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Abstract— This paper studies the exponential stability of
the electron temperature profile in H-mode tokamak plasmas.
Lyapunov stability analysis is carried in an infinite-dimensional
setting on the nonlinear partial differential equation describing
the dynamics. The nonlinear components are handled with the
sum of squares framework, in order to prove the exponential
convergence of the Lyapunov function. Nominal stability of the
system is first checked, then a controller is proposed to improve
the convergence rate of the closed-loop system. The controller
algorithm including the input constraints is then used for profile
tracking on the RAPTOR simulator with different challenging
scenarios.

I. INTRODUCTION

The overall objective of controlling the plasma in toka-
maks is to steer it towards a desired operation point defining
a plasma scenario. A baseline for high-performance scenarios
for tokamaks is H-mode (High confinement mode), where the
plasma is strongly heated, exceeding a threshold above which
the transport of plasma energy in the edge area is reduced and
results in a transport barrier. In this mode, the energy confine-
ment time is significantly enhanced, typically by a factor of
2 or more [1]. To reach and maintain these high-performance
scenarios, plasma profiles control plays a fundamental role.
These profiles are: magnetic radial profiles (such as the
poloidal magnetic flux Ψ(x), the safety factor q(x) or its
inverse ι(x), where x is the location along the small plasma
radius), and kinetic profiles, such as electrons and ions tem-
perature and density. These are spatially distributed profiles
with two-time scales coupled nonlinear dynamics, hence the
difficulty of the control problem. Different approaches have
been made to tackle these difficulties. In [2] and following
works, a two-time scale linearized data-driven model was
built based on singular perturbations theory, and was used
to control the poloidal magnetic flux Ψ(x) and the safety
factor q(x) in [3]. Other works use first-principles-driven
models that capture the dominant and relevant dynamics to
synthesize the controller as in [4] [5]. Taking into account
the spatially distributed nature of the dynamics, [6] used a
spatially discretized model for current profile control, while
other works used infinite dimensional theory to synthesize
the control algorithms as in [7].

While some previous works emphasized on the coupling
between the dynamics and used a linearized model as in [8]
and the experimental validation in [9], we are interested in
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the nonlinearity of the dynamics. In this tokamak control
perspective, control of nonlinear PDEs is a recent and
challenging topic. An interesting way to tackle the problem
is to separate a “slow” finite set of eigenvalues of the system
operator that capture the dominant dynamics, and use it
as a basis to synthesize the finite-dimensional controller
[10]. But in the case of nonlinear parabolic PDEs, a precise
approximation of the dynamics may lead to a large number
of modes that should be included [11], and this is what
motivates us to choose the infinite-dimensional framework
to tackle the problem. As in [7], we use a Lyapunov control
function approach to synthesize the controller that increases
the convergence rate of the closed-loop system.

This paper is organized as follows: in Section II, we
present the dynamical model for the electron temperature
profile including the transport model modification to repre-
sent the H-mode pedestal. In Section III, we use the direct
Lyapunov method for the stability analysis of the PDE,
then we use the Sum of Squares framework to verify the
positivity of the differential matrix inequalities emerging
from the Lyapunov analysis to check the nominal stability of
the system. We then propose a control algorithm to increase
the convergence rate of the closed-loop system. Finally, in
Section IV we use the RAPTOR simulator [5] to evaluate
the control strategy including the input constraints.

The main variables definitions are given in Table I.

II. SYSTEM DESCRIPTION AND CONTROL
PROBLEM

A. Electron temperature dynamics

In this study we focus on the electron temperature Te
dynamics, modeled by a diffusion equation under the infinite
cylinder geometry hypothesis (the transport is symmetric in
the toroidal and the poloidal directions). The only space vari-
able is the cylinder radius ρ and x = ρ/a is the normalized
radial variable (a is the small plasma radius). The transport
dynamics is modeled as:
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with boundary and initial conditions: ∂Te
∂x (0, t) = 0, Te(1, t) =

Te,edge(t),∀t ≥ t0 and Te(x, t0) = T0(x),∀x ∈ [0,1].

In this model, ne(x, t) is the electron density, χe(x, t) is
the electron heat diffusivity, Te,edge(t) is the edge tempera-
ture and Psources(x, t) = POH(x, t)+Paux(x, t) is the supplied
heating power density. POH(x, t) is the power density due to



TABLE I
RELEVANT PHYSICAL VARIABLES DEFINITION

Variable Description Unit
a small plasma radius m
R major plasma radius m
Bψ poloidal magnetic field T
Bφ toroidal magnetic field T
Bφ0 toroidal magnetic field at the center T
Ip total plasma current A
ne electron density profile m−3

ni ion density profile m−3

pe electron pressure profile eV m−3

POH ohmic power density W/m3

Paux auxiliary sources power density W/m3

Ti ions temperature profile eV
Te electrons temperature profile eV
x normalized spatial variable
e electron charge, 1.6022×10−19 C
me electron mass, 9.1096×10−31 kg
Ψ poloidal magnetic flux T/m2
Φ toroidal magnetic flux T/m2
q safety factor
s magnetic shear
V ′ V ′ := ∂V

∂ρ
, and V is the volume of a ρ surface m2

ι inverse of the safety factor
χe electron diffusivity m2/s
ρ spatial variable along the small plasma radius m
ρ∗ electron gyroradius m
τE global energy confinement time s

ohmic effect and Paux(x, t) is the auxiliary heating sources.
Psinks(x, t) represents the lost power density such as electron-
ion equipartition losses Pei(x, t) and radiation losses, and is
neglected as in [5].

B. Electron heat diffusivity model

Because of the complexity of the heat transport dynamics,
there is no fully analytic model for the heat diffusivity
model. Instead, semi-empirical models have been proposed
and tested on experimental data. We choose to use the
modified bohm/gyrobohm model in [12] for χe:

χe = χec × fs, χec = (2χBe +χgBe) fs,

χBe = 4×10−5R
∣∣∣∇(neTe)
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where, χec is the classical bohm/gyrobohm model, χBe is
the Bohm diffusivity, χgBe is the gyro-Bohm diffusivity.
Bφ0 is the toroidal magnetic field at the center, R is the
major radius, q is the safety factor and Te,0.8 represents
the electron temperature at x = 0.8 and Te,1.0 at x = 1.
The term ((Te,0.8−Te,1.0)/Te,1.0) tackles the non-local depen-
dence by representing the phenomena in which the diffusivity
increases when the edge temperature is decreased, and vice
versa. s is the magnetic shear, ωE×B is the flow shearing rate,
γIT G is the growth rate of ion temperature gradient (ITG), and
k a coefficient.

In order to represent the pedestal behaviour corresponding
to the H-mode, the classical Bohm/gyro-Bohm model χec

is then multiplied by fs: the suppression function for the

electron thermal diffusivity. In fs, the first term represents
the flow shearing rate through ωE×B and the reduction of the
turbulence growth rate through the growth rate of ion temper-
ature gradient γIT G [13]. The second term reduces the trans-
port only in the region where the magnetic shear s exceeds
a specified threshold sthres. To simplify the incorporation of
this modification to the diffusivity model, the suppression
function fs was taken as polynomial approximation of the
experimental results obtained in [12].

C. Control problem

To formulate our control system from the electron tem-
perature dynamics in II-A and II-B, we consider these
assumptions:
Assumption 1. Because of the slow and small time variations
of the q profile compared to the Te one, and in order to
decouple the two dynamics in χBe (2), we choose q as
a time-averaged polynomial approximation of a nominal
q(x, t) profile simulated in RAPTOR. Similarly, LTe is a time
average for ((Te,0.8−Te,1.0)/Te,1.0) in (2), and ne is taken as
a time-fixed, line-averaged density n̄e which is a classical
variable for tokamaks, this assumption is made to focus on
the electron temperature dynamics and its nonlinear coupling
with the electron heat diffusivity.
Assumption 2. To deal with the terms with absolute value
in χBe and χgBe (2), we assume that ∂Te

∂x ≤ 0 almost always
and everywhere. This assumption is verified experimentally
given that auxiliary power sources target mainly the central
region (x≤ xinv), and act with a wide angle when deposited
on the core region (x1≤ x≤ xped), (xinv≈ 0.45 and xped ≈ 0.9
in TCV tokamak H-mode plasmas [14]). We also assume
that Te,edge is very small compared to the temperature in the
center of the plasma and we can consider it as zero.

We get the control system described by a nonlinear
diffusion PDE:
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(3)
with boundary conditions,

∂Te

∂x
(0, t) = 0, Te(1, t) = 0,∀t ≥ t0 (4)

where: A = 2
3a2 , B(x) =

−8×10−5RLTe
Bφ0

q2(x) fs(x), C(x) =

−5×10−6

B2
φ0

fs(x).

The control problem is to prove the nominal stability of an
arbitrary equilibrium point (ū(x), T̄e(x)) of the system (3)-(4),
and to synthesize a control strategy to ensure the tracking of
a reference electron temperature profile Te,re f .

III. STABILITY ANALYSIS AND DISTRIBUTED CONTROL

A. Stability of the open-loop system

In this section, we develop a Lyapunov function for the
nonlinear diffusion PDE in (3)-(4) to prove the nominal



stability of the equilibrium (ū(x), T̄e(x)). To do that, we
consider the following Lyapunov function candidate:

V1(Te) =
1
2

∫ 1

0
xPTe(x)(Te− T̄e)

2 dx (5)

where T̄e is the steady-state equilibrium resulting from a
constant input ū. PTe(x) is a weighting function with PTe(x)>
0 for all x∈ [0,1] to ensure the positivity of V1(Te). The Lya-
punov function candidate is (xPTe(x))-weighted L 2([0,1])
norm squared. We multiply by x to handle the singularity
at x = 0 when we differentiate V1(Te). Using a similar
development as in [15], we present the main result of the
paper.

Theorem 1: Suppose that for a given positive number
α1, there exist a polynomial PTe(x) and a 5× 5 symmetric
polynomial matrix H(x), such that PTe(x)> 0 for all x∈ [0,1],
H(0)≥ 0, H1,1(1)≤ 0 and:

F(x)+ H̄(x)≥ 0, ∀x ∈ [0,1] (6)
where F(x) + H̄(x) is defined in (8) and its elements are
defined in (9).

Then the time derivative V̇1 of V1 defined in (5) along the
solutions of (3)-(4) verifies:

V̇1(Te)≤−α1V1(Te)+
∫ 1

0
xPTe(x)(Te− T̄e)ũ dx (7)

where ũ is defined as ũ = u− ū.
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Proof: The time derivative of the Lyapunov function
(5) along (3)-(4) is:

V̇1(Te) =
∫ 1

0
xPTe(x)
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Integrating V̇ by parts we get:

V̇1(Te) = APTe(x)(Te− T̄e) x
(
B(x)+C(x)

√
Te
)(∂Te

∂x

)2
∣∣∣∣∣
1

0

−
∫ 1

0
A

∂ (PTe(x)(Te− T̄e))

∂x

[
x
(
B(x)+C(x)

√
Te
)(∂Te

∂x

)2
]

dx

+
∫ 1

0
xPTe(x)(Te− T̄e)u dx
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tor of spacial partial derivatives up to order m. Considering
the boundary conditions (4) we get:
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∫ 1

0
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∫ 1

0
G(x,
√

Te,D1Te) dx+
∫ 1

0
xPTe(x)(Te− T̄e)ũ dx

(10)

At this stage we perform a change of variable τ =
√

Te,
to ensure the polynomial dependence of G on the dependent
variable and its derivatives. We can then write G in terms of
τ as:

G(x,D1
τ) = ξ (D1

τ)T F(x)ξ (D1
τ) (11)

where F(x) is defined in (8)-(9) by only taking the fi
elements, and:
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where: µ(τ) :=
[
1,τ,τ2,τ3,τ4

]T , and H(x) is a 5× 5 sym-
metric polynomial matrix. Using (12) and since we have that:
µ(τ(1)) = [1,0,0,0,0]T , we rewrite (10) as:

V̇1(Te)+α1V1(Te) =−
∫ 1

0
ξ (D1

τ)T (F(x)+ H̄(x))ξ (D1
τ)

+H1,1(1)−µ(τ(0))T H(0)µ(τ(0))+
∫ 1

0
xPTe(x)(Te− T̄e)ũ dx



f1 =
4
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1
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2
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2
3

dH1,3
dx +

dH2,2
dx , h11 = H1,3 +H2,2, h12 =

1
2

dH1,4
dx +

dH2,3
dx , h13 = H1,4 +2H2,3, h14 =

2
5

dH1,5
dx +

dH2,4
dx ,

h15 = H1,5 +3H2,4, h16 =
dH2,5

dx , h17 = 4H2,5, h18 = H1,4 +H2,3, h19 = H1,5 +H2,4, h20 = H2,5, h21 =
2
5

dH1,5
dx +

dH3,3
dx ,

h22 = H1,5 +2H3,3, h23 =
dH3,4

dx , h24 = 3H3,4, h25 =
dH3,5

dx , h26 = 2H3,4, h27 = 2H3,5, h28 =
dH4,4

dx , h29 = 3H4,4,

h30 =
dH4,5

dx , h31 = 4H4,5, h32 =
dH5,5

dx , h33 = 4H5,5. (9)

where H̄(x) is defined in (8)-(9) by only taking the hi
elements in (8) and set the fi elements to 0.

Then if H(0) ≥ 0, H1,1(1) ≤ 0 and F(x)+ H̄ ≥ 0, ∀x ∈
[0,1], we get that:

V̇1(Te)≤−α1V1(Te)+
∫ 1

0
xPTe(x)(Te− T̄e)ũ dx

Remark 1. Notice that unsimilarly to [15] where in a system
model ∂W

∂ t = F(x,DβW ), F is polynomial on its second
argument, it is not the case for our model, therefore we had
to apply integration by part followed by a change of variable
to obtain G(x,D1τ) to which we can apply the rest of the
procedure.

Remark 2. As a result of the theorem, by setting ũ = 0, we
get that the equilibrium (ū, T̄e) is exponentially stable in V1.

B. Calculation of the weighting Function

Since F(x) contains PT2(x) and its derivative, and H̄(x)
contains continuously differentiable functions and their
derivatives, (6) is a differential matrix inequality. Using the
theorem assumption that PTe(x) and the elements of H(x) are
polynomials in x, it is possible to formulate the positivity of
F(x)+H̄(x) in x∈ [0,1] as a convex optimization problem in
the form of Semidefinite Programming using the following
corollary of the Putinar’s Positivstellensatz theorem [16]:

Corollary 1.1: If there exists N(x) ∈ Σ14×14[x] (Sum Of
Squares polynomial matrix of order 14) such that:

F(x)+ H̄(x)−N(x)x(1− x) ∈ Σ
14×14[x] (13)

then (6) holds.

In this context, the problem of finding PT (x) is formulated
as the following feasibility Sum Of Squares problem (SOSP):
Find PTe(x), H(x), N(x). Sub ject to :

PTe(x)> 0 in [0,1], F(x)+ H̄(x)−N(x)x(1− x) ∈ Σ
14×14[x],

N(x) ∈ Σ
14×14[x], H(0)≥ 0,H1,1(1)≤ 0.

This problem is then solved using Yalmip with the Sum Of
Squares Module [17], and the resulting PTe(x) is a decreasing
polynomial strictly positive on [0,1].

C. Distributed control

Based on the previous analysis, and to perform refer-
ence tracking control, we define the control strategy while

ensuring exponential stability of the closed-loop system as
follows:

Corollary 1.2: If the conditions of Theorem 1 are veri-
fied, we choose the control input uctrl = ū+ ũ, where ũ is
calculated to verify the equality:∫ 1

0
xPTe(x)(Te− T̄e)ũ dx =−α2V1(Te) (14)

with α2 > 0, a tuning parameter. With this control we get:
V̇1(Te)≤−(α1 +α2)V1(Te)

and the system (3)-(4) with (14) is exponentially stable in V1
with convergence rate α1 +α2. An explicit control law from
(14) is the proportional controller: uctrl = ū− α2

2 (Te− T̄e).

IV. CONTROL IMPLEMENTATION AND RESULTS

Now we aim to implement the control strategy on the
RAPTOR simulator with TCV tokamak settings. RAPTOR
is a lightweight code used to simulate simplified nonlinear
plasma transport physics, and is also used as a real-time
state observer for the TCV tokamak. We first show the
shape constraints on the input, then we present the RAPTOR
configuration used for the simulation, we formulate an opti-
mization problem to find the engineering parameters to apply
as inputs to the system, and finally we present the results of
the simulation where we test the performance and robustness
of the controller by adding disturbances and time-delays.

A. Input constraints

During the beginning of the discharge, the plasma heating
comes from the induced plasma current Ip whose time evo-
lution scenario is computed offline and defines the discharge
phases (ramp-up, flat-top and rump-down). The plasma cur-
rent is thus not considered as an input to the system (a
feedback loop sets the voltage on the poloidal field coils
to generate the desired Ip). On the other hand, the auxil-
iary heating sources such as Electron Cyclotron Resonance
Heating (ECRH), Electron Cyclotron Current Drive (ECCD)
and NBI are used for the online distributed control. They
are subject to profile shape constraints (see Fig.1), and their
power densities are approximated by weighted Gaussian
distributions, for the case of ECRH/ECCD antennas, we have
for the i− th actuator [5]:

Paux,i(x, t) = Pi(t)
ez∫ a
0 ez V ′dx, z =

−4(x− xdep,i)
2

w2
dep,i

(15)



where wdep is the deposit width and xdep is the location of
the peak of the deposit. In most cases the xdep and wdep are
fixed, and the amplitude of the power density for the i-th
actuator Pi(t) in (15) is used as an input in the model and:

Paux(x, t) = ∑
i

Paux,i(x, t) (16)

B. RAPTOR configuration

We use a configuration where the plasma current ramps
up from 80 kA to 120 kA and we use two EC antennas
as auxiliary sources, with power amplitude P1(t) and P2(t),
The first one is a pure ECRH heating source deposited at
xdep = 0 with deposition angle of wdep = 0.35, and the second
one is an EC current drive (ECCD) source with xdep = 0.4
and wdep = 0.35. The engineering inputs P1(t) and P2(t) are
limited to 1 MW.

For the heat diffusivity χe we choose the model introduced
in [14] (equation (13)), with the parameters used in the paper
to fit experimental measurements of the Te profile in H-mode
TCV plasma. In Fig 2 we show a RAPTOR simulation of
the Te profile in H-mode TCV plasma, where we notice the
pedestal at the edge.
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Fig. 1. Auxiliary ECRH (Paux,1) and ECCD (Paux,2) sources distributions.
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Fig. 2. H-mode simulations of Te(x) in RAPTOR.

C. The control algorithm

Taking into consideration the constraints on the actuators,
we are not able to implement the control algorithm presented
in Corollary 1.2. A practical implementation that we use is
to calculate and apply at each time step the actuator inputs
uac = [P1,P2]

T that solve the squared difference minimization
problem of (14):

u∗ac = argmin
uac

∫ 1

0

[
xPTe(x)

(
(Paux(uac)−ure f )

+
α2

2
(Te−Te,re f )

)]2
dx (17)

subject to: 0≤ P1 ≤ 1MW, 0≤ P2 ≤ 1MW.

where (Te,re f , ure f ) are the reference temperature profile and
its corresponding input, that is the imposed equilibrium point
of the system in closed loop with the controller (14).

D. Simulation results

We now present the simulation results with different
scenarios in order to test the performance and the robustness
of the control algorithm, and we compare the open-loop
and the closed-loop responses. To test the behaviour of the
controller when changing the operating point we used a
2-stage reference profile.

1) Adding disturbance: The controller disturbance atten-
uation is tested by adding a third ECCD source at xdep = 0.2
with wdep = 0.35 and P3 = 0.1 MW at t = 0.2 s. The results
are shown in Fig. 3, where we see the time evolution of the Te
profile in various space points, as well as the time evolution
of uac that solves the optimization problem (17). We see
that the tracking performance in closed loop is significantly
improved compared to the open-loop case. The time response
in closed loop is further reduced in the region where the
actuators are most efficient (xdep = 0 and xdep = 0.4). Before
t = 0.2 we see that the optimization routine retrieved the
original values P1 = 0.3 MW and P2 = 0.3 MW with a short
saturation, and after t = 0.2 we can notice that the controller
could not totally compensate the effect of the disturbance
due to the fact that the disturbance source is not collocated
with the input ones.
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Fig. 3. Te tracking and time-evolution of P1,2 when changing the set point
and introducing a disturbance at t = 0.2 s.

In Fig. 4, we show a comparison of the time evolution
of the Lyapunov function in open loop and closed loop. We
can see that the practical implementation of the controller



succeeded to improve the convergence rate.
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Fig. 4. Open-loop and closed-loop convergence rates of the Lyapunov
function.

2) Adding time-delays: Because of the fast dynamics of
the system, the computation and the transportation of the
control signal is considered as a time-delay. To take it into
account we include a time-delay of 5 ms in the control
loop. In Fig. 5 we see the deterioration of the performance
in presence of such time-delay. The time-delay induces an
overshoot in the closed-loop response, more important in the
plasma centre (where there is more actuation) but which stays
within reasonable bounds. The proposed control strategy is
thus reasonably robust to time-delays.
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Fig. 5. Te tracking and time-evolution of P1,2 when changing the set point
and introducing a disturbance at t = 0.2 s in the presence of an input time-
delay of 5 ms.

V. CONCLUSION

In this work, the stability analysis and control of the
electron temperature profile in H-mode tokamak plasmas
was addressed, with dynamics described by a first-principle
control-oriented model. The stability of the resulting nonlin-
ear parabolic PDE was studied with the Lyapunov approach.
The sum of squares framework was used to compute the
weighting functions that ensure the positivity of the resulting

integral inequalities.

A control strategy was proposed to ensure a good tracking
of the electron temperature profile in closed loop at an
increased convergence rate. To evaluate the control strategy,
RAPTOR plasma simulator was used and the control input
constraints were taken into account to derive the engineering
control parameters. The simulation results show a good
performance of the controller in tracking the H-mode TCV
plasma electron temperature profile. The robustness of the
controller was investigated with respect to input disturbances
and by adding an time-delay.
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