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Abstract— We study in this paper the one-dimensional
Kuramoto-Sivashinsky equation (KS), subject to intermittent
sensing. Namely, we measure the state on a sub-interval of the
spatial domain during certain intervals of time, and we measure
the state on the remaining sub-interval of space during the
remaining intervals of time. As a result, we assign an active
control at the boundaries of the spatial domain, and we set a
zero boundary condition at the junction of the two spatial sub-
intervals. Under the assumption that the destabilizing coefficient
is unknown, we design adaptive boundary controllers that
guarantee global exponential stability (GES) of the trivial
solution in the L2 norm. Numerical simulations are performed
to illustrate our results.

I. INTRODUCTION

In the late 1970, Y. Kuramoto and G. Sivashinsky intro-
duced, independently, the scalar nonlinear partial differential
equation (PDE) given by [1], [2]

Σ : ∂tu+ u∂xu+ λ1∂
2
xu+ ∂4

xu = 0 x ∈ [0, 1], (1)

where λ1 ∈ R is known as the destabilizing coefficient.
The KS equation Σ is used to model phase turbulence in

reaction-diffusion systems [1] and thermo-diffusive instabil-
ities in laminar flame fronts [2]. It is also used nowadays to
model the fluctuations of fluid films on inclined supports [3],
[4], plasma instabilities [5], and surface erosion [6].

Boundary stabilization of the trivial solution {u = 0} to
Σ, in a suitable norm, has attracted some attention within
the control community since [7], where boundary feedback
controllers are designed for specific values of λ1. In par-
ticular, when λ1 is unknown, adaptive boundary feedback
laws are proposed in [8]. In [9], an integral transformation is
proposed to achieve exponential stabilization with arbitrary
specified decay rate, provided that the initial condition is
sufficiently small, and λ1 avoids a set of critical values. In
[10], under the assumption that λ1 is smaller than 1, bound-
ary feedback laws are designed in the presence of external
perturbations. In [11], boundary controllers are designed
to achieve local output feedback stabilization, the output
being the right Neumann trace ∂xu(t, 1), local stabilization
is achieved despite the value of λ1. The aforementioned
boundary controllers, either assume λ1 to be sufficiently
small or the initial conditions to be sufficiently close to
the origin, in which cases, only boundary measurements are
required for the control design. This being said, the boundary
stabilization problem, regardless of the value of λ1 and the
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range of the initial condition, has not been addressed in
existing literature, when the knowledge of u on the entire
spatial domain [0, 1] is not available.

In earlier physics literature, however, the problem is stud-
ied under some sophisticated and realistic sensing scenarios.
For example, in [12], multiple sensors situated at periodically
separated spatial points are used. Each sensor measures an
average of the state u over a given spatial interval. Further-
more, a boundary controller is designed at the location of
each sensor. Another sensing scenario, applied to the Gray-
Scott equation, is presented in [13], where the equation is
controlled via time-periodic resets of the state, at periodically
separated spatial points. Those results are validated via
simulations only. Inspired by the aforementioned physics
literature, in intermittent sensing scenarios, we identify state
variables (or their derivatives) that are measured only on
specific spatial sub-domains during specific intervals of time.
For example, the KS equation considered in [14], such that,
for some Y ∈ (0, 1), the state u is measured over the spatial
domain [0, Y ] only during certain time intervals, and that u
over the spatial domain [Y, 1] is available only during the
remaining time intervals. As a result, boundary controls are
imposed at x = 0, x = Y , and x = 1 to globally stabilize
the trivial solution, under the assumption that λ1 is known,
but without constraining its value.

In this paper, we generalize the approach proposed in [14]
to the case where λ1 is unknown. In particular, under the
sensing scenario proposed in the aforementioned reference,
we design active boundary controllers at x = 0 and x = 1,
while maintaining a zero boundary condition at x = Y . The
proposed feedback law “adaptively” compensates the effect
of the unknown parameter λ1, which can be any bounded
function of time. As a result, we are able to guarantee GES
of the origin {u = 0} in the L2 norm.

The rest of the paper is organised as follows. The problem
formulation is in Section II. Some preliminaries and key
intermediate results are in Section III. The main result is
in Section IV. Finally, numerical simulations are provided in
Section V.

Notation. For x ∈ Rn, we define |x| :=
√
xx⊤, where

x⊤ is the transpose of x. Depending on the context, a.e.
means either almost every or almost everywhere. Let X
be a Banach space with a norm ||.||X . Let p ∈ [1,∞],
we denote by Lp([a, b];X), where a, b ∈ R, the space of
measurable functions u : [a, b] → X , with finite p norm

||.||p, where ||u||p :=
(∫ b

a
||u(t)||pXdt

) 1
p

if p < ∞, and



||u||∞ := ess supt∈[a,b] ||u(t)||X . If X = R, then we write
Lp(a, b) instead of Lp([a, b];R). For k ∈ N, we denote by
Hk(a, b) the Sobolev space of functions f ∈ L2(a, b), with
weak derivatives, up to order k, in L2(a, b). For k ∈ N∪{∞},
we denote by Ck(a, b) the space of k-times continuously
differentiable functions on (a, b). Depending on the context,
g(y) denotes either the function g evaluated at a given point
y of its domain, or the function g itself. The partial derivative
of f(t, x) with respect to t is denoted by ∂tf . The kth partial
derivative of f(t, x) with respect to x is denoted by ∂k

xf .
We denote the time derivative of a function V either by
d
dtV or V̇ . We may denote the derivative of a function of a
scalar variable g by g′, and its second derivative by g′′. For a
function of two variables f(t, x), f(x) denotes the function
t 7→ f(t, x). For x ∈ R, sgn(x) = 1 if x > 0, = 0 if x = 0
and = −1 if x < 0.

II. PROBLEM FORMULATION

Consider the KS equation Σ under the following sensing
scenario.

A. Intermittent Sensing

Following [14], we let Y ∈ (0, 1) and we assume that
u([0, Y ]) is measured during certain intervals of time, and
that u([Y, 1]) is measured during the remaining ones. More
precisely, we assume that there exists a sequence of time
instants {ti}∞i=1, with t1 = 0 and ti+1 > ti, such that

• u([0, Y ]) is available a.e. in I1 :=
⋃∞

k=1[t2k−1, t2k).
• u([Y, 1]) is available a.e. in I2 :=

⋃∞
k=1[t2k, t2k+1).

Associated to this intermittent sensing, we consider the
following dwell-time condition.

Condition 1: There exist four constants T 1, T 2, T 1, T 2 >
0 such that, for each k ∈ {1, 2, ...}, we have

T 1 ≤ t2k − t2k−1 ≤ T 1 and T 2 ≤ t2k+1 − t2k ≤ T 2.

•

B. Boundary Control Locations

We propose to control Σ at three different locations: at
x = 0, x = Y , and x = 1. We, therefore, assimilate Σ to a
system of two KS equations, interconnected by a boundary
constraint at x = Y , given by

Σ2 :

{
∂tw + w∂xw + λ1∂

2
xw + ∂4

xw = 0, x ∈ [0, Y ],
∂tv + v∂xv + λ1∂

2
xv + ∂4

xv = 0, x ∈ [Y, 1].

The boundary conditions imposed, for almost all t ≥ 0, are

w(Y ) = v(Y ) = ∂xw(Y ) = ∂xv(Y ) = 0,

∂xw(0) = ∂xv(1) = 0,

w(0) = u1, v(1) = u2.

(2)

where u1 and u2 are control inputs to be designed.
Remark 1: The boundary conditions w(Y ) = v(Y ) and

∂xw(Y ) = ∂xv(Y ) mean that, for almost all t ≥ 0,
any function, whose restriction to [0, Y ] is w and whose

restriction to [Y, 1] is v, is continuously differentiable at
x = Y .

Remark 2: Under the boundary conditions in (2), we say
that the control at x = Y is passive (since the boundary
conditions at this location are set to zero), and that the control
actions at x = 0 and at x = 1 are active.

Before stating our control goals, we first specify the
concept of solutions to Σ by, first, specifying the solutions
to Σ2.

Definition 1 (Solution to Σ2): Given an initial condition
(wo, vo) ∈ H4(0, Y )×H4(Y, 1), a corresponding solution to
Σ2 is any pair (w, v) ∈ L2([T, T+1];H4(0, Y ))×L2([T, T+
1];H4(Y, 1)) for all T ≥ 0 such that:

1) w(t = 0) = wo and v(t = 0) = vo a.e. in space;
2) the boundary conditions (2) are satisfied a.e. in time;
3) the pair (w, v) admit weak time derivatives;
4) the equations of Σ2 are satisfied a.e. in space and time.
Now, we specify the concept of solutions to Σ.
Definition 2 (Solution to Σ): A function u : R≥0 ×

[0, 1] → R is said to be a solution to Σ if there exists a
solution (w, v) to Σ2 such that for a.e. t ∈ R≥0, u(t, x) =
w(t, x) a.e. in [0, Y ] and u(t, x) = v(t, x) a.e. in [Y, 1].

Remark 3: According to Definition 1, the availability of
w(t, [0, Y ]) for a.e. t ∈ I1 implicitly suggests the availability
of wk

x(t, [0, Y ]), k ∈ {1, 2, 3}, for a.a. t ∈ I1. Similarly, the
availability of v(t, [Y, 1]) for a.e. t ∈ I2 implicitly suggests
the availability of vkx(t, [Y, 1]), k ∈ {1, 2, 3}, for a.e. t ∈ I2.

C. Control Objective

Our goal is to globally stabilize, in the L2 norm, the
trivial solution to Σ, under the proposed intermittent sensing
scenario, while considering the situation described in the
following assumption.

Assumption 1: The coefficient λ1 is strictly positive, and
both λ1 and the constants (T 1, T 2, T 1, T 2) in Condition 1
are unknown. •

To address the latter two problems, when t ∈ I1, we
design (u1, u2) to stabilize the dynamics of w (defined on
[0, Y ]), while maintaining an appropriate behavior for v
(which evolves on [Y, 1]). The same reasoning applies when
t ∈ I2, mutatis mutandis.

III. PRELIMINARIES

In this section, we introduce preliminary results that play
a key role to prove our main results.

To start, we use Lions-Magenes Lemma (see for e.g. [15],
Page 106, Proposition 1.2) to conclude that, due to the
used space of solutions and the structure of Σ, the maps
t 7→

∫ Y

0
w(x)2dx and t 7→

∫ 1

Y
v(x)2dx are locally absolutely

continuous and that the Leibniz integral rule holds a.e. in



time. This means that, for a.e. t ∈ R≥0, we have

d

dt

∫ Y

0

w(x)2dx = 2

∫ Y

0

∂tw(x) w(x) dx,

d

dt

∫ 1

Y

v(x)2dx = 2

∫ 1

Y

∂tv(x) v(x) dx.

Next, we recall a key inequality that links the L2 norm of a
function with the L2 norms of its first and second derivatives.
This inequality has been introduced under different forms in
[16], [17], [18], [19]. The finest version is recalled in the
following lemma.

Lemma 1 ([20], page 84, inequality 23.1): Let b > a >
0 and f ∈ C2(a, b). Then, for each ϵ > 0, we have∫ b

a

f ′(x)2dx ≤
[
P

ϵ
+

Q

(b− a)2

] ∫ b

a

f(x)2dx

+ ϵ

∫ b

a

f ′′(x)2dx.

(3)

where P := 1 and Q := 12. Moreover, if P < 1 or Q < 12,
then (3) cannot hold for all f ∈ C2(a, b) and for all ϵ > 0.
□

Using Lemma 1, we are able to prove the following result.
Lemma 2: Along each pair (w, v) solution to Σ2 the

Lyapunov function candidates

V1(w) :=
1

2

∫ Y

0

w(x)2dx and V2(v) :=
1

2

∫ 1

Y

v(x)2dx

verify, for a.a. t ≥ 0,

V̇1 ≤ θ1V1 −
w(Y )3 − w(0)3

3
− λ1w(Y )∂xw(Y )

+ λ1w(0)∂xw(0)− w(Y )∂3
xw(Y ) + w(0)∂3

xw(0)

+ ∂xw(Y )∂2
xw(Y )− ∂xw(0)∂

2
xw(0),

V̇2 ≤ θ2V2 −
v(1)3 − v(Y )3

3
λ1v(1)∂xv(1) + λ1v(Y )∂xv(Y )

− v(1)∂3
xv(1) + v(Y )∂3

xv(Y )

+ ∂xv(1)∂
2
xv(1)− ∂xv(Y )∂2

xv(Y ),

where θ1 := 2λ1

(
λ1 +

12
Y 2

)
and θ2 := 2λ1

(
λ1 +

12
(1−Y )2

)
.

□

Using Lemma 2 and the boundary conditions in (2), we
obtain the following differential inequalities for (V1, V2)
along the solutions to Σ2, which hold for a.e. t ≥ 0.

V̇1 ≤ θ1V1 +
u3
1

3
+ u1∂

3
xw(0),

V̇2 ≤ θ2V2 −
u3
2

3
− u2∂

3
xv(1).

(4)

IV. MAIN RESULT

For system Σ2, the differential inequalities in (4) become

V̇1 ≤ θ1V1 +
u3
1

3
+ u1∂

3
xw(0),

V̇2 ≤ θ2V2 −
u3
2

3
− u2∂

3
xv(1).

(5)

Next, we show how to design the control inputs (u1, u2).

A. Control Design

Given two functions θ̂1, θ̂2 : R≥0 → R>0 to be designed,

• on I1, we let u2 = 0 and we choose u1 such that

u3
1 + 3u1∂

3
xw(0) ≤ −3θ̂1V1. (6)

• on I2, we let u1 = 0 and we choose u2 = 0 such that

−u3
2 − 3u2∂

3
xv(1) ≤ −3θ̂2V2. (7)

In the following lemma, we propose an explicit design of
the control laws u1 and u2 to satisfy (6) and (7), respectively.

Lemma 3: To satisfy (6), we set u1 := κ(V1, ∂
3
xw(0), θ̂1),

where

κ(·) :=

{
− sgn(∂3

xw(0))V
1
3
1 if |∂3

xw(0)| ≥ l(V1, θ̂1),

k(V1, θ̂1) otherwise.

where l(V1, θ̂1) := (1/3)[1 + 3θ̂]V
2
3
1 and k is bounded for

bounded arguments, and satisfies

k(V1, θ̂1)
3 + 3|k(V1, θ̂1)|l(V1, θ̂1) ≤ −3θ̂1V1. (8)

To satisfy (7), we set u2 := −κ(V2, ∂
3
xv(1), θ̂2). □

Proof: We distinguish between the two cases. If
|∂3

xw(0)| ≥ l(V1, θ̂1), then

u3
1

3
+ u1∂

3
xw(0) ≤

V 3
1

3
− V1l(V1, θ̂1) ≤ −θ̂1V1.

Otherwise, we have

u3
1

3
+ u1∂

3
xw(0) ≤

k(V1, θ̂1)
3

3
+ |k1(V1, θ̂1)|l(V1, θ̂1)

≤ −θ̂1V1.

The same reasoning applies for u2.
Remark 4: To verify (8), we can choose

k(V1, θ̂1) := −3[3θ̂1 + 1]V
1/3
1 .

Remark 5: The choice of the control laws in Lemma 3
guarantees that u1 = 0 (respectively, u2 = 0) whenever
V1 = 0 (respectively, V2 = 0). More importantly, the map
κ is bounded in the second argument, even if this one is
not guaranteed to remain bounded. As a result, we guarantee
boundedness of (u1, u2) in closed loop provided that (V1, V2)
and (θ̂1, θ̂2) are bounded.

Now, we illustrate how to design the adaptation parameters
θ̂1 and θ̂2, which compensate the effect of the destabilizing
terms θ1V1 and θ2V2 in (5). Roughly speaking, θ̂1 (respec-
tively θ̂2) is dynamically defined, for a given σ > 0, as
a strictly-increasing function until we notice an exponential
decrease of V1 (respectively V2) at the rate σ > 0. In which
case, we freeze the value of θ̂1 (respectively θ̂2). Note that
θ̂1 (respectively θ̂2) will end up being bounded, since after
θ̂1 (respectively θ̂2) exceeds θ1 (respectively, θ2), V1 (re-
spectively V2), along solutions, will decrease exponentially
at a rate in the range of θ̂1 − θ1 (respectively, θ̂2 − θ2).
Strictly speaking, the behavior of (θ̂1, θ̂2) is governed by the
following algorithm.



Task 1. On each interval [t2k−1, t2k) ⊂ I1, we set ˙̂
θ2 = 0

and, if V1(t2k−1) > V1(t2k−3)e
−σ(t2k−1−t2k−3) we

set ˙̂
θ1 := ∆1 > 0, otherwise we set ˙̂

θ1 := 0.
Task 2. On each interval [t2k, t2k+1) ⊂ I2, we set ˙̂

θ1 := 0
and, if V2(t2k) > V2(t2k−2)e

−σ(t2k−t2k−2) we set
˙̂
θ2 := ∆2 > 0, otherwise we set ˙̂

θ2 := 0.
Task 3. The initial conditions are non negative, i.e. θ̂1(0) ≥

0 and θ̂2(0) ≥ 0, and, on the interval [t1, t3], we set
θ̂1 = θ̂1(0) and θ̂2 = θ̂2(0).

B. Closed-Loop Analysis

To analyse the resulting closed-loop system, we introduce
the following Lemma.

Lemma 4: Consider the switched differential inequalities
V̇1 ≤ (θ1 − θ̂1)V1

V̇2 ≤ θ2V2
a.e. in I1,

V̇1 ≤ θ1V1

V̇2 ≤ (θ2 − θ̂2)V2
a.e. in I2.

(9)

where (V1, V2) ∈ R≥0 × R≥0, θ1 and θ2 are positive con-
stants, I1 := ∪∞

k=1[t2k−1, t2k), and I2 := ∪∞
k=1[t2k, t2k+1),

with {ti}∞i=1 a sequence of time instants such that t1 = 0 and
ti+1 > ti, and θ̂1, θ̂2 are defined, for some σ > 0, according
to Task 1.-Task 3.. Furthermore, suppose that there exist
positive constants T 1, T 2, T 1, and T 2 such that Condition
1 holds. Then, there exists a positive constant κ such that,
for each locally absolutely continuous solution (V1, V2) to
(9), we have that (θ̂1, θ̂2) is bounded, and

V1(t) + V2(t) ≤ κ(V1(0) + V2(0))e
−σt ∀t ≥ 0. (10)

□

Proof: The proof follows in two steps. First, we prove
that (θ̂1, θ̂2) are bounded by showing that they become
constant after some finite time T > 0. The second step shows
that the Lyapunov function candidate W := V1 + V2 decays
exponentially to zero.

To prove that (θ̂1, θ̂2) become constants after some finite
time T > 0, we use contradiction. That is, we assume that
there is no finite time T > 0 such that ˙̂

θ1(t) =
˙̂
θ2(t) = 0 for

all t ≥ T . This means, according to Task 1.-Task 2. that there
exists an infinite number of time intervals, each one having
a length greater or equal than min{T 1, T 2}, on which, θ̂1
and θ̂2 are linearly increasing, and thus limt→∞ θ̂1(t) =
limt→∞ θ̂2(t) = ∞.

Let θ̃i := θi− θ̂i. It follows that there must exists k′ ∈ N∗

such that, for all integers k ≥ k′, we have θ̃1(t2k−3) < 0,
θ̃2(t2k−2) < 0, and

θ̃1(t2k−3)T 1 + θ1T 1 ≤ −σ(T 1 + T 2),

θ̃2(t2k−2)T 2 + θ2T 2 ≤ −σ(T 1 + T 2).
(11)

As a consequence of (11), for all k ≥ k′, we have

θ̃1(t2k−3)[t2k−2 − t2k−3] + θ1[t2k−1 − t2k−2]

≤ −σ[t2k−1 − t2k−3],

θ̃2(t2k−2)[t2k−1 − t2k−2] + θ2[t2k − t2k−1]

≤ −σ[t2k − t2k−2].

(12)

Using Grönwall-Bellman inequality, for all k ≥ 3, we obtain

V1(t2k−1) ≤ V1(t2k−3)e
∫ t2k−2
t2k−3

θ̃1(t)dt+θ1[t2k−1−t2k−2]

≤ V1(t2k−3)e
θ̃1(t2k−3)[t2k−2−t2k−3]+θ1[t2k−1−t2k−2],

V2(t2k) ≤ V2(t2k−2)e
∫ t2k−1
t2k−2

θ̃2(t)dt+θ2[t2k−t2k−1]

≤ V2(t2k−2)e
θ̃2(t2k−2)[t2k−1−t2k−2]+θ2[t2k−t2k−1].

(13)
From (12)-(13), we conclude that, for all k ≥ k′, we have

V1(t2k−1) ≤ V1(t2k−3)e
−σ[t2k−1−t2k−3],

V2(t2k) ≤ V2(t2k−2)e
−σ[t2k−t2k−2].

By induction, the latter implies that θ̂1 is constant for all
t ≥ t2k′−1 and θ̂2 is constant for all t ≥ t2k′ , which yields
to a contradiction.

We analyze now the Lyapunov function candidate W .
For this purpose, we define the sequences of time instants
{Ti}∞i=0 and {T ′

i}∞i=1, such that Ti := t2i+1 and T ′
i := t2i.

In particular, we note that, for all i ∈ {0, 1, 2, ...}, we have

T 1 + T 2 ≤ Ti+1 − Ti ≤ T 1 + T 2,

T 1 + T 2 ≤ T ′
i+2 − T ′

i+1 ≤ T 1 + T 2.

Let τ1 ∈ {Ti}∞i=0 be the smallest time instant from which θ̂1
is constant, and τ2 ∈ {T ′

i}∞i=1 be the smallest time instant
from which θ̂2 is constant. For all i ∈ {1, 2, ...}, such that
Ti ≥ τ1 and T ′

i ≥ τ2, we have

V1(Ti+1) ≤ V1(Ti)e
−σ(Ti+1−Ti),

V2(T
′
i+1) ≤ V2(T

′
i )e

−σ(T ′
i+1−T ′

i ).

By induction, for all i ∈ {1, 2, ...} such that Ti ≥ τ1 and for
all t ∈ [Ti, Ti+1], we have

V1(t) ≤ V1(Ti)e
θ1(T 1+T 2) ≤ V1(τ1)e

θ1(T 1+T 2)e−σ(Ti−τ1).
(14)

Similarly, for all i ∈ {1, 2, ...} such that T ′
i ≥ τ2 and for all

t ∈ [T ′
i , T

′
i+1], we have

V2(t) ≤ V2(τ2)e
θ2(T 1+T 2)e−σ(T ′

i−τ2). (15)

In (14) and (15), we, respectively, use the inequalities

e−σ(Ti−τ1) ≤ e−σ(t−τ1)eσ(t−Ti) ≤ e−σ(t−τ1)eσ(T 1+T 2)

e−σ(T ′
i−τ2) ≤ e−σ(t−τ2)eσ(T 1+T 2).

We can, therefore, rewrite (14) and (15), respectively, as

V1(t) ≤ V1(τ1)e
(θ1+σ)(T 1+T 2)e−σ(t−τ1) ∀t ≥ τ1,

V2(t) ≤ V2(τ2)e
(θ2+σ)(T 1+T 2)e−σ(t−τ2) ∀t ≥ τ2.

(16)



Next, by observing that

V1(τ1) ≤ V1(0)e
θ1τ1 and V2(τ2) ≤ V2(0)e

θ2τ2 ,

we can re-express (16) as

V1(t) ≤ V1(0)e
(θ1+σ)(T 1+T 2+τ1)e−σt ∀t ≥ τ1,

V2(t) ≤ V2(0)e
(θ2+σ)(T 1+T 2+τ2)e−σt ∀t ≥ τ2.

(17)

Moreover, we have that

V1(t) ≤ V1(0)e
(θ1+σ)τ1e−σt ∀t ≤ τ1,

V2(t) ≤ V2(0)e
(θ2+σ)τ2e−σt ∀t ≤ τ2.

(18)

Finally, by denoting,

µ := max
(
e(θ1+σ)(T 1+T 2+τ1); e(θ2+σ)(T 1+T 2+τ2)

)
,

and based on (17) and (18), we obtain W (t) ≤ µW (0)e−σt

for all t ≥ 0. To complete the proof, we show that µ can be
upper-bounded by a constant independent on (V1(0), V2(0)).
This can be done by proving that the time instants (τ1, τ2)
are independent on (V1(0), V2(0)).

Note that, for each t ∈ [t2k−1, t2k] ⊂ I1, we have V̇1(t) ≤(
θ1 − θ̂1(t2k−1)

)
V1(t), and, for each [t2k, t2k+1], we have

V̇1(t) ≤ θ1V1(t). Let V 1 be the locally absolutely continuous
solution to the switched system V̇ 1 =

(
θ1 − θ̂1(t2k−1)

)
V 1 for a.e. t ∈ I1,

V̇ 1 = θ1V1 for a.e. t ∈ I2,

starting from the initial condition V 1(0) = V1(0), and θ̂1
designed as in Task 1. while using V 1 instead of V1, and
θ̂1(0) > 0. Let τ̄1 ∈ {t2i+1}∞i=0 be the smallest time instant,
from which, θ̂1 is constant. From previous computations, we
know that V 1(t) ≤ e(θ1+σ)(T 1+T 2+τ̄1)V 1(0)e

−σt for all t ≥
0. The time instant τ̄1 is independent on V 1(0) since the rate
of convergence V 1 depends only θ1 − θ̂1(t2k+1), θ, and the
intervals I1 and I2. It also means that θ̂1 can be seen as a
function of time only. Let us now note that the dynamical

map (V1, t) 7→

{(
θ1 − θ̂1(t2k−1)

)
V1 if t ∈ I1

θ1V1 if t ∈ I2
is locally Lipshitz, which means that, under the continuity of
V1 and V 1, V1(t) ≤ V 1(t) ≤ e(θ1+σ)(T 1+T 2+τ̄1)V 1(0)e

−σt

for all t ≥ 0. The same reasoning applies for V2, which
concludes the proof.

We are now ready to state our main result.
Theorem 1: Consider system Σ under the sensing sce-

nario in Section II-A. Let Condition 1 and Assumption
1 hold. Under the boundary conditions in (2), we let
(u1, u2) := (κ(V1, ∂

3
xw(0), θ̂1), 0) on I1 and (u1, u2) :=

(0,−κ(V2, ∂
3
xv(1), θ̂2)) on I2, where κ(·) is introduced in

Lemma 3, and (θ̂1, θ̂2) are designed, for some σ > 0,
according to Task 1.-Task 3.. Then, the set A := {(u, θ̂1, θ̂2) :
u = 0} is L2-GES. Namely, for each θ̂1(0) and θ̂2(0), there
exists κ > 0 such that, for each solution u to Σ with initial
condition uo, we have ||u(t)||2 ≤ κ||uo||2e−

1
2σt for all t ≥ 0.

Moreover, u1 and u2 are bounded and converge to zero. □

Proof: When (6) and (7) are satisfied, we conclude
that the Lyapunov functions (V1, V2), along the solutions
to Σ2, form a solution to (9). Hence, using Lemma 4, we
conclude that the pair (V1, V2) satisfies (10). As a result, the
set A is L2-GES. Concerning the boundedness of the control
inputs, it is, due to the choice of κ in Lemma 3, a direct
consequence of the boundedness of the Lyapunov function
candidates V1 and V2 and of the adaptation parameters θ̂1
and θ̂2. Similarly, the asymptotic convergence of (u1, u2) to
zero is a straightforward consequence of the convergence of
(V1, V2) to zero.

V. SIMULATIONS

The numerical scheme that we use to simulate Σ in closed
loop is an adaptation of the mesh-free collocation method
using radial basis functions (RBF)s; see [21]. The first- and
the third-order spatial derivatives that appear in the control
laws are calculated using Euler forward and Euler backward
schemes. The Lyapunov functions V1 and V2 are calculated
via Riemannian sums. Furthermore, we use multiquaric
RBFs, which depend on a shape parameter c ∈ R. To make
sure that the simulation is depicting the actual behavior of
Σ in closed-loop, we use the same shape parameter (namely,
c = 0.4) when simulating both the closed-loop and the open-
loop systems. The control input is delayed with a single time
step. The simulations are performed on Matlab® R2022b1.

For the obtained simulations, the initial time is to = 0,
the final time is tf = 8 × 10−3, and the time step is ∆t =
10−7. We select N + 1 uniformly distributed collocation
points on the interval [0, Y ], with Y = 0.5, from xo = 0
to xN = Y , we select the same number of collocation
points on [Y, 1], where N = 9, which yields to the space-
discretisation step ∆x ≈ 0.0556. We select the anti-diffusion
parameter λ1 = 4π2/0.25 + 50, for which, the linearized
KS equation is unstable [7]. The initial condition uo is
given by uo(x) = −3(cos(4πx) − 1) for all x ∈ [0, 1].
The sequences of time intervals I1 and I2 are given by :
I1 = [0, 1) ∪ [2, 2.8) ∪ [3.9, 5) ∪ [5.5, 6.5) ∪ [7, 7.6)× 10−3

and I2 = [1, 2)∪[2.8, 3.9)∪[5, 5.5)∪[6.5, 7)∪[7.6, 8)×10−3.
We set θ̂1(0) = θ̂2(0) = 0 and we choose a linear increment,
i.e. on the time intervals where θ̂1,2 should be increasing, we
take θ̂1,2(n) = θ̂1,2(n− 1) + ∆, where ∆ = 0.01. Finally,
the decay rate required is σ = 100.

The open-loop response, which is unstable, is shown in
Figure 1. The convergence to zero happens in closed-loop as
it can be seen in Figure 2. The inputs (u1, u2) are discontin-
uous boundary controllers at x = 0 and x = 1, respectively;
see Figure 3. Moreover, it is interesting to observe that the
continuous phase of u1 (i.e. when |∂3

xw(0)| < l(V1, θ̂1))
happens only on [0, 1]. The Lyapunov function candidates
(V1, V2) and their sum W = V1 + V2, along the closed-loop
solutions, are illustrated in Figure 4. In this last figure, we
can see the impact of the intermittent sensing as V1 (resp. V2)

1The simulation code can be found at
https://github.com/BelhadjoudjaMohamedCamil/Kuramoto-
Sivashinsky23.git



Fig. 1: Open-loop response.

Fig. 2: Closed-loop response.

decays on I1 (resp. I2) and increases on I2 (resp. I1). We also
observe the existence of a parameter-adaptation phase, since
the decrease of V1 is observed only starting from [2, 2.8).

VI. CONCLUSION

We studied stabilization of the origin for the nonlinear KS
equation subject to intermittent sensing when the coefficient
λ1 is unknown. Adaptive boundary controllers are designed
to achieve GES in the L2 sense. In future work, we would
like to obtain robustness results for the perturbed equation,
under the proposed sensing scenario, by guaranteeing input-
to-state stability (ISS). Furthermore, solving the same prob-
lem using active control at x = 0 and x = Y and null
boundary conditions at x = 1, while guaranteeing input
boundedness, is open, to the best of our knowledge.
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Fig. 3: The control inputs.
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Fig. 4: Lyapunov function candidates.
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