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Abstract: This paper deals with the problem of stabilization of systems with a constant delay in
the actuator. The time-delay is unknown and can be considerably long, involving an interesting
challenge from the control point of view. The proposed control scheme is based on a set of infinite
dimensional observers with an adaptive time-delay estimation. The convergence of the observers is
studied considering the time-varying delays introduced by the delay estimation. A stability analysis of
the closed-loop control system is provided. The proposed observer-based controller is tested by means
of numerical simulation, considering an unstable plant.
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1. INTRODUCTION

The stabilization of time-delay systems has been considered as
an interesting problem and is a topic of numerous studies since
the last decades. Delays appear in control systems due to the
transport of material or information, yielding to oscillations,
complex behavior or even instability, especially when the lag
is large (Niculescu, 2001; Richard, 2003; Sipahi et al., 2011).

Classic control strategies have been analyzed in order to deal
with time-delay systems. For instance, PID controllers for
delayed processes have been extensively studied and are still of
interest (Visioli and Zhong, 2011; Vilanova and Visioli, 2012).
Considering unstable open-loop plants, the stability conditions
are restricted by the relationship between the delay size and the
system parameters, (Lee et al., 2010; Hernández-Pérez et al.,
2015).

A different control approach is provided by the Smith predictor
(Smith, 1957; Palmor, 1996), which consists of removing the
delay from the loop by predicting the state evolution. The main
drawback of the classical Smith predictor is that it is restricted
to stable systems with known constant delays. Different modi-
fications have been proposed on the classical Smith predictor in
order to control unstable systems (Zhong, 2006; Normey-Rico
and Camacho, 2009; Matausek and Ribic, 2012), obtaining
satisfactory results. However, in some cases the use of modified
Smith predictors involve control laws with distributed delays
and matrix exponentials, making their practical implementation
a numerical challenge.

The state prediction idea has been extended by the finite spec-
trum assignment (FSA) methods, (Manitius and Olbrot, 1979;
Kwon and Pearson, 1980; Artstein, 1982; Witrant et al., 2003).
The control law is based on a prediction of the state variable
over one delay interval. The prediction is generated and a feed-
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back of the predicted state is used, compensating the effect of
the time-delay. Numerical implementation of such control laws
implies approximations, which should be handled carefully in
order to prevent undesirable effects on the closed loop system
(Mondie and Michiels, 2003).

The use of observer based controllers for time-delay systems
represents another option. The main idea is to obtain free
delay signals from the process model and use them as control
feedback to the plant (Del-Muro-Cuéllar et al., 2011; Márquez-
Rubio et al., 2012; Novella Rodrı́guez et al., 2014). Recent
results are devoted to the stabilization of systems with input
delay by means of multiple observers that are sequentially
connected (Besançon et al., 2007), showing improvements in
the corresponding stability conditions (Najafi et al., 2013; Zhou
et al., 2017). The main drawback of this methodology is the
need for an accurate process model, including the delay size.

This work proposes an adaptive observation scheme in order
to address the problem of stabilization of a linear system, po-
tentially unstable, with a unknown input delay. Similar results
are presented in (Bresch-Pietri and Krstic, 2010) using a FSA
predictor feedback. In the proposed scheme, the time-delay
is split in small intervals d = D/N , where D is the actual
delay and N is the number of observers. Therefore, the main
advantage of the use of sequential observers is that only an
interval d is needed to estimate the value of the actual time-
delay.

The paper is organized as follows. In Section 2, the problem
formulation and the class of systems considered are stated. Sec-
tion 3 introduces the multi-observer control scheme, including
time-varying delays on its structure as well as the update law
used in the delay adaptation. Section 4 is devoted to provide
a stability analysis, including the error convergence and the
stability of the controlled plant. Section 5 provides a numerical
example, involving an unstable plant. The control performance
is evaluated by means of simulations.



2. PROBLEM FORMULATION

Considering the linear time invariant system with input delay
given by:

ẋ(t) = Ax(t) +Bu(t−D), ∀t ≥ 0, (1)

where x(t) ∈ Rn is the internal state, u(t) ∈ Rr is the control
input, A ∈ Rn×n and B ∈ Rn×r are constant and known
matrices; and D > 0 is a constant but unknown time-delay.
Assumption 1. The pair (A, B) is controllable, but the matrix
A could be unstable. Namely, the delay free system

ẋ(t) = Ax(t) +Bu(t), (2)

can be stabilized by means of the state feedback controller
u(t) = Kx(t) with the matrix of gains K ∈ Rr×n. The matrix
K can be computed using conventional design methods.
Assumption 2. The value of the delay size D is unknown.
However, a lower bound Dmin and a upper bound Dmax are
both known.

Under the previous assumptions, this work proposes a multi-
observer scheme with an adaptation to the delay estimation to
stabilize system (1).

3. MULTI-OBSERVER SCHEME

An interesting scheme for the stabilization of time-delay sys-
tems of the form (1) was presented in (Najafi et al., 2013; Zhou
et al., 2017), considering the case of constant known delays.
This control strategy can compensate arbitrary long delays and
can be applied without the computation of neither distributed
terms nor matrix exponentials. Moreover, the exponential sta-
bility of linear time-varying systems with time-varying delays
controlled with this method is proved by (Mazenc and Malisoff,
2017) by considering that the time-delay function is known.

3.1 Multi-observer for time-varying delays

Considering the input delay system (1), our work proposes an
observer-based controller of the form

ż1(t) = Az1(t) +Bu(βN−1(t)) + L1 (z1(β(t))− x(t)) ,

żi(t) = Azi(t) +Bu(βN−i(t)) + Li (zi(β(t))− zi−1(t)) ,

żN (t) = AzN (t) +Bu(t) + LN (zN (β(t))− zN−1(t)) ,
(3)

for all i =∈ {2, · · ·N−1}, whereN is the number of observers
used in the scheme and Lj ∈ Rn×n, for all j ∈ {1, · · ·N}, are
gain matrices of appropriate dimensions.

The function β(t) = t − d(t) represents the delayed function,
where the time-varying delay segment d(t) is bounded by:

Dmin

N
≤ d(t) ≤ Dmax

N
. (4)

The justification of the provided bounds is detailed later in
Section 3.2. The superscript j in βj(t) represents the functional
power of β(t). Namely, the iterated composition of the delayed

function. From this observation scheme, the predictive control
law is defined by:

u(t) = KzN (t). (5)

According to the previous definitions, the observation error can
be defined as:

e1(t) = z1(β(t))− x(t), (6)
ei(t) = zi(β(t))− zi−1(t).

Then, the error dynamics is given by

ė1(t) = β̇(t)
{
Az1(β(t)) + L1e1(β(t)) +Bu(βN−1(β(t))

}
−Ax(t)−Bu(t−D),

ėi(t) = β̇(t)
{
Azi(β(t)) + Liei(β(t)) +Bu(βN−i(β(t))

}
−Azi−1(t)− Li−1ei−1(t)−Bu(βN−i+1(t),

for all i ∈ {2, · · · , N}. Taking into account the relation
between composed functions βj(β(t)) = βj+1(t), the error is:

ė1(t) =Ae1(t) + L1e1(β(t)) +Bu(βN (t))−Bu(t−D)

−ḋ(t)
{
Az1(β(t)) + L1e1(β(t)) +Bu(βN (t))

}
ėi(t) =Aei(t) + Liei(β(t))− Li−1ei−1(t) (7)

−ḋ(t)
{
Azi(β(t)) + Liei(β(t)) +Bu(βN+1−i(t))

}
.

Assumption 3. In order to avoid numerical problems in the con-
troller design, the derivative of the delay segment is assumed to
be bounded, |ḋ(t)| < 1 and we consequently have that β̇(t) 6= 0
for all t ≥ 0. The following section details this assumption.
Remark 1. It is worth stressing out that in the nominal case, i.e.
when the delay segment d(t) = D/N is known, the sequential
observers (3) have the same structure as the ones proposed
in (Najafi et al., 2013; Zhou et al., 2017). However, for the
unknown delay case, an update law is proposed in the next
section.

3.2 Delay Update Law

Let us consider the multi-observer scheme (3), where each
observation stage can be seen as a predictor of the original
internal state x(t). In the constant nominal case dealt in (Najafi
et al., 2013; Zhou et al., 2017), the corresponding prediction
allows to obtain an estimation d units of time ahead of the state
x(t), where d = D/N with N observers in the scheme.

However, when the value of the delay is uncertain, the multi-
observer designed with a constant time-delay can exhibit bad
performance. Even when the plant parameters are exactly
known, a small mismatch on the time-delay could yield insta-
bility on the closed-loop system. To overcome this problem,
an adaptive law for the time-delay is proposed, following the
methodology given in (Bresch-Pietri, 2012; Bresch-Pietri et al.,
2012).

The main idea is to estimate a segment of the delay, such
that d̂(t) → D/N as t → ∞. To determine the value of
the unknown input delay, the measured state signal x(t) is
compared with its predicted version z1(t), taken from the multi-
observer system (3). The steepest descent algorithm is used to
estimate the delay. Then, we can define:



τ(t) = −
(
z1

(
t− d̂(t)

)
− x (t)

)
×
∂z1

(
t− d̂(t)

)
d̂(t)

, (8)

where the gradient is defined as:

∂z1

(
t− d̂(t)

)
∂de (t)

≈
z1

(
t− d̂(t)

)
− z1

(
t− d̂(t)− δd

)
δd

, (9)

where δd is a constant time period. Under the assumption 2, the
following condition can be stated.
Condition 1. There exist positive constants γ > 0 and µ > 0
such that

˙̂
d(t) = γProj[d, d]{τ(t)}, (10)

∀t ≥ 0, |τ(t)| ≤ µ, (11)
where the Proj[d, d] is the standard projection operator on the

interval [d, d], with d = Dmin/N and d = Dmax/N .

The standard projection operator is defined as follows:

Proj[d, d]{τ(t)} =

 0, if d̂(t) = d and τ(t) > 0

0, if d̂(t) = d and τ(t) < 0
τ(t), else

(12)

The descent algorithm provides an accurate estimation of the
unknown input delay and guarantees that no extraneous local
minimum interferes with the minimization process, considering
that the initial guess of the delay is sufficiently close to the real
value. In contrast to (Bresch-Pietri et al., 2012), the adaptive
update law for the time-delay proposed in this work is imple-
mented without the use of distributed terms and exponential
matrices.

4. STABILITY ANALYSIS

4.1 Convergence Error

Taking into account the error dynamics (7), it can be noticed
that the multi-observer scheme has a triangular structure. Ac-
cording to (5), the delayed control term in (7) can be written as
follows:

u(βN+1−i(t)) = KzN (βN+1−i(t)). (13)

According with the error definition given by (6), we find:

Bu(βN+1−i(t)) = BK (zi−1(t) + ei(t) + ∆ei(t)) , (14)

with:

∆ei(t) =

N∑
k=i+1

ek(βk−i(t)) (15)

After algebraic manipulations, we can rewrite the error dynam-
ics (7) as follows:

ėi(t) =Aei(t) + Liei(β(t))− Li−1ei−1(t) (16)

− ˙̂
d(t) {(A+BK)ei(t) + Liei(β(t))

+(A+BK)zi−1(t) +BK∆ei(t)} .

The triangular structure of the error dynamics allows us to
independently study the stability of each observer. To analyze
the convergence of the error dynamics we focus on the terms
in the diagonal of system (16), i.e. only the elements identified
with subscript i and defining the following auxiliary system:

ε̇(t) = Aε(t) + Lε(t− d̂(t)) (17)

− ˙̂
d(t)

{
(A+BK)ε(t) + Lε(t− d̂(t))

}
.

Then, the convergence analysis can be derived from the follow-
ing system with time-varying structured uncertainties:

ε̇(t) = (A+ ∆A(t))ε(t) + (Ad + ∆Ad(t))ε(t− d̂(t)) (18)

with:

d̂(t) < h and
˙̂
d(t) < µ.

The uncertainties are assumed to be on the form:

[∆A(t) ∆Ad(t)] = DF (t) [Ea Ead] .

where D, Ea, and Ead are constant matrices with appropriate
dimensions; and F (t) is an unknown, real, and possibly time-
varying matrix with Lebesgue measurable elements satisfying

FT (t)F (t) ≤ I ∀t.

Associating (17) with (18) we have Ad = L, according to
condition 1 there exists a positive constant µ and considering
assumption 2 we have h = dmax. Then, the function F (t) =
˙̂
d(t)/µ and the matrices D = I , Ea = −µ(A + BK) and
Ead = −µL. Therefore, the following Theorem can be used to
analyze the convergence of system (17).
Theorem 1. (Wu et al. (2010)). Consider system (18) with a
delay, d̂(t), that satisfies both assumption 2 and condition 1.
Given scalars h = dmax ≥ 0 and µ > 0, the system is robustly
stable if there exist matrices P > 0, Q ≥ 0, Z > 0,

X =

[
X11 X12

? X22

]
≥ 0,

Y ≥ 0, any appropriately dimensioned matrices N1 and N2,
and a scalar λ such that the following LMIs hold:

Ψ =

[
X11 X12 N1

? X22 N2

? ? Z

]
≥ 0, (19)

Φ =

Φ11 Φ12 hA
TZ PD

? Φ22 hA
T
d Z 0

? ? −hZ hZD
? ? ? −λI

 < 0, (20)

with



Φ11 = PA+ATP +N1 +NT
1 +Q+ hX11 + λET

a Ea,

Φ12 = PAd +AT
d −N1 +NT

2 + hX12 + λET
a Ead,

Φ22 = −N2 −NT
2 − (1− µ)Q+ hX22 + λET

adEad,

A complete proof of previous Theorem can be found in (Wu
et al., 2010).
Remark 2. The values of dmax and µ are considered as known
constants from assumption 2 and condition 1 stated previously.
Then, the result from Theorem 1 can be used to design the
observers gains Li such that the error in the multi-observer
scheme converges asymptotically to 0. Notice that increasing
the number of observers reduces in general the values of dmax

and µ, contributing to relax the solutions of the LMIs in
Theorem 1.

4.2 Control System

Considering a state observer given by (3), the feedback control
signal is set by (5), where zN (t) is the vector corresponding
to the last observed states provided by (3). The closed-loop
dynamics is then obtained as:

ẋ(t) = Ax(t) +BKzN (t−D), (21)
where we can define:

zN (t−D) = zN (βN (t)) + ∆z(t), (22)
with ∆z(t) = zN (t−D)− z(βN (t)). Considering the relation
among the observers error, we have:

zN (β(t)) = zN−1(t) + eN (t),

zN (β2(t)) = zN−2(t) + eN−1(t) + eN (β(t)),

...

zN (βN (t)) = x(t) + ∆e(t), (23)

where:

∆e(t) =

N∑
k=1

ek(βk−1(t)).

The resulting closed-loop process is given by:
ẋ(t) = Aclx(t) +BK (∆z(t) + ∆e(t)) , (24)

where K can be computed using any conventional methods
such that Acl = A + BK is a Hurwitz stable matrix. Then,
the following result can be stated.
Lemma 1. Considering the system (24): if condition 1 and the
following conditions hold:

I all the real part of the eigenvalues of Acl are in the open
left hand side of the complex plane,

II the observers are designed such that the error signals
converges asymptotically to 0,

then,

‖x(t)‖ ≤ 2‖BK‖ξmax
λmax(P )

λmin(Q)

√
λmax(P )

λmin(P )
∀t ≥ t0+T,

where P > 0, Q = QT > 0 and ξmax is a positive constant.
λmin(Q), λmax(P ) are the minimum and the maximum eigen-
values of Q and P , respectively.

Proof 1. Condition 1 implies that the derivative of the time-
delay estimation is bounded and guarantees that there is not
extraneous local minimum in the optimization process. Consid-
ering the delayed iterative function βN (t) = t − D(t) as the
total delay estimation, where according to the proposed update
law this estimation has well defined bounds Dmin ≤ D(t) ≤
Dmax. Then, the following relation holds:

‖∆z(t)‖ = ‖z(t−D)− z(t−D(t))‖ ≤ ξz, (25)

where ξz is a positive constant. Moreover, condition I is related
to the controller design. Finally, once convergence error is
guaranteed, it is possible to introduce the following bound
‖∆e(t)‖ ≤ ξe, with the constant ξe > 0. Then, defining
ξa(t) = ∆z(t)+∆e(t) and rewriting the system (1) as follows:

ẋ(t) = Aclx(t) +BKξa(t), (26)

the disturbances yield by the delay estimation can be repre-
sented by ‖ξa(t)‖ ≤ ξmax, where ξmax is a positive constant.
Hence, we can choose a matrix Q = QT > 0 and consider a
quadratic positive-definite Lyapunov function:

V (x) = xT (t)Px(t), (27)

where P is the unique positive-definite symmetric solution of
the algebraic equation:

PAcl +AT
clP = −Q. (28)

It is worth stressing on that the solution of (28) exists for any
symmetric positive definiteQ sinceAcl is Hurwitz according to
condition I . The time derivative of V (x) along the trajectories
satisfies:

V̇ (x) = −xT (t)Qx(t) + 2xTPBKξa(t) (29)
≤ −‖x‖ (λmin(Q)‖x‖ − λmax(P )‖BK‖ξmax) .

From (29), it follows that for all x(t) located outside of the
compact set:

Br =

{
x ∈ D : ‖x(t)‖ ≤ 2

λmax(P )

λmin(Q)
‖BK‖ξmax = r

}
(30)

where it is assumed ξmax > 0 is sufficiently small for the
inclusion Br ⊂ D to hold. Therefore, according to (29),
V̇ (x) < 0 for all x(t) from the annulus

Λ = {x ∈ Rn : cmin ≤ V (x) ≤ cmax} , (31)

where cmax represents the maximal level set of V (x) in D and
cmin is the minimal level set of V (x) that contains Br. The
corresponding ultimate bound R can be estimated as follows.
Let us introduce the smallest sphere that contains Ωmin such
that:

BR = minc {x ∈ Ωmin : ‖x(t)‖ ≤ c}
Then, for all x(t) ∈ BR, we have:

λmin(P )‖x2(t)‖ ≤ xT (t)Px(t) = λmax(P )r2, (32)

and therefore

‖x(t)‖2 ≤ λmax(P )

λmin(P )
r2 = R2. (33)



Then, the radius of the smallest sphereBR that surrounds Ωmin

is:

R = 2‖BK‖ξmax
λmax(P )

λmin(Q)

√
λmax(P )

λmin(P )

�

The resulting closed-loop plant (26) can be seen as a system
with disturbances ∆z(t) and ∆e(t) induced by the delay esti-
mation and the state prediction, respectively. The disturbances
are unknown but are assumed to be bounded since the delay es-
timation is based on a local minimization and the convergence
error is guaranteed.
The uniformly ultimate boundedness states that all the trajecto-
ries of the closed-loop system (26) will enter and remain inside
a ball with radius Br despite of the initial state x(t0) and the
unknown uncertainties introduced by the state prediction zN (t),
(Lavretsky and Wise, 2013).

5. NUMERICAL EXAMPLE

Let us consider an example used in (Huang and Chen, 1997;
Bresch-Pietri, 2012). A second order system given by:

G(s) =
e−Ds

(as− 1)(Ts+ 1)
,

with the following state-space representation:

ẋ(t) =

 0
1

aT

1
a− T
aT

x(t) +

[
1

aT
0

]
u(t−D)

y(t) = [0 1]x(t)

The parameters of the system are a = 5, T = 2.07, and the
time-delay D = 0.939. The multi-observer control scheme
is designed considering an unknown input delay bounded by
D = 0.8, D = 1.1. An initial condition D(0) = 1 is set for the
delay update law, with a constant γ = 3.4.

The prediction is obtained by means of a multi-observer scheme
with N = 20. Following the analysis given in Section 4,
the computed stabilizing gains for the controller are K =
[−65.03, −71.16]. For the observer, the same gain is selected
for all the observers, obtaining :

L =

[
−4 −0.1
−1 −4.3

]
.

The system is excited by means of a step reference, introduced
at instant t = 0 s and removed at instant t = 15 s. The closed-
loop behavior of the state-space variables is shown in Fig. 1.
The solid line indicates the state variables of the controlled
plant, x(t). The dashed line shows the predicted variables taken
from the multi-observer scheme z20. Due to the unknown delay,
a significant difference between the state variables and their
predictions on the first transient response can be noticed. On
the contrary, the prediction is more accurate during the transient
response when the step input is removed at the time instant
t = 15 s.

The update of the time-delay is displayed in Fig. 2. The top
panel shows the time-varying delay estimation of the unknown
input delay whereas the lower panel shows time derivative of
the delay segment d̂(t) bounded with µ ≤ 0.02.
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Fig. 1. Closed-loop response of the state variables x1(t) and
x2(t).
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To illustrate the performance of the multi-observer scheme, top
panel in Fig. 3 shows the a comparison between the conver-
gence error of the first observer, e1(t), and the last observer,
e20(t). The corresponding control signal u(t) is plotted on the
bottom panel.
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Fig. 3. Error convergence and control signal.



6. CONCLUSIONS

This work has presented a control strategy to stabilize plants
with an unknown and potentially long input delay. The pro-
posed controller is based on a multi-observer scheme includ-
ing adaptation to a time-delay estimation. The estimation of
the delay has been performed by means a gradient descendent
method. The main advantage of the proposed scheme is that
it allows us to estimate the time-delay D using just a small
segment d̂(t). The magnitude of d̂(t) is inversely proportional
to the number of observers N . However, it should be consid-
ered that large amount of observers increases the computational
effort. A stability analysis of the controlled plant is provided
considering the uniformly ultimate boundedness (UUB) con-
cept. Moreover, the error dynamics convergence is studied by
considering the time-varying delays introduced with the delay
estimate.

Further works on this topic include a multi-observer adaptive
controller considering unknown process parameters and un-
known delay. Another interesting challenge is the use of multi-
observer schemes to deal with systems with uncertain time-
varying time-delays, a common case in networked control sys-
tems.
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