless data.

Fig. 8. Comparison of the evolution of the sum of the absolute error and
the estimation of nonlinear dynamics for two different profiles of hre f using
real data (nominal in blue and noisy in dashed red).

VI. CONCLUSION AND FUTURE WORKS

This paper proposes a new update law for the initialization
of basal sliding coefficients in Antarctica. A Lyapunov-based
approach is presented and an update law which guarantees
the convergence toward the observed ice thickness is found.
This law (25) is tested on both the linear (6)-(7) and
nonlinear dynamics (3) of the one-dimensional evolution of
ice thickness (1). Our method is tested against a currently
used inverse technique [1]. The criteria of interest are the
convergence rate, error levels and error distribution, as well
as the robustness with respect to As0. For the linear system,
Asre f is retrieved as expected. For the nonlinear system, we
found that our method converges toward h at an accelerated
rate compared to Method 1. Also, our method produces an
estimated As which captures more of the dynamics of the
system, which consequently reduces the error between the
simulated h and measured h. Also, our method proved to be
more robust with respect to the initial guess of As0.

Improvements on the proposed technique will be in the
form of finding a Lyapunov function that can grant us control
over the convergence rate toward h. Seeking an adaptive
algorithm with respect to the update steps could influence
the convergence rate and improve robustness with respect to
As0. Also, a more sophisticated regularization method can
improve our estimates.

These results pave the way for expanding this approach
to include hybrid one-dimensional and two-dimensional ice-
sheet models. This will enable a better initialization of such
models which will in turn help understanding the past history
and future behavior of ice sheets.
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APPENDIX A

In this appendix, the full expressions for coefficients c1 to
c6 are shown.

c1 = ρ2g2
(

Asxh
3
(h+b)x|(h+b)x|+2Ash

3
(h+b)xx|(h+b)x|

)
+

2A
5
ρ3g3

(
5h

4
hx(h+b)3

x +3h
5
(h+b)xx(h+b)2

x

)
+ ȧ

c2 = ρ2g2
(

3hxh
2
(h+b)x|(h+b)x|+2h

3
(h+b)xx|(h+b)x|

)
c3 = ρ2g2h

3
(h+b)x|(h+b)x|

c4 = ρ2g2
(

3Asxh
2
(h+b)x|(h+b)x|

+6Ashxh(h+b)x|(h+b)x|+6Ash
2
(h+b)xx|(h+b)x|

)
+

2A
5
ρ3g3

(
20hxh

3
(h+b)3

x +15h
4
(h+b)xx(h+b)2

x

)
c5 = ρ2g2

(
2Asxh

3|(h+b)x|+6Ashxh
2|(h+b)x|

+2Ash
3
(h+b)xx

|(h+b)x|
(h+b)x

+3Ash
2
(h+b)x|(h+b)x|

)
+

2A
5
ρ3g3

(
15hxh

4
(h+b)2

x +6h
5
(h+b)xx(h+b)x

+5h
4
(h+b)3

x

)
c6 = 2ρ2g2Ash

3|(h+b)x|+
6A
5
ρ3g3h

5
(h+b)2

x

(27)

VII. APPENDIX B

Here, the simplifications done during the Lyapunv analysis
are expanded. Recalling c6 and differentiating with respect
to x gives:

c6x = ρ2g2
(

2Asxh
3|(h+b)x|+6Ashxh

2|(h+b)x|

+2Ash
3
(h+b)xx

|(h+b)x|
(h+b)x

)
+

2A
5
ρ3g3

(
15hxh

4
(h+b)2

x

+6h
5
(h+b)xx(h+b)x

)
(28)

Now, subtracting c5 from (28) gives:

c6x − c5 = ρ2g2
(

2Asxh
3|(h+b)x|+6Ashxh

2|(h+b)x|

+2Ash
3
(h+b)xx

|(h+b)x|
(h+b)x

−2Asxh
3|(h+b)x|

−6Ashxh
2|(h+b)x|−2Ash

3
(h+b)xx

|(h+b)x|
(h+b)x

−3Ash
2
(h+b)x|(h+b)x|

)
+

2A
5
ρ3g3

(
15hxh

4
(h+b)2

x

+6h
5
(h+b)xx(h+b)x−15hxh

4
(h+b)2

x

−6h
5
(h+b)xx(h+b)x−5h

4
(h+b)3

x

)
=−3ρ2g2Ash

2
(h+b)x|(h+b)x|−2Aρ3g3h

4
(h+b)3

x
(29)

For ease of notation, we define (27) as c7. Thus, it was found
that c6x−c5 +c7 = 0⇒ c6xx−c5x +c7x = 0. The next step is

to find the value of c7x :

c7x = ρ2g2
(

3Asxh
2
(h+b)x|(h+b)x|

+6Ashxh(h+b)x|(h+b)x|+6Ash
2
(h+b)xx|(h+b)x|

)
+

2A
5
ρ3g3

(
20hxh

3
(h+b)3

x +15h
4
(h+b)xx(h+b)2

x

)
(30)

From the above, we found that c7x = c4 which implies:

c4−
1
2

c5x +
1
2

c6xx =
1
2

c4 (31)
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