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Abstract	

In this work, model-predictive control (MPC) was combined for the first time with singular 
perturbation theory, and an original plasma kinetic control method based on extremely simple 
data-driven models and a two-time-scale MPC algorithm has been developed. A 
comprehensive review is presented in this paper. Slow and fast semi-empirical models are 
identified from data, by considering the fast kinetic plasma dynamics as a singular 
perturbation of a quasi-static equilibrium, which itself is governed, on the slow time scale, by 
the flux diffusion equation. This control technique takes advantage of the large ratio between 
the time scales involved in magnetic and kinetic plasma transport. It is applied here to the 
simultaneous control of the safety factor profile, q(x), and of several kinetic variables, such as 
the poloidal beta parameter, βp, and the internal inductance parameter, li, on the EAST 
tokamak. In the experiments, the available control actuators were lower hybrid current drive 
(LHCD) and co-current neutral beam injection (NBI) from different sources. Ion cyclotron 
resonant heating (ICRH) and electron cyclotron resonant heating (ECRH) are used as 
additional actuators in control simulations. In the controller design, an observer provides, in 
real time, an estimate of the system states and of the mismatch between measured and 
predicted outputs, which ensures robustness to model errors and offset-free control. Based on 
the observer information, the controller predicts the behaviour of the system over a given time 
horizon and computes the optimal actuation by solving a quadratic programming optimization 
problem that takes the actuator constraints into account. A number of control applications are 
described in the paper, either in nonlinear simulations with EAST-like parameters or in real 
experiments on EAST. The simulations were performed with a fast plasma simulator 
(METIS) using either two control actuators (LHCD and ICRH) in a low density scenario, or 
up to four actuators at higher density: LHCD, ECRH, and two NBI systems driven in a on/off 
pulse-width-modulation (PWM) mode, with different injection angles. The control models are 
identified with the prediction-error method, using datasets obtained from open loop 
simulations in which the actuators are modulated with pseudo-random binary sequences 
(PRBS). The simulations with two actuators show that various q(x) profiles and βp waveforms 
can be tracked without offset, within times that are consistent with the resistive and thermal 
diffusion time scales, respectively. In simulations with four actuators, simultaneous tracking 
of time-dependent targets is shown for q(x) at two normalized radii, x = 0 and x = 0.4, and for 
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βp. Due to the inherent mismatch between the optimal NBI power request and the delivered 
PWM power, the kinetic controller performs with reduced accuracy compared with 
simulations that do not use the NBI/PWM actuators. The first experimental tests using this 
new control algorithm were performed on EAST when the only available actuator was the 
LHCD system at 4.6 GHz. The algorithm was thus used in its simplest single-input-single-
output version to track time-dependent targets for the central safety factor, q0, or for βp. In the 
closed loop control experiments, the q0 targets were tracked in about one second, consistently 
with the plasma resistive time constant. Excellent tracking of a piecewise linear βp target 
waveform was also achieved. When the NBI system became controllable in real time by the 
EAST plasma control system, new experiments were dedicated to multiple-input-multiple-
output MPC control with three actuators: LHCD and two NBI actuators using the PWM 
algorithm. Given that the minimum time allowed between NBI on/off switching was 0.1 s, i.e. 
larger than the characteristic time of the fast plasma dynamics, a reduced version of the MPC 
controller based only on the slow model was used. Various controller configurations were 
tested during a single experimental session, with up to three controlled variables chosen 
among q0 = q(x=0), q1 = q(x=0.5), βp and li. The main difficulty encountered during this 
session was the unavailability of the full baseline ICRH and ECRH powers that were used in 
the reference scenario, and from which the plasma model was identified. This often led to the 
saturation of one or several actuators, which prevented some targets selected in advance from 
being accessible. Nevertheless, in cases that were free from actuator saturation, q0 and q1 
targets were successfully reached, in a time that is consistent with the resistive diffusion time 
of the model and with small oscillations that are characteristic of the PWM operation of the 
neutral beams. During the simultaneous control of q0 and βp, the ICRH power was too low 
and, in addition, the plasma density was much larger than the reference one. The q0 targets 
were not accessible in this high-density/low-power case, but βp control was successful. 
Finally, the simultaneous control of q0 and li was satisfactory and, during the simultaneous 
control of, q0, βp and li, the tracking of βp and li was satisfactory but q0 was too large due to 
the lack of ICRH power and to NBI saturation. In conclusion, the extensive nonlinear 
simulations described in this paper have demonstrated the relevance of combining model-
predictive control, data-driven models and singular perturbation methods for plasma kinetic 
control. This technique was also assessed experimentally on EAST, although some tests were 
perturbed by undesired parameter changes with respect to the reference scenario. 
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1.	Introduction	

The development of advanced tokamak operation 
scenarios in which an optimization of some plasma 
parameter profiles, at reduced plasma current, results in a 
large improvement in energy confinement and MHD stability 
[1-7] provides the physics basis for the design of a steady 
state fusion reactor based on the tokamak concept. With the 
plasma characteristics foreseen in such operation scenarios, a 
high-gain fusion burn should be achieved at high β (β is the 
ratio of thermal to magnetic pressure) while a major fraction 
of the toroidal current is self-generated by the neoclassical 
bootstrap effect [8]. Thus, the remaining fraction of the 
plasma current can also be driven non-inductively by 
external sources [9], which allows steady state operation or 
pulse lengths exceeding by far the intrinsic limit of 
conventional inductive tokamak operation. In present-day 
experiments, the high performance (high-β) phase is often 
limited in duration by the undesired evolution of some 
plasma parameter profiles and by MHD activity. Advanced 
control of magnetic and kinetic plasma parameters and radial 
profiles such as the safety factor profile (q-profile), the 
normalized beta parameter, βN, the poloidal beta, βp, and the 
internal inductance parameter, li, generally referred to as 
plasma kinetic control, will therefore be essential for the 
success of advanced steady state operation in ITER [10-11] 
and ultimately for the development of nuclear fusion as an 
attractive source of energy.  

Ideally, for integrated profile control involving several 
magnetic and kinetic parameters and profiles, first-principles 
nonlinear plasma transport models should be used, as they 
have, in principle, a universal domain of validity. However, 

despite active research in this field, available models of 
increasing complexity still depend on many uncertain or 
unknown parameters and transport coefficients, and their 
accuracy cannot be widely assessed, especially in the 
advanced H-mode operation scenarios and plasma regimes. 
Simplified versions of such models, together with some ad 
hoc assumptions or coefficients, have been used for real-time 
applications and controller designs. Early examples were the 
reconstruction of the plasma current density profile when 
real-time measurements are not available [12-13], and 
actuator trajectory optimization during plasma current ramp-
up to optimally reach a given point in the tokamak operating 
space [14]. First-principle-driven (FPD) models have also 
been used for controller synthesis in many plasma control 
numerical simulations using various integrated transport 
modelling codes. They were used, for instance, in ITER 
simulations with some assumptions to allow for real-time 
update of the profile response models [15]. They were also 
integrated in a model-based robust feedback control 
algorithm [16] and in a model-predictive control (MPC) 
algorithm [17], also for ITER simulations. FPD models have 
also been combined with Lyapunov-based distributed 
methods to control the q-profile on TORE SUPRA and TCV 
simulators [18-19]. Non-linear Lyapunov-based distributed 
approaches addressed bootstrap current optimization [20] and 
electron temperature regulation in H-mode plasmas [21] 
using sum-of-squares polynomials. More recently, robust, 
nonlinear, model-based control of the current profile and of 
the plasma energy content or βN was tested in numerical 
simulations for the EAST tokamak [22] and for DIII-D [23], 
with control algorithms based on the first-principles 
magnetic flux diffusion equation combined with “uncertain” 
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models for the electron temperature, plasma resistivity and 
non-inductive current drive.  

Plasma kinetic controllers based on FPD models have also 
been implemented and tested experimentally. For instance, a 
simplified FPD model has been used for the first time for 
model-based profile control experiments in DIII-D L-mode 
(low confinement) discharges [24]. Later, simulations and 
experimental tests of an MPC controller based on a similar 
simplified FPD model embedding some scaling laws and ad-
hoc transport coefficients have also been performed in L-
mode plasmas on the TCV tokamak [25]. Experimental 
results on the q-profile and β parameter control on TCV were 
also obtained by designing a Lyapunov-based distributed 
controller using a two-time-scale approach [26]. More 
recently, experiments on q-profile and βN control were 
conducted in H-mode plasmas on EAST using feedback 
control algorithms with a proportional-integral-derivative 
(PID) structure in which the various gains were optimized 
using control-oriented FPD models [27]. 

In the present work, an alternative approach to integrated 
profile control has been pursued, which we have referred to 
as the ARTAEMIS1 approach. Model-based controllers are 
designed starting from the same first-principles model 
structure (magnetic flux and kinetic diffusion equations), but 
without specifying complex mathematical expressions for 
every uncertain or unknown space-dependent coefficient in 
the equations, and without introducing approximate scaling 
laws and ad hoc formulas in their various source terms. 
Instead, this approach is based on the experimental 
identification [28] of a minimal dynamic plasma model, 
taking into account the physical structure and couplings of 
the flux-averaged transport equations (this includes, among 
many other things, the effect of thermal diffusion on the 
poloidal magnetic flux and on the bootstrap current), but 
making no quantitative assumptions on the transport 
coefficients or on their dependences. The system consists of 
coupled ordinary differential equations for slow and fast 
models that govern the evolution of the system on the 
resistive and the kinetic time scales, respectively. The two-
time-scale control-oriented model structure stems from a first 
order singular perturbation expansion [29] of the linearized 
plasma transport equations and a projection on appropriate 
radial basis functions [30]. In other words, in these models 
and in the associated control algorithms, the fast component 
of the kinetic plasma dynamics is considered as a singular 
perturbation of a quasi-static equilibrium, which itself is 
governed, on the resistive time scale, by the flux diffusion 
																																																													
1 ARTAEMIS is an acronym for "Advanced Real-Time Algorithms 
based on Empirical Modelling of Integrated Scenarios" that we 
have used to refer to the two-time-scale profile control algorithms 
and plasma models originally described in references [30-31] and 
based on applying the theory of singularly perturbed systems to a 
set of simplified and linearized plasma transport equations. 

equation. Using singular perturbation methods takes 
advantage of the small ratio between the thermal and 
resistive diffusion time scales and provides a natural way to 
cope with the high dimensionality of the system. The system 
identification problem is thus made tractable by the partial 
decoupling of the slow and fast dynamics. For profile control 
purposes, this technique yields extremely simple data-driven 
models (hence low control computational cost), at the 
expense of a restricted applicability to a given device and 
actuator set, around a given reference plasma equilibrium. 
Despite this restriction, such models can be used with 
advanced control algorithms in a relatively broad plasma 
parameter space around the reference plasma state. The 
model identification process was originally developed using 
simulated and experimental data from JET [30] and was 
improved later with experimental data from JT-60U and 
DIII-D [31]. It is based on the output prediction-error method 
[28] and specific modulation experiments with random 
excitation of the various actuators were realized for that 
purpose, either in plasma simulations or in real tokamak 
experiments. Similar estimation and identification methods 
for lumped plasma models of small dimensions were also 
developed using a combination of subspace and output-error 
methods [32]. 

Over the years, the resulting data-driven models were then 
used to synthesize and test different controllers, going from 
the simple PID to the more powerful MPC algorithms. The 
simplest algorithm that combines the two-time-scale linear 
model structure with linear-quadratic optimal control theory 
was the so-called near-optimal control algorithm [30]. It 
consists of a slow proportional-integral (PI) feedback with an 
anti-windup loop, augmented by a fast proportional feedback 
that regulates the kinetic variables on the fast time scale. The 
first experimental tests were performed on JET with the 
control of the q-profile, q(x), at several normalized radii, x, 
using three heating and current drive (H&CD) actuators: 
lower hybrid current drive (LHCD), neutral beam injection 
(NBI) and ion cyclotron resonant heating (ICRH). Control 
was done either at constant plasma surface loop voltage, or 
by using the boundary poloidal magnetic flux as a fourth 
actuator and including the safety factor near the plasma edge 
in the controlled variables rather than regulating accurately 
the plasma current through the poloidal field coils. Further 
experimental tests were performed later on DIII-D high-βN 
discharges, showing simultaneous control of the internal 
poloidal flux profile, ψ(x), and of βN, as well as effective 
distributed control of the q-profile at normalized radii 
between x=0 and x=0.6 [33]. In these experiments, the profile 
control actuators were the surface loop voltage and a subset of 
five other independent H&CD sources: on-axis co-current NBI, 
off-axis co-current NBI, counter-current NBI, balanced NBI, 
and electron cyclotron resonant heating (ECRH) and current 
drive (ECCD). The effectiveness of the ARTAEMIS approach 
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for the integrated control of q(x) and βN in steady state fully 
non-inductive discharges was also investigated in closed loop 
nonlinear plasma transport simulations using the METIS 
plasma simulator [34] with DIII-D-like parameters. 
However, in these simulations [35], the desired steady state 
q-profiles were obtained in about ten seconds at high βN, 
which is too slow compared with the real DIII-D pulse length 
at high power. With larger gains, the q(x) targets were 
reached after a large undershoot in the plasma core and a 
damped oscillation. 

Recent work was therefore dedicated to the development 
of more powerful algorithms incorporating the singular 
perturbation approach and the ARTAEMIS models. H∞ robust 
control is an option that was investigated in [36-37] with 
METIS simulations and some preliminary experiments on 
EAST. In this paper, we concentrate on a controller design 
that combines the simplicity of the ARTAEMIS two-time-
scale models with the efficiency of MPC techniques [38], 
which have been successfully used in industry for a long 
time [39]. In MPC theory, the actuator constraints can be 
easily embedded in the quadratic programming (QP) 
optimization process and the model errors can be identified 
and compensated in real time. The new controllers were 
designed in view of experimental applications on EAST for 
the control of the q-profile, and of scalar parameters such as 
βp and li in a high-βp fully non-inductive H-mode scenario, at 
constant plasma current. They were first tested on nonlinear 
METIS simulations in the aim of tuning various free 
controller parameters and options. Then, they were 
implemented on the EAST plasma control system (PCS) and 
experiments were conducted. The real-time actuators available 
for the experiments were off-axis LHCD at 4.6 GHz and four 
co-current NBI sources. At present, the ECRH and ICRH 
systems can only deliver feedforward power waveforms but 
they could also be used as control actuators in the future, 
after the development of real-time actuation from the EAST 
PCS. They will be used here as additional actuators to extend 
the controller capabilities in some simulations. The ARTAEMIS 
system identification procedure was applied to experimental 
data obtained with random actuator modulations that are 
consistent with the actuator constraints, or to simulated data 
obtained from the METIS plasma simulator. In both cases, a 
single model can satisfactorily approximate the coupled 
response of ψ(x), q(x), βp and li to relatively large random 
variations of the available H&CD actuators compared to their 
minimum and maximum values, hence with a large diversity 
of q-profile shapes in the inner plasma. In principle, 
switching between various models identified around different 
plasma equilibria would be possible if the plasma regime 
changes significantly despite the controller regulatory action. 
This was not necessary for the experiments reported here. 

The paper is organized as follows. In section 2, the choice 
of the relevant state variables and the two-time-scale 

structure of the ARTAEMIS state space models are presented. 
Then, in section 3, such a model is identified using synthetic 
data obtained from METIS nonlinear plasma simulations 
with EAST-like parameters in a typical scenario. In section 
4, augmented models including additional disturbance states 
are introduced, and a state observer is defined for the real-
time estimate of the model states and disturbances. The 
details of the full two-time-scale MPC control algorithm will 
also be given in this section as well as a reduced version of 
the kinetic controller that is limited to the slow time scale. In 
section 5, closed loop simulations performed by combining 
the METIS plasma simulator with the ARTAEMIS MPC 
controller and using LHCD and ICRH actuators will be 
described. Examples including discrete or distributed q(x) 
control, with flat or monotonic q-profile targets, and with 
different βp target waveforms will be discussed. In section 6, 
the first experimental tests on EAST, in which LHCD at 4.6 
GHz was used to track different targets either for the central 
safety factor, q0, or for βp, will be described. Section 7 will 
present the results of closed loop METIS simulations 
illustrating the simultaneous control of q0, q(x=0.4) and βp 
with up to four actuators. In particular, the actuators include 
two co-current NBI systems with different injection angles 
and driven in an on/off pulse-width-modulation (PWM) 
mode. Finally, multiple-input-multiple output experiments 
using LHCD and two NBI/PWM groups were performed 
with up to three controlled variables among q0, q(x=0.5), βp 
and li. They will be discussed in section 8 and general 
conclusions will be drawn in section 9. 

2.	The	ARTAEMIS	semi-empirical	state	space	models	

In a tokamak, the multiple, radially distributed, magnetic 
and kinetic parameters that define the plasma state are known 
to be strongly and nonlinearly coupled. Because of this 
linkage, the parameters and profiles that define a given target 
plasma state and need to be achieved and regulated in real-
time may be reduced to a minimal set of essential ones such 
as, for example, the safety factor profile, q(x), and the scalar 
parameter βN or βp. The specification of q(x) can even be 
restricted to the inner half of the plasma if the internal 
inductance plasma parameter, li, is also given and regulated. 
Plasma rotation or temperature profiles may also play a role 
in the achievement of the desired plasma performance and 
could be included in the kinetic controlled parameters.  

The general structure of the continuous-time ARTAEMIS 
models is postulated from a set of coupled plasma response 
equations that only depend on a normalized radial coordinate 
x and on time t, and which stem from the linearized flux-
averaged plasma transport equations [30]: 

∂ψ(x,t) ∂t = Lψψ{x}⋅ψ(x,t)+Lψκ{x}⋅κ (x,t)  

+LψP (x) ⋅P(t)+Vext (t)   (1) 
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ε∂κ (x,t) ∂t = Lκψ{x}⋅ψ(x,t)+Lκκ{x}⋅κ (x,t)  

  +LκP (x) ⋅P(t)   (2) 
 
The system is linearized around a fixed equilibrium state2 
that is called the reference state, and which needs not be 
known explicitly before the system is identified (see 
appendix A2 in [30]). Here, the so-called internal poloidal 
magnetic flux function, ψ(x,t), and a set of kinetic profiles 
and/or scalar parameters represented by the vector κ(x, t), 
refer to differences with their reference values. They appear 
as the most natural state variables of the system for a state-
space model description. The radial variable, x, is defined as 
(Φ/Φmax)1/2 where Φ(x) is the toroidal magnetic flux through 
the poloidal cross-section of a given flux surface, and Φmax 
its maximum value at the last closed flux surface where 
x = 1. The internal poloidal flux is obtained by subtracting 
the plasma boundary flux, Ψb(t), from the total poloidal flux, 
so that ψ(1, t) = 0. It has been introduced in order to 
eliminate the continuous flux variation that drives the 
inductive plasma current, and to define system states that 
reach steady equilibrium values even when the plasma 
surface loop voltage, -dΨb(t)/dt, is not zero. All the unknown 

differential operators Lαβ{x} and row vectors Lα,P that 
characterize the linear response of the system depend on x 
but are independent of time, and the inputs P(t) and Vext(t) 
contain the powers from the various available H&CD 
systems and the plasma surface loop voltage, respectively, 
reduced by their reference values. 

The small constant parameter ε (ε <<1) represents the 
typical ratio between the kinetic and the resistive diffusion 
time scales. It is introduced here to scale the operators 

Lψ,ψ{x} and Lκ,κ{x} so that their largest negative 
eigenvalues have similar absolute values. As the order of 
magnitude of ε is about 0.05 in present-day tokamaks and 
0.001 in ITER, the use of singular perturbation methods [29] 
is quite relevant for model identification and control design. 
This amounts to expanding each dependent variable in 
powers of ε, defining an additional independent variable, 
τ = t / ε, to describe the fast dynamics while t describes the 
slow dynamics, and to splitting variables into a sum of a fast 
and a slow component which depend on τ and t, respectively. 
A well-posed set of ordinary differential equations is then 
obtained by grouping terms of equal order in ε and imposing 
																																																													
2 An equilibrium state is defined as a stationary state of the plasma, 
i.e., a state where the thermodynamic variables are in equilibrium 
with the particle, momentum and heat sources and sinks. The local 
plasma parameters are then constant in time as long as these 
sources and sinks do not change. The poloidal magnetic flux may 
not be constant but it must vary at a constant rate to induce a 
constant and homogeneous toroidal electric field in the plasma. 

that, in the asymptotic limit where ε tends to zero, the initial 
conditions for the slow dynamics (t = 0) must match the 
quasi-steady-state solution on the fast dynamics (τ → ∞). 

Restricting the singular perturbation expansion to first 
order in ε, and projecting the partial differential system on a 
set of radial basis functions with a Galerkin scheme, a 
lumped-parameter, linear time-invariant model is obtained, in 
which all distributed variables and unknown operators reduce 
to finite dimension vectors and matrices [30]. In the 
following, the functions ak(x) represent a set of cubic splines3 
and the symbols ψ and κ will be used to denote either the 
functions ψ(x, t) and κ(x, t), respectively, or the vectors ψ(t) 
and κ(t) whose elements, ψk(t) and κk(t), are the coefficients 
of their respective Galerkin expansion: 

ψ(x,t) = ψk (t) ak (x)
k=1

N

∑ + Rψ ,k (x,t) (3)  

κ (x,t) = κk (t) ak (x)
k=1

N

∑ + Rκ ,k (x,t) (4)  

The residuals Rψ ,k (x,t)  and Rκ ,k (x,t)  are defined by: 

ak(x)0

1
∫ Rψ ,k (x,t) dx= 0 (5)  

ak(x)0

1
∫ Rκ ,k (x,t) dx= 0 (6)  

 
and will be neglected. Equations (1-2) thus reduce to a slow 
dynamic model, 

 
∂ψ(t) ∂t =AS ⋅ψ(t)+BS ⋅US (t) (7)  

κS (t) =C S ⋅ψ(t)+DS ⋅US (t) (8)  
and a fast dynamic model, 

∂κF (t) ∂t = ε
−1∂κF (τ ) ∂τ =AF ⋅κF (t)+BF ⋅UF (t) (9)  

where κ(t) = κS(t) + κF(t), and AS and AF are regular 
matrices with negative eigenvalues characteristic of the slow 
and fast dynamics, respectively. The vector U(t) containing 
the actuator inputs, P(t) and Vext(t), is also split into a slow 
and a fast component, U(t) = US(t) + UF(t). The fast inputs 
will not generate a response from the slow system (7-8) and 
vice versa because UF(t) does not contain any low frequency 
component and high frequency components have been 
removed in US(t). It follows that, when a steady state is 
reached, US(t) is constant and UF vanishes, and therefore ψ(t) 
and κS(t) are constant, and κF vanishes. It is clear from the 
expansion in powers of ε of the original system that, apart 

																																																													
3  The set of radial basis functions could be different for each 
dynamical variable and must be chosen judiciously to provide 
satisfactory fits of the corresponding parameter profiles. 
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from anomalous flux redistribution caused by some rapid 
MHD events (which is not described by the resistive 
diffusion operator in (1) and should be treated by the 
controller as an external disturbance), ψ(t) has only a slow 
evolution. Its fast component can be set identically to zero in 
the two-time-scale model. This would also be true for any 
other magnetic variable (current density, safety factor profile, 
etc.). Equation (7) is a slow dynamic state equation obtained 
from (1) by replacing the kinetic vector κ(t) by the quasi-
steady solution of equation (2), at zero order in ε. Equation 
(8) appears as an output equation for the slow model. It 
includes a term representing a direct feed-through from the 
input to the output, but only from the low frequency input 
component, which therefore does not yield any fast response. 
The fast model, which is obtained from (2) by retaining only 
the first order terms in ε, is limited to a system of ordinary 
differential equations (9). Any fast component of Vext(t) can 
be neglected in equation (9) as Vext(t)  does not enter equation 
(2). More details about the assumptions and approximations 
leading to equations (1) to (9) can be found in [28]. 

Linear system identification algorithms may not be 
efficient enough, especially when using noisy data, to seek 
models whose order is as large as the dimensions of the ψ 
and κ vectors. It is therefore convenient to reduce the system 
order, a priori, by retaining a small number of eigenmodes in 
the models. To do so, we define new state vectors, XS(t) and 
XF(t), that represent the projections of the slow and fast 
model states in the basis of a reduced set of slow and fast 
eigenmodes. The system then reads 

 
!XS (t) = AS ⋅ XS (t)+ BS ⋅US (t) (10)  

ψ(t) =Cψ ⋅ XS (t) (11)  

κS (t) =CS ⋅ XS (t)+DS ⋅US (t) (12)  
and 

!XF (t) = AF ⋅ XF (t)+ BF ⋅UF (t) (13)  

κF (t) =CF ⋅ XF (t) (14)  
 
so that ψ and κ now become output variables and the order 
of the models to be identified (i.e. the number of columns in 

the Cψ and CF matrices) can be varied until the best fit 
between the original data and the model prediction is 
obtained. When some kinetic responses are too fast and the 
corresponding eigenvalues of the AF matrix cannot be 
identified, it was found judicious to add a direct feed-through 
term, DF ⋅ UF(t), in the right hand side of equation (14). This 
term can approximate the fastest response from UF(t) to 
κF(t).  

The q-profile is controlled through its inverse, 

ι (x,t) = ι(x,t) (2π ) =1 q(x,t)
 

= − ∂ψ(x,t) ∂x⎡⎣ ⎤⎦⋅ ∂Φ(x,t) ∂x⎡⎣ ⎤⎦
−1

 

= − 1 (2Φmax )⎡⎣ ⎤⎦⋅ (1 x) ⋅∂ψ(x,t) ∂x⎡⎣ ⎤⎦ (15)  

where ι(x, t) refers to the rotational transform and is defined, 
in toroidal plasmas, as the poloidal angle subtended during a 
single toroidal transit of the field lines on a particular flux 
surface, expressed in radians. Φmax is known from the real-
time magnetic equilibrium reconstruction that provides the 
current profile data. At constant vacuum toroidal field and 
plasma shape, it was checked experimentally that the 
variations of q(x,t) and ι (x,t)  are indeed due mostly to the 

variations of ψ(x,t) as Φmax depends weakly on the system 
inputs in comparison with ψ(x, t). Controlling ι (x,t)  rather 
than q(x,t) is a natural choice due to the inverse dependence 
of the safety factor with respect to the poloidal flux and 
current density, and therefore with respect to the H&CD 
control actuators. The postulated structure of equations (1) 
and (2) was indeed based upon linear relationships between 
beam-driven or wave-driven currents and injected powers 
through current drive efficiencies, and between the ohmic 
current density and the surface loop voltage through Ohm’s 
law [30]. 

In order to control ι (x,t) , an additional output equation 
relating ι (x,t)  to the model states must be used. Neglecting 
the residuals, the approximate finite expansion (3) that led to 
the discrete model equations (7-9), readily provides an 
approximation for ι (x,t) : 

ι (x,t) = − 1 (2Φmax )⎡⎣ ⎤⎦⋅ ψk (t)αk (x)
k=1

N

∑ (16)  

 
in terms of a finite expansion using the same coefficients, 
ψk(t), as the ψ(x,t) expansion, but on a different set of basis 
functions, αk(x). The new basis functions are defined by: 
 

αk (x) = (1 x) ⋅dak (x) dx (17)  
 
The basis functions, ak(x), used to approximate ψ(x,t) 

must satisfy a regularity condition at x = 0, namely that their 
first derivative vanishes. This ensures that the new basis 
functions, αk(x), are finite at  x = 0 so that the approximate 
ι (x,t) in (16) is defined and finite on the magnetic axis, as 
its physical counterpart is. Once a sufficiently accurate 
model has been identified for the dynamics of ψ(x,t) through 
the ψk elements of the ψ-vector and the ak(x) basis functions, 
the dynamics of ι (x,t)  can be approximated by equation 
(16) for controller synthesis. For instance, control of the 
ι (x,t)  profile can be achieved through the control of the ψ-
vector with an appropriate control objective, based on (16) 
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and involving scalar products of the αk(x) functions, that 
forces the ι (x,t)  profile to reach the closest least square 

approximation of a given target profile, ιtarget (x)  [33]. 

Equation (16) is essential because q(x,t) and ι (x,t)  involve 
the spatial derivative of the poloidal flux, and the 
experimental q-profile data that is obtained from tokamak 
real-time magnetic equilibrium reconstruction codes is 
therefore extremely noisy. As a result, using directly the 
ι (x,t)  data for system identification was not found practical, 
yielding unsatisfactory fits between the data and the model 
prediction. It was much easier and judicious to identify the 
model described by equations (10-11) for the ψ(t) vector, 
using the internal poloidal flux data, and to use equation (16) 
for all the mathematical expressions, scalar products and 
integrals involving ι (x,t)  in the control algorithm. 

3.	Identification	of	ARTAEMIS	models	from	nonlinear	
plasma	simulations	with	EAST-like	parameters	

The design of an advanced profile controller using MPC 
techniques required many tests and simulations before 
implementing the controller in the EAST PCS and using it 
for experimental tests. Various control options and tunable 
parameters were thus optimized from the results of numerical 
simulations. The METIS plasma simulator [34] was an ideal 
tool for this because it can produce, with a reasonable CPU 
time, extensive nonlinear closed loop simulations that allow 
the controller performance to be evaluated. METIS includes 
an MHD equilibrium and a current diffusion solver, and 
combines plasma transport nonlinearity with 0-D scaling 
laws and 1.5-D ordinary differential equations. Despite its 
rapid convergence, METIS integrates basically all the 
features of real tokamak physics in a simplified but 
comprehensive and flexible way. Tokamak complexity is 
restored through the very large number of possible options 
and sophisticated nonlinear models that the code offers for 
every elementary physical process. However, the way 
METIS was constructed would make it very difficult to 
extract linear versions of the code around a given equilibrium 
state. Unlike the control-oriented FPD models used in 
RAPTOR [13] and COTSIM [23] whose equations can be 
linearized for controller design, METIS is too complex to 
offer this option. Then, for controller synthesis, linear models 
must be obtained from system identification using large 
synthetic data sets obtained from open loop simulations with 
random excitation of the various actuators. Before running 
simulations for a particular device in a given scenario, the 
various models and adjustable parameters in METIS must 
generally be tuned in order to provide a satisfactory 
agreement with some experimental data that is relevant to the 
problem of interest. Such a tuning procedure was previously 
used for DIII-D and is described in details in reference [35]. 

Here, similarly, METIS modelling options and parameters 
were tuned to approximate two different steady state H-mode 
scenarios on EAST until a fair agreement with experimental 
data was obtained. The first scenario is at low plasma 
density, without NBI, while the second scenario includes 
NBI, at higher density, and will be used in section 7.  
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Figure 1. LHCD (top) and ICRH (bottom) power waveforms (MW) 
used in METIS simulations with low frequency modulations (blue) 
and high frequency modulations (red dotted). 
 

The low-density scenario around which a linear 
ARTAEMIS response model was identified was based on shot 
#62946, a steady state, fully non-inductive single-null         
H-mode discharge, at a toroidal magnetic field, BT = 2.5 T, 
line-averaged density, nel ≈ 2.7 x 1019 m-3, and plasma 
current, Ip = 0.42 MA. The transition to H-mode occurred at 
3.1 s with an H-factor, H98(y,2) ~ 1.1. The steady state poloidal 
β and internal inductance parameters were βp = 1.3 and li = 
1.2, respectively, and the q-profile was characterized by a 
small negative shear in the plasma core, with a minimum q 
around 1.5 and q0 = q(x=0) ~ 2 on axis. The experimental 
poloidal flux and safety factor profiles were obtained from 
EFIT magnetic equilibrium reconstructions, which were 
available in real-time using magnetic and kinetic 
measurements, including interfero-polarimetry data from the 
POINT diagnostic. The reference discharge had been 
obtained using LHCD (0.6 MW at 2.45 GHz and 2 MW at 
4.6 GHz), ICRH at 33 MHz (0.32 MW) and ECRH at 
140 GHz (0.3 MW). It must be emphasized that the METIS 
plasma simulator is a fast code and the simplified model for 
LHCD in METIS has been developed considering only one 
frequency. It cannot provide a very accurate simulation of the 
plasma dynamics in real EAST discharges that use two 
LHCD systems at different frequencies. But it provides a 
nonlinear simulation platform that reproduces qualitatively 
the complex plasma dynamics prevailing in tokamaks, and 
on which control algorithms and options can be extensively 
tested and compared. In the METIS simulations, the 
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2.45 GHz LHCD power was added to the ECRH power, 
which then amounts to 0.9 MW in the low-density scenario. 
The ECRH power and current deposition profiles were 
modified consistently with the assumption that two thirds of 
the ECRH power used in METIS, i.e. 0.6 MW, is indeed 
provided by the 2.45 GHz LHCD system. By resorting to 
these approximations, controller design could be optimized 
without the limitations encountered with experimental tests, 
such as the scarcity and short duration of experimental 
sessions and the intermittent availability of some actuators. 

 
Figure 2. Comparison between the reduced ψ(x) data (Wb) at 
x = 0, 0.1, ... 0.9 from METIS (black) and the ARTAEMIS-simulated 
data (red dotted) from the two-time-scale model for the simulation 
with low frequency modulations whose input data are shown on 
figure 1. In this simulation, the global fit parameter for ψ(x), 
integrated from x1 = 0 to x2 = 1, is f = 77%. 

 
Open loop METIS simulations were run using either 

steady state or randomly modulated actuator waveforms for 
the 4.6 GHz LHCD and the ICRH powers, PLH(t) and PIC(t), 
respectively. Like EAST discharges, the simulations were 
run in the current control mode, in which Ip(t) is accurately 
regulated by a specific controller through the ohmic poloidal 
field coil current. Vext(t), which appears as a natural input in 
equation (1) is therefore reserved for the plasma current 
controller and it is determined from a strong feedback law 
that regulates the plasma current. Therefore, it cannot be 
used as an independent input for system identification [28] 

and as a profile control actuator, as in [33]. During the 
plasma current flat-top, Ip(t) is strictly constant and the 
variations of Vext(t) in the linearized system (1-2) are related 
to the variations of the H&CD actuators, P(t), and of ψ(x, t) 
and κ(x, t). We have therefore empirically sought models in 
which the surface loop voltage has been omitted in the right 
hand side of equation (1). In practice, this assumption did not 
prevent the system identification process to converge 
satisfactorily to models yielding good fits to the data. Model 
errors, including those that could stem from this assumption, 
will be compensated in real time by the MPC controller. 

In the ARTAEMIS data-driven model identified from these 
METIS simulations, the chosen magnetic output variables 
were the ψ(t) vector elements, and the kinetic output variable 
was  κ(t) = δβp(t), the poloidal beta parameter reduced by its 
reference value. The dimension of the κS(t) and κF(t) vectors 
in equations (12) and (14) is thus here equal to 1 as κ is 
independent of x. The input vector U(t), of dimension 2, 
contains the reduced powers, δPLH(t) and δPIC(t). The data was 
processed with the general methodology described in 
reference [30] so that the system identification routines only 
handle datasets with nearly zero mean while searching for 
the best linear response model. The ARTAEMIS identification 
algorithm is based on the prediction-error method (PEM) 
[28]. For each output parameter profile in the model, say 
Y(x, t), it maximizes a global fit parameter, which is defined 
as f = 1 – δ, with 

δ = Y (x)−Ysim(x)( )2 dx
x1

x2

∫
samples
∑  

Y (x)− Y (x)
samples( )

2
dx

x1

x2

∫
samples
∑ (18)  

 
where Ysim represents the data simulated by the current model 
after reconstruction of the profiles from the basis functions, 
[x1, x2] is the radial window on which the model is to apply 
(here x1 = 0 and x2 = 1) and 〈Y(x)〉samples stands for the average 
of the data over the time samples, at a given radius. Equation 
(18) is the first instance where we can use the approximate 
mapping (16) between ψ(x) and ι (x) . Even though the 

model outputs involve ψ, the fit parameter to be maximized 
can be defined in terms of ι . In the sum over the samples 
and the integrals corresponding to the magnetic part of the 
model, Y(x) was replaced by ι (x)  expressed in terms of ψk 

and the αk(x) basis functions, rather than being replaced by 
ψ(x) in terms of ψk and the ak(x) functions. 

Fourteen simulations were used to identify the slow part 
of the ARTAEMIS data-driven model. The simulations were 
similar to the reference simulation of shot #62946 up to 
t = 3.2 s and variations of the actuators were imposed for 
t ≥ 3.2 s. Five of them were steady state simulations with 
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various constant values of PLH and PIC from t = 3.2 s to 
t = 10 s. They are useful to determine the largest time 
constant in the model output dynamics. In the remaining 
simulations, the values of PLH and PIC were modulated from 
t = 3.2 s to t = 15 s, following square wave modulations 
between 1 MW and 2.5 MW for PLH and between 0.5 MW 
and 1.25 MW for PIC. An example of such PLH and PIC 
waveforms is shown on figure 1. For each actuator, the time 
between power steps were chosen at random between a 
minimum of 0.04 s and a maximum of 2 s, with a final steady 
state period of about 5 s. This was consistent with an 
expected resistive diffusion time of the order of one second 
for the chosen reference plasma parameters. The number of 
magnetic outputs in equation (11) was equal to 10, 
corresponding to the values of ψ(x, t) at the cubic splines 
knots xk = 0, 0.1, … 0.9 (note that ψ(1, t) = 0 by definition). 
The number of significant eigenmodes in the model was 
increased at each iteration of the identification process 

leading to the optimization of the AS, BS, and Cψ matrices in 
equations (10-11), until the best fit with the data was 
obtained from equation (18). Four eigenmodes could thus be 
found, with eigenvalues equal to -1.19 s-1, -4.24 s-1,   -11.49 
s-1 and -13.62 s-1. The corresponding characteristic times are 
0.843 s (defined as the resistive diffusion time, τS), 0.236 s, 
0.087 s and 0.073 s. A comparison between the reduced ψ(x) 
data at x = 0, 0.1, ... 0.9 from METIS and the ARTAEMIS-
simulated data from the two-time-scale model is shown on 
figure 2, with a fit parameter f = 77%. The fourteen values of 
the fit parameter obtained for the various simulations were 
found to range between 65% and 86%. 

 

4 6 8 10 12 14 16 18
Time (s)

-0.5
0

0.5
1

p

 
Figure 3. Comparison between the reduced δβp data from METIS 
(black) and the ARTAEMIS-simulated data (red dotted) for low 
frequency LHCD and ICRH power modulations. The corresponding 
input data are shown on figure 1 and the fit parameter for δβp in 
this simulation is f = 79%. 

 
The slow model CS and DS matrices were identified using 

the nine simulations with modulated actuators among those 
used for the magnetic part of the model. In order to reject the 
fast input components and fast δβp response, and define their 
slow components, US(t) and δβp,S(t), respectively, both the 
input and output data were filtered with a non-causal low-
pass filter of order 5, and a cutoff frequency, ffilt = 3.5 Hz. 
This was found to provide an optimum separation between 
the slow and fast data for the two-time-scale model 
identification. 

Finally, the fast model (13-14) was identified from six 
new simulations that were also similar to the reference 
simulation of shot #62946 up to t = 8.4 s, but with high 
frequency square wave modulations of the actuators between 
t = 8.4 s and t = 9.6 s. An example of fast ICRH modulations 
is shown on figure 1. The time between power steps were 
chosen randomly between a minimum of 0.004 s and a 
maximum of 0.3 s. The fast input and output components 
were defined as UF(t) = U(t) - US(t) and δβp,F = δβp - δβp,S, 
respectively. A model of order 1 was sought and the best fit 
was obtained with an eigenvalue of -24.8 s-1 for AF, 
corresponding to a characteristic thermal diffusion time, 
τF = 0.04 s. Note that the ordering between τS and τF is 
compatible with the main hypothesis justifying the singular 
perturbation approximation, namely that τF << τS. The filter 
defining the slow and fast components of U(t) and δβp(t) was 
adequately chosen since the inverse of its cutoff frequency, 
τfilt = 1/ffilt = 0.29 s, lies between τF and τS. Comparisons 
between the reduced δβp data from METIS and the 
ARTAEMIS-simulated data are shown on figure 3 for a 
simulation with low frequency modulations and on figure 4 
for a simulation with high frequency modulations. The fit 
parameters obtained for δβp from the full two-time-scale 
model (10-14) were found in the range between 71% and 
91% for the simulations with either slow or fast power 
modulations. 

 

8.4 8.6 8.8 9 9.2 9.4 9.6
Time (s)

-0.4
-0.2

0
0.2
0.4

p

 
Figure 4. Comparison between the reduced δβp data from METIS 
(black) and the ARTAEMIS-simulated data (red dotted) for high 
frequency ICRH power modulations. The corresponding input data 
are shown on figure 1 and the fit parameter for δβp in this 
simulation is f = 83%. 

4.	State	observer,	model	errors	and	two-time-scale	
MPC	controller	design	

A simple profile control algorithm that combines the two-
time-scale linear model structure with linear-quadratic 
optimal control theory was the so-called near-optimal control 
algorithm originally described in reference [30] and tested on 
JET [30], DIII-D [33] and, later, more thoroughly on METIS 
simulations [35]. Both experiments and simulations have 
shown simultaneous magnetic profile control of ψ(x) or q(x), 
and kinetic control of βN, in steady state, fully non-inductive 
discharges. However, in high-βN long-pulse METIS 
simulations, the desired steady state q-profiles were obtained 
either much too slowly or after a large q(x=0) undershoot and 
a damped oscillation. To overcome these limitations, a 
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controller that combines the simplicity of the ARTAEMIS 
two-time-scale models with the efficiency of model-based 
predictive control techniques was designed for the first time 
and is described in this section. The MPC control algorithm 
is based on the same semi-empirical models, but offers many 
advantages over the more conventional near-optimal control 
algorithm. A major advantage has to do with actuator 
saturation. In the former algorithm, the PI feedback on the 
slow variables must be supplemented by an anti-windup loop 
to prevent state winding-up during actuator saturation [30, 
35]. This leads to unoptimized control action and delays in 
the controller response. In MPC theory, the hard physical 
actuator constraints that must be met during the plasma 
evolution can be directly embedded in the quadratic 
programming (QP) optimization process [38]. Another 
feature of the new design is related to model uncertainties 
that were not specifically taken into account in the near-
optimal controller. In the MPC algorithm, model errors can 
be identified through an observer, and compensated in real 
time to achieve efficient offset-free tracking of assigned 
control targets [40]. 

Reference [41] nicely compares the advantages and 
disadvantages of MPC compared to more simple techniques 
and shows that it also has some drawbacks. Its main 
disadvantage lies in the complex QP optimization process 
that needs longer CPU time than PID-like controllers. A 
second potential difficulty is that MPC often requires a large 
number of model coefficients to describe the plant response 
satisfactorily, again increasing the required CPU time. The 
prediction horizon must be optimally chosen for good control 
performance, even if the model is accurate. Also, the 
constant output disturbance assumption, which assumes that 
the disturbance term is constant in the future (see 
section 4.1), is often made for simplicity. This may not 
always yield a good controller performance if there are large 
input disturbances. These drawbacks did not lead to 
significant obstacles for the implementation of our MPC 
controllers and for the applications presented in this paper. 

The main concept of MPC is to use the model to predict 
the future evolution of the system. At each time step, t, a 
sequence of possible future inputs is computed, subject to 
operating constraints, in order to minimize a given cost 
function that depends on the predicted evolution of the 
system during a given time horizon, τH. The first value in the 
optimized actuator sequence is chosen as the control action 
(controller output) at time t, and subsequent values are 
discarded. At the next time step, a new optimization is solved 
over a shifted prediction horizon. Thus, with an adequate 
choice of the tuning parameters such as the horizon and cost 
function, the controller will achieve its goal if the model 
steady state gain is exact. However, if the steady state gain 
matrix of the model is not exact, the prediction cannot be 
made from the model only, because the system outputs 

would reach incorrect values. It must somehow include 
assumptions about disturbances acting on the system and 
measurement errors. The prediction strategy then becomes 
another “tuning parameter”. 

4.1	The	augmented	two-time-scale	model	

In order to adjust the prediction and make the controller 
robust to disturbances and uncertainties, the identified 
ARTAEMIS model is augmented so that it includes a simple 
model of the output disturbances. The output disturbances, 
which represent the mismatch between measured and 
predicted outputs, will be considered as new states of the 
augmented system [38, 40]. The estimated disturbances will 
depend on time and they will therefore vary at each time 
step. However, we shall make the simple assumption that 
they remain unchanged during the given time horizon. This 
assumption will hold only for making the prediction of the 
optimized actuator sequence (between t and t + τH) whose 
first value provides the control action at time t, while 
subsequent values are discarded. This will be referred to as 
the constant output disturbance model [38]. 

In its continuous time version4, the augmented two-time-
scale model for the control of the internal magnetic flux 
profile, represented by the ψ(t) vector, and of some kinetic 
parameters or profiles represented by the κ(t) vector will then 
be defined as: 
 

!XS (t) = AS ⋅ XS (t)+ BS ⋅U (t) (19)  
!XF (t) = AF ⋅ XF (t)+ BF ⋅UF (t) (20)  

!dψ (t) = 0 (21)  

!dκ (t) = 0 (22)  

ψ(t) =Cψ ⋅ XS (t)+ dψ (t) (23)  

κ (t) =CS ⋅ XS (t)+DS ⋅US (t)+Cκ ⋅ XF (t)+ dκ (t) (24)  

where the vectors dψ(t) and dκ(t) are the disturbance states 
representing the errors on ψ(t) and κ(t), respectively. US(t) is 
obtained through a simple low-pass filter with the cutoff 
frequency that was used for system identification (section 3), 
and UF(t) = U(t) - US(t). As a minor simplification, we have 
used the full inputs, U(t), in equation (19) because UF(t) does 
not generate a significant response on the slow states. Also, 
for simplicity and as suggested in [40], we have deliberately 
chosen the additional states of the augmented model to be 
equal to the model errors. This is the simplest disturbance 
model one could choose and it was indeed found appropriate 
																																																													
4 For notation convenience, the systems presented in this paper are 
continuous-time systems. Their conversion to discrete-time systems 
is straightforward and was carried out for the controller 
implementation on the METIS simulator and on the EAST PCS. 
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and sufficient to ensure the observability of the augmented 
system (19-24). If necessary, more complex disturbance 
models could be assumed, e.g. by introducing more general 
linear dependences of the output variables on the disturbance 
states on the right hand side of equations (23-24), and also 
more elaborate linear dependences of the original model 
states on the disturbance states on the right hand side of 
equations (19-20). 

Now, for MPC control of the safety factor profile, which 
will be our main objective here, equations (21) and (23) do 
not provide useful predictive output equations. The near-
optimal control algorithm described in [30] was basically a 
state control algorithm controlling the ψ(t) vector, for which 
a good state space model exists, rather than an output control 
algorithm. For ι  control, the specific relationship between 
ψ(x,t) and ι (x,t)  was only introduced in the definition of the 
quadratic cost function representing the control objective [33, 
35]. On the contrary, the MPC algorithm requires an internal 
model prediction of the ι  evolution during the given time 
horizon, and therefore the model must include an output 
equation for ι  with specific disturbances. To control ι  
rather than ψ, we therefore define a vector, ι (t) , whose 
elements are the values of the inverse safety factor, ι (x,t) , 
at the normalized radii corresponding to the knots of the 
cubic splines used to define the ψ(t) vector in section 3, i.e. 
at x = 0, 0.1, 0.2, … 0.9. Using equations (11) and (16), the 
vector ι (t)  can be related to the ψ(t) vector and to the states 
XS(t) through a linear output matrix equation, 

 
ι (t) = Γι ⋅ψ(t) =Cι ⋅ XS (t) (25)  

 
and the augmented model must also include a disturbance 

vector dι(t) that represents the mismatch between the 
predicted and the actual ι (t) . The relevant augmented 
model then becomes: 
 

!XS (t) = AS ⋅ XS (t)+ BS ⋅U (t) (26)  
!XF (t) = AF ⋅ XF (t)+ BF ⋅UF (t) (27)  

!dι (t) = 0 (28)  

!dκ (t) = 0 (29)  

ι (t) =Cι ⋅ XS (t)+ dι (t) (30)  

κ (t) =CS ⋅ XS (t)+DS ⋅US (t)+Cκ ⋅ XF (t)+ dκ (t) (31)  

4.2	The	augmented	model	state	observer	

In order to solve the predictive control problem at time t, 
we need to compute the predicted values of the controlled 
variables, ι and κ, over a future time horizon, from our best 

estimates, at time t, of the current states, XS(t) and XF(t), and 

of the disturbances, dι(t) and dκ(t). Therefore, at each time 
step, an observer must provide a new estimate of the 
evolving system states and of the model errors, and the 
controller will use the augmented model (26-31) to predict 
the behaviour of the system between t and t + τH and define 
the appropriate control action at time t. The filter states that 
allow US(t) and UF(t) to be computed in the observer at time t 
are also transmitted to the controller with the estimated 
system states and disturbances and with the real-time 
measurements of the controlled variables, ιm(t)  and κm(t). 

Following reference [40], we design the state and 
disturbance estimator as a classical Luenberger observer 
based on the augmented system above. It is defined as 
follows: 

!̂XS (t) = AS ⋅ X̂ S (t)+ BS ⋅U (t)+ K11 ⋅ −ιm(t)+Cι ⋅ X̂ S (t)+ d̂ι (t)( )  
+K12 ⋅ −κm(t)+CS ⋅ X̂ S (t)+DS ⋅US (t)+Cκ ⋅ X̂ F (t)+ d̂κ (t)( ) (32)

 

!̂XF (t) = AF ⋅ X̂ F (t)+ BF ⋅UF (t)+ K21 ⋅ −ιm(t)+Cι ⋅ X̂ S (t)+ d̂ι (t)( )  
+K22 ⋅ −κm(t)+CS ⋅ X̂ S (t)+DS ⋅US (t)+Cκ ⋅ X̂ F (t)+ d̂κ (t)( ) (33)

 

!̂dι (t) = K31 ⋅ −ιm(t)+Cι ⋅ X̂ S (t)+ d̂ι (t)( )  
+K32 ⋅ −κm(t)+CS ⋅ X̂ S (t)+DS ⋅US (t)+Cκ ⋅ X̂ F (t)+ d̂κ (t)( ) (34)

 
!̂dκ (t) = K41 ⋅ −ιm(t)+Cι ⋅ X̂ S (t)+ d̂ι (t)( )  

+K42 ⋅ −κm(t)+CS ⋅ X̂ S (t)+DS ⋅US (t)+Cκ ⋅ X̂ F (t)+ d̂κ (t)( ) (35)  

 
where symbols with a hat represent the observer estimates of 
the system states and disturbances, and the Ki,j matrices are 
chosen so that the state observer is stable and converges 
rapidly. In particular, the matrix formed by the top row [K31 
K32] and the bottom row [K41 K42], governing the evolution of 
the estimated disturbance states, must be non-singular. The 
idea of a Luenberger observer is to estimate the contribution 
of non-measurable states in equations (30-31) such that the 
residual errors between the measured outputs and the model 
outputs (including the observed disturbances) decay to zero 
steady state values. As seen from equations (34-35), the 
observer then tracks the measurements without steady state 
errors, i.e. 

ιm,∞ =Cι ⋅ X̂ S ,∞ + d̂ι,∞ (36)  

and 
 

κm,∞ =CS ⋅ X̂ S ,∞ +DS ⋅US ,∞ +Cκ ⋅ X̂ F ,∞ + d̂κ ,∞ (37)  
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where the ∞ symbol indicates steady state values. In 
addition, from the definition of the fast variables and the 
discussion following equation (9), UF, XF and κF vanish in 
steady state, so that equation (37) becomes: 
 

κm,∞ =CS ⋅ X̂ S ,∞ +DS ⋅U∞ + d̂κ ,∞ (38)  

 
The observer also satisfies: 

X̂ S ,∞ = −AS
−1 ⋅BS ⋅U∞ (39)

 
and 

KS ⋅U∞ =
ιm,∞ − d̂ι,∞
κm,∞ − d̂κ ,∞

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

(40)

 

with 

KS =
−Cι ⋅ AS

−1 ⋅BS
−CS ⋅ AS

−1 ⋅BS +DS

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

(41)  

 
If the image space of KS spanned by the actuators has a 

dimension that is equal to, or larger than the number of 
controlled variables, offset-free control can be achieved [40]. 
Then, the control objective is to make ιm  and κm equal to 

assigned targets or set points, ιtarget  and κtarget, respectively. 

The singular decomposition of KS may indicate that some 
combinations of actuators corresponding to the smallest 
singular values of KS have little or even negligible effect on 
the system dynamics, even at high power. Such combinations 
of actuators may therefore lead to unnecessary actuation cost 
and should be discarded in the computation of the optimal 
control action. In this aim, the allowed actuator space will be 
limited to the first nsvd singular vectors of KS, i.e. U = Tsvd·V 
and U∞ = Tsvd·V∞, where nsvd (the dimension of V) is a free 
tuning parameter. 

We can now explicitly introduce the filter equations that 
define the separation of the slow and fast time scales into the 
augmented model and the observer definition. We shall use 
here a simple first order filter represented by a square 

diagonal matrix, Aν, whose dimension is equal to the number 
of inputs in U(t), and whose diagonal elements are all equal 
to ffilt = -1/τfilt. The filter equations then read: 
 

!ν (t) = Aν ⋅[ν (t)−U (t)] (42)  
 

US (t) =ν (t) (43)  

UF (t) = −ν (t)+U (t) (44)  

 
where ν(t) is the filter state vector, which is updated at the 
input of the observer at each time step, using the last 
measured value of U(t). The state space observer equations 
can thus be written in terms of new inputs, ν(t), U(t), ιm(t)  

and κm(t) instead of US(t), UF(t), ιm(t)  and κm(t): 

 
!̂XS (t) = AS ⋅ X̂ S (t)+ BS ⋅U (t)  

+K11 ⋅ −ιm(t)+Cι ⋅ X̂ S (t)+ d̂ι (t)( )  

+K12 ⋅ −κm(t)+CS ⋅ X̂ S (t)+DS ⋅ν (t)+Cκ ⋅ X̂ F (t)+ d̂κ (t)( ) (45)

 
!̂XF (t) = AF ⋅ X̂ F (t)− BF ⋅ν (t)+ BF ⋅U (t)  

+K21 ⋅ −ιm(t)+Cι ⋅ X̂ S (t)+ d̂ι (t)( )  

+K22 ⋅ −κm(t)+CS ⋅ X̂ S (t)+DS ⋅ν (t)+Cκ ⋅ X̂ F (t)+ d̂κ (t)( ) (46)

 
!̂dι (t) = K31 ⋅ −ιm(t)+Cι ⋅ X̂ S (t)+ d̂ι (t)( )  

+K32 ⋅ −κm(t)+CS ⋅ X̂ S (t)+DS ⋅ν (t)+Cκ ⋅ X̂ F (t)+ d̂κ (t)( ) (47)  

 
!̂dκ (t) = K41 ⋅ −ιm(t)+Cι ⋅ X̂ S (t)+ d̂ι (t)( )  

+K42 ⋅ −κm(t)+CS ⋅ X̂ S (t)+DS ⋅ν (t)+Cκ ⋅ X̂ F (t)+ d̂κ (t)( ) (48)  

 
Now, the various observer gain matrices, Ki,j, must be chosen 
judiciously in order for the observer to be stable and to 
converge reasonably fast. In order to come up with a simple 
observer design, we can intuitively associate equations (45) 

and (47) to the observation of dι(t) and equations (46) and 

(48) to the observation dκ(t). Thus, we have set the off-
diagonal elements K1,2, K2,1, K3,2 and K4,1 to zero. Then, to 
ensure fast convergence to steady state, the brackets that 
multiply K3,1 and K4,2 must rapidly vanish and therefore the 
gains K3,1 and K4,2 must have a large norm compared to K1,1 
and K2,2. A simple way of satisfying this requirement is to 

introduce pseudo-inverse matrices of Cι and Cκ in K1,1 and 
K2,2, respectively, and a large scalar gain, Gobs, in K3,1 and 
K4,2. Moreover, for normalization purposes, the slow time 
constant, τS, can be associated to the evolution of XS(t) and 

dι(t) and can be used to normalize K1,1 and K3,1. Similarly, 
the fast time constant, τF, can be associated to the evolution 

of XF(t) and dκ(t) and can be used to normalize K2,2 and K4,2. 
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An adequate choice for the observer gain matrices can 
therefore be the following: 
 
K11 = −inv(Cι ) τS , K12 = 0 (49)  

 
K21 = 0 , K22 = −inv(Cκ ) τF (50)  

 
 
K31 = −Gobs ⋅ Idι τS , K32 = 0 (51)  

 
K41 = 0 , K42 = −Gobs ⋅ Idκ τF (52)  

 

where the inv function is a pseudo-inverse function since Cι 

and Cκ may be rectangular matrices, and Gobs is a large 

positive tuneable gain. Idι and Idκ are identity matrices 
whose dimensions are equal to the number of controlled 
magnetic and kinetic variables, respectively. The choice of 
the observer gain matrices represented by equations (49) to 
(52) was indeed found to be adequate in all our control 
simulations and experiments, including those that are not 
reported in this paper. 

When implementing the controller either on a simulation 
platform or a machine PCS, it is advisable to use normalized 
input, output and state variables, so that the observer and 
controller tunings are to a great extent independent of the 
plasma parameters and machine performance. The 
transformation from the real dimensional variables to 
normalized ones is straightforward and was indeed 
performed in all the implemented controllers used in our 
simulations and experiments, but they will not be represented 
in this paper, for the sake of clarity. The choice given in 
equations (49-52) assumes that the variables handled by the 
observer are normalized. The inclusion of τS and τF in the 
equations is suggested by comparison with the values of the 
AS and AF eigenvalues in the leading terms of equations (45) 
and (46). In all cases, except for initial tuning simulations, 
the observer gain Gobs was chosen equal to 100, which 
resulted in good observer performance. 

4.3	The	two-time-scale	MPC	controller	design	

Once the observer has estimated the current system states 
and disturbances at time t, the MPC algorithm then solves a 
quadratic programming (QP) problem using the predicted 
evolution of the augmented system over the future time 
horizon, τH. The choice of τH is obviously important for the 
controller performance. Intuitively, it should be long enough 
to characterize the evolution of the slow model on the 
resistive time scale. On the other hand, a long time horizon 
would be costly in terms of computation time, and it may not 

be meaningful given that the prediction is made with the 
assumption that the estimated error at time t will be constant 
between t and t + τH. So, as a compromise, τH will be chosen 
of the order of the resistive time, τS, or slightly smaller. From 
now on, we shall assume that the kinetic controlled variables 
are scalars, independent of x, so that the QP problem to be 
solved at time t reads as follows: 

 
For t ≤ t’ ≤ t + τH, find V(t’) that minimizes 

IH (t) = dt '
t
t+τH∫ dx

0
1
∫ µ(x)2 ι (x,t ')− ιtarget (x,t ')

⎡
⎣

⎤
⎦
2⎧

⎨
⎩

⎫
⎬
⎭  

+ dt '
t
t+τH∫ κ (t ')−κtarget (t ')⎡

⎣
⎤
⎦
++
⋅λkin
2 ⋅ κ (t ')−κtarget (t ')⎡

⎣
⎤
⎦

⎧
⎨
⎩

⎫
⎬
⎭  

+ dt '
t
t+τH∫ XF (t ')

+ ⋅λ fast
2 ⋅ XF (t '){ }

 

+ dt '
t
t+τH∫ U (t ')−U∞

⎡⎣ ⎤⎦
+
⋅R ⋅ U (t ')−U∞

⎡⎣ ⎤⎦
⎧
⎨
⎩

⎫
⎬
⎭
(53)  

with U(t’) = Tsvd·V(t’), subject to the actuator constraints 

L(t’)·U(t’) ≤ M(t’), while XS(t’), XF(t’), ι (t ') , κ(t’), dι(t’) and 

dκ(t’) evolve according to the augmented system (26-31), 
with the initial conditions: 
XS (t ' = t) = X̂ S (t) , XF (t ' = t) = X̂ F (t) , dι (t ' = t) = d̂ι (t)  

and dκ (t ' = t) = d̂κ (t) . In order to keep the computation time 

small, the elements of V(t’) are constrained to be piecewise 
constant functions of time with only nnodes independent 
unknowns equi-distributed over the horizon τH. In equation 
(53), a + superscript indicates matrix transposition. The 
function µ(x) and the real diagonal matrix λkin are weights 
given to the control of the magnetic and kinetic variables, 
respectively. The real diagonal matrix λfast contains 
additional weights limiting the amplitude of the fast model 
states, which was found useful to moderate the kinetic 
control response. Finally, R is a positive semi-definite matrix 
that can moderate the controller actuation effort, if necessary. 
Note that the need for a strict positivity of R is alleviated by 
the linear constraints setting bounds on the actuators, which 
ensure the positivity of the matrix involved in the Cholesky 
factorization performed by the QP algorithm [42] at each 
time step. The radial integrals in the first term of equation 
(53) can be written as a quadratic expression in matrix form 
by replacing ι (x,t ')  and ιtarget (x,t ')  by their expansions in 

terms of the cubic splines ak(x) defined in section 2, using 
vectors whose elements are the values of ι (x,t ')  and 

ιtarget (x,t ')  at the knots, xk = 0, 0.1, 0.2, …, 0.9. The weight 
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function, µ(x), can either be a continuous function for a 
distributed control of ι (x) , or a sum of Dirac distribution 
functions involving only a few discrete values of x among 0, 
0.1, … 0.9 where discrete control would be applied. Once the 
QP problem has been solved, the first sample U(t’=t) is used 
for the actuator commands at time t. The minimized cost 
function penalizes, with appropriate tuneable weights, the 
deviations of the predicted controlled outputs from their 
targets, as well as the actuator powers if R ≠ 0. Another way 
of moderating the actuation effort and avoiding overshoots 
and oscillations of the slow magnetic variables is to reshape 
the ιtarget (t ')  waveforms in IH(t) so that, for t’ = t, they start 

from the measured values of ι , i.e. ιm(t) , and, when t’ 

approaches t + τH, they approach exponentially the set-
points, ιtarget (t) , with a time constant, τtarget, of the order of 

τS or smaller [38]. In equation (53), we thus use: 

ιtarget (x,t ') =  

ιtarget (x,t)−[ιtarget (x,t)− ιm(x,t)]⋅e
−(t '−t)/τtarget (54)  

and 

κtarget (t ') =κtarget (t) (55)  

 
Note that, apart from the reshaping function, no other 

change in the target values is made in (54-55) during the 
prediction horizon, even if the assigned set-points change 
during that period. Just as the disturbance states, the targets 
at time t’ = t will be assumed to hold all over the prediction 
horizon. Thus, the computation of the control action a time t 
will not anticipate any possible change of the set-points at a 
future time.  

MPC is implemented in the form of a standard quadratic 
program with linear constraints so that it becomes a convex 
optimization problem, which is efficiently solvable (e.g. 
[43]). The QP software that was used in this work [42] 
always converged after only a few iterations. No other 
particular measure was taken to guarantee that the iterative 
procedure converges under all circumstances, but the issue 
never appeared in simulations or experiments. 

4.4	The	reduced	MPC	kinetic	controller	design	on	the	
slow	time	scale	

The two-time-scale ARTAEMIS models describe the fast 
kinetic dynamics of the plasma as a singular perturbation of a 
quasi-static equilibrium, which is slowly evolving due to the 
coupling between the kinetic and the magnetic plasma 
parameters. Local dependences of the plasma transport 
coefficients on the safety factor profile or on the magnetic 
shear are well-known examples of the various causes that 
lead to such coupled dynamics. When attempting to control 

simultaneously the safety factor profile and some other 
kinetic plasma parameters (e.g. βp or βN), it may be 
unnecessary or even sometimes undesirable to request 
changes of such parameters on a time scale that is too short 
compared to the resistive evolution of the plasma 
equilibrium. Instead, it may be of interest to preserve a quasi-
static equilibrium relationship between magnetic and kinetic 
plasma parameters during the transient evolution from an 
initial plasma state to the desired high performance steady 
state. Restricting the ARTAEMIS model to the zero-order 
equations in the singular perturbation analysis, i.e. to the 
slow model, will result in a slower kinetic control. For slow 
kinetic control, the model is thus reduced to equations (26), 
(28), (30) and (31). However, in equation (31), since the 
kinetic states, XF(t), are neglected, the kinetic disturbance, 

dκ(t), can be directly computed from the measured value of 
the controlled kinetic variable, κm(t): 

dκ (t) =κm(t)− CS ⋅ XS (t)+DS ⋅ν (t)⎡⎣ ⎤⎦ (56)  

 
Therefore, the only states that need to be evaluated are those 

linked to the magnetic variables, i.e. XS(t) and dι(t), and the 
observer thus reduces to equations (45) and (47) in which the 
last term involving kinetic variables is omitted: 
 
!̂XS (t) = AS ⋅ X̂ S (t)+ BS ⋅U (t)  

+K11 ⋅ −ιm(t)+Cι ⋅ X̂ S (t)+ d̂ι (t)( ) (57)
 
 

!̂dι (t) = K31 ⋅ −ιm(t)+Cι ⋅ X̂ S (t)+ d̂ι (t)( ) (58)  

 
The kinetic states, XF(t), are also neglected in the QP 
problem associated with equation (53), in which λfast = 0. 

Then, during the prediction horizon, XS(t’), ι (t ')  and dι(t’) 
evolve according to the augmented system (26), (28), (30), 
with U(t’) = Tsvd·V(t’), subject to the actuator constraints 
L(t’)·U(t’) ≤ M(t’), and with the initial conditions given by 

the observed states, XS (t ' = t) = X̂ S (t)  and dι (t ' = t) = d̂ι (t) . 

Substituting US(t’) by its expression from equation (43), the 
predicted kinetic variables evolve according to 
 
κ (t ') =CS ⋅ XS (t ')+DS ⋅ν (t ')+ dκ (t ') (59)
 

with constant dκ(t’) = dκ(t) between t’ = t and t’ = t + τH,  
consistently with the constant output disturbance model (see 

section 4.1), and where dκ(t) is given by equation (56). The 
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filter states, ν(t’), are governed by equation (42) with U(t’) = 
Tsvd·V(t’) and with the initial condition ν(t’ = t) = ν(t). Now, 
when solving the QP problem which leads to the 
optimization of V(t’) over the time horizon, τH, the kinetic 
prediction (59), in which we have neglected the fast 
eigenmodes, is not representative of the actual system kinetic 
response. Simulations have shown that a more relevant 
response can be restored by adding a direct feed-through 
component, DF ⋅ UF(t’), from the fast inputs to the κ(t’) 
outputs in the right hand side of equation (59). This 
additional vector replaces the effect of the fast eigenmodes, 
i.e. of XF in equation (31), without the need of solving a set 
of differential equations to compute their evolution. It was 
found appropriate to choose DF proportional to the steady 
state gain of the fast model5 (defined as KF = - AF

-1 ⋅ BF) so 
that, in the reduced MPC controller synthesis, and after using 
equation (44), equation (59) becomes: 
 
κ (t ') =CS ⋅ XS (t ')+DS ⋅ν (t ')+DF ⋅UF (t ')+ dκ (t ')  

=CS ⋅ XS (t ')+ DS −DF( ) ⋅ν (t ')+DF ⋅U (t ')+ dκ (t ') (60)  

with 

DF = −λF ⋅ AF
−1 ⋅BF (61)

 
where λF is a tuneable positive parameter smaller than 1.  

An advantage of using this reduced MPC kinetic 
controller design, and therefore of neglecting the fast model 
dynamics altogether, is that it reduces the dimension of the 
QP problem to be solved at each time step, and therefore it 
alleviates the real-time computation effort. This could be 
necessary for more demanding applications such as the 
simultaneous distributed control of the q-profile and of 
kinetic profiles (e.g. temperature, rotation). This reduced 
MPC controller is also more appropriate than the full two-
time-scale MPC controller in situations where some actuators 
cannot respond sufficiently fast to high frequency changes of 
the controller commands. Examples using NBI pulse width 
modulation will be discussed in sections 7-8. 

5.	Simulations	of	q(x)	and	βp	control	on	EAST	using	
LHCD	and	ICRH	

To illustrate and validate the ARTAEMIS MPC control 
algorithm presented above, we shall now discuss the results 
of nonlinear closed loop simulations in a high-βp non-
inductive scenario on EAST. For this particular application, 
the kinetic variable, κ(x, t), defined in section 2 reduces to a 

																																																													
5 We can speak of a steady state gain for the fast model although XF 
always vanishes in steady state. This occurs because, by definition, 
UF contains only high frequency components and therefore it 
vanishes in steady state. Hence XF also vanishes.  

single scalar parameter, βp(t), independent of x, and therefore 
the kinetic vector has only one element. The simulations 
were performed by inserting the METIS plasma simulator at 
the output of the MPC controller in a MATLAB®/Simulink 
model, and feeding the appropriate METIS input powers and 
controlled output variables back into the observer/controller 
Simulink blocks. Many plasma parameters or profiles such as 
the plasma shape, the toroidal field, BT, the line-averaged 
plasma density, nel, etc., will be assumed independent of the 
control actuators and were fixed external inputs to the 
METIS code, together with all the chosen METIS options for 
modelling the various physical phenomena. The time 
evolution of these parameters and profiles was based on 
actual experimental data from the reference EAST shot 
#62946, until t = 3.2 s when control was switched-on. They 
were held constant afterwards, during the control phase. 
Constant LHCD power at 2.45 GHz (0.6 MW) and ECRH 
power (0.3 MW) were used in the steady state reference shot. 
So, as in section 3, the 2.45 GHz LHCD power was included 
in the ECRH power for the METIS simulations. A constant 
feedforward ECRH power of 0.9 MW was thus used in all 
the control simulations, with the appropriate power and 
current deposition profiles to simulate the combined effect of 
the two systems. For t ≥ 3.2 s, at each time step and with a 
cycle time of 0.02 s, the 4.6 GHz LHCD and 33 MHz ICRH 
actuator powers were prescribed by the MPC controller 
commands and the evolution of all the plasma parameters 
and profiles that depend on the injected power, e.g. Vext(t), 
li(t), βp(t), ψ(x, t), q(x, t), temperature and pressure profiles, 
etc., were computed by the METIS simulator. 

The controller filter cutoff frequency separating the slow 
and the fast inputs, US(t) and UF(t), respectively, was chosen 
as ffilt = 5 Hz. It is slightly different from the cutoff used for 
the identification process in section 3 (3.5 Hz), because it 
was adjusted, a posteriori, with the eigenvalues and 
characteristic times of the identified model, and with the 
required ordering: τF = 0.04 s < τfilt = 0.2 s < τS = 0.84 s. The 
number of nodes during the horizon was chosen as the 
minimum that can be used, i.e. nnodes = 2. These controller 
parameters were unchanged for all the simulations presented 
in section 5. The constraint matrices L(t) and M(t) used at 
each time step when solving the QP problem (53) were 
constant during all the control phases, and defined as to limit 
the 4.6 GHz LHCD power to the interval 0 ≤ PLH ≤ 3 MW 
and the ICRH power to 0 ≤ PIC ≤ 1.5 MW. 

Typical examples from three sets of METIS simulations 
will be reported in this section. They were all performed with 
the two-time-scale MPC controller designed in section 4 and 
based on the ARTAEMIS model identified in section 3. The 
first set of tests of the MPC algorithm was dedicated to the 
control of the q-profile using the 4.6 GHz LHCD actuator. It 
involves only the slow part of the model and of the controller 
since the safety factor evolves on the slow resistive diffusion 
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time scale. The second set of tests addressed the 
simultaneous control of q(x) and βp with LHCD and ICRH, 
using only the reduced kinetic MPC controller (section 4.4). 
Control of βp was thus achieved on the same time scale as 
the control of q0, i.e. on the resistive time scale. In the third 
set, the full two-time-scale MPC controller was tested, using 
the LHCD and ICRH actuators to control q(x) on the 
resistive time scale and βp on the kinetic time scale, 
simultaneously. 

5.1	Control	of	the	safety	factor	with	LHCD	

5.1.1	 Discrete	 q0	 control. The simplest test of the 
controller consists in tracking a given target value of the 
safety factor at a given normalized radius, using the 4.6 GHz 
LHCD actuator only. In this case, offset-free MPC control is 
possible with the observer and controller synthesis described 
in section 4. This was proved in reference [32] when the 
number of controlled variables is equal to the number of 
actuators or smaller. Here, there is no need for the kinetic 
equations (27), (29) and (31) in the augmented model, and 
the observer reduces to equations (57) and (58). In the QP 
problem (53), we set λkin = λfast = 0 since there is no kinetic 
control. 
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Figure 5. Control of q0 with LHCD. Top: q0(t) (solid black), 
q0,target(t) (dashed) and qmin(t) (dotted blue) vs time. Middle: βp vs 
time (not controlled). Bottom: 4.6 GHz LHCD actuator power (red) 
and feedforward powers: ICRH (black) and combined ECRH plus 
2.45 GHz LHCD (blue). Control starts at t = 3.2 s. 
 

At constant plasma current, the area where q-profile 
regulation is most sensitive is the plasma core, and in 
particular the magnetic axis, because q(x) is almost clamped 
near the plasma boundary and its shape does not vary much 
in the outer half of the plasma. An example of such control, 
starting at t = 3.2 s, is displayed on figure 5. In this example, 
the ICRH power was fixed at 0.32 MW as in the EAST 
reference discharge #62946, and the controller was requested 
to track successively three different target values of q0 = 
q(x=0), with a prediction horizon chosen as τH = τS = 0.84 s, 
equal to the resistive diffusion time. The q0 target waveform 
is represented by the dashed line on the top frame of figure 5, 
namely q0,target = 1.1 in the time interval 3.2 s ≤ t ≤ 7.1 s, 
q0,target = 3.5 in the time interval 7.2 s ≤ t ≤ 13.1 s and 
q0,target = 1.7 in the time interval 13.2 s ≤ t ≤ 18 s. These q0 
values were within the range obtained during the modulation 
experiments mentioned in section 3 and they were therefore 
accessible with the available LHCD power. During the 
prediction horizon, the target reshaping function was 
computed from equation (54) with τtarget = τH = τS = 0.84 s. 
To control only the discrete parameter q0, the weight function 
on ι (x,t ')− ιtarget (x,t ')  in equation (53) was replaced by the 

Dirac distribution, µ(x) = δ(x). Now, since we use only one 
actuator, the input vector, U(t), is one-dimensional and, in 
equation (41), KS is a 1x1 matrix for which we can only 
retain one SVD component: nsvd = 1, Tsvd = 1 and V(t) = 
U(t). Finally, the results displayed on figure 5 were obtained 
with R = 0 since there was no need for a specific moderation 
of the LHCD actuator in solving the QP problem. Figure 5 
also shows the time evolution of qmin (the minimum value of 
q(x) across the plasma cross-section), and of the poloidal beta 
parameter, βp, which is not controlled in this particular 
example. The tracking of the different q0 targets in the time 
intervals 3.2 s ≤ t ≤ 7.1 s, 7.2 s ≤ t ≤ 13.1 s and 13.2 s ≤ t ≤ 
18 s, respectively, is performed in about 2 to 3 s, i.e. in a few 
resistive times, and without steady state offset. The time 
evolution of the minimum q-value shown on the top frame of 
figure 5 (dotted blue trace) indicates that the second q0 target 
corresponds to a q-profile with a strong negative shear in the 
plasma core (qmin = 1.7). The bottom frame of figure 5 shows 
the evolution of the 4.6 GHz LHCD power command 
delivered by the controller. The three successive targets are 
reached with PLH = 1.11 MW, 2.34 MW and 1.72 MW, 
respectively. The constant feedforward powers from ICRH 
and from the combined ECRH and 2.45 GHz LHCD systems 
are also shown. 

5.1.2	Distributed	q(x)	control. Distributed control of the 
q-profile can also be performed using continuous weight 
functions, µ(x), in the cost function IH(t) of equation (53). In 
this case, genuine offset-free control cannot be expected over 
the entire region where µ(x) is positive. Instead, the 
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controller achieves a least-square minimization of the 
radially integrated error signals, as can be seen in the 
definition of IH(t). When Ip is regulated, there is no need for 
an additional control of the safety factor in the outer region 
of the plasma. However, in the plasma interior where the     
q-profile is sensitive to the H&CD actuators it is important to 
select target profile shapes that are accessible (or nearly 
accessible) with the available actuators so that the           
least-square approach is meaningful. In practice such profiles 
can be obtained offline from open loop simulations using a 
plasma simulator such as METIS, or more sophisticated 
models. 
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Figure 6. Distributed q(x) control with µ(x) = 1 for 0 ≤ x ≤ 0.5 and 
with LHCD only. Achieved q(x) at t=3.2 s (black), 7.1 s (magenta), 
13.1 s (red solid), and 18 s (blue solid). Target q-profiles are 
constant during these intervals (diamond symbols). Dashed lines 
are profiles achieved with q0 control only (see figure 1). 
 

For comparison with the previous case, a distributed 
control example is shown on figure 6 with three different 
q(x) profile targets having the same q0 values as in the 
previous example shown on figure 5. The other controller 
parameters, constraints and feedforward powers were also 
the same except for µ(x) where we have used piecewise 
linear functions defined at the radial knots of the basis 
functions, xk = 0, 0.1, 0.2, …, 0.9, and equal to 1 for k = 1 to 
6 (i.e. for 0 ≤ xk ≤ 0.5) and to 0.01 elsewhere. The target 
profiles are represented by diamond symbols on figure 6. 
They were chosen from profiles obtained at three different 
times in an open loop METIS simulation with modulated 
LHCD power (see section 3), with the same settings and the 
same constant ECRH (9 MW) and ICRH (0.32 MW) powers. 
Note that the target q-profiles selected from METIS 
simulations do not correspond to exact steady state plasma 
equilibria. They are not either steady state solutions of the 
identified ARTAEMIS model. Now, with only one varying 
parameter, PLH, a steady state value of q0, corresponding to a 
given LHCD power in the METIS simulations, 

predetermines the rest of the steady state q(x) profile. 
Therefore, if the target q-profiles were true steady state 
solutions in METIS, the controller would drive PLH to the 
same values for the distributed q(x) control and the discrete 
q0 control since the q0 targets are the same in both cases. The 
achieved q0 values would also be the same in the two cases. 

On figure 6, the black curve represents the q-profile at the 
start of the distributed q(x) control, i.e. at t = 3.2 s. Then, the 
first target profile was a monotonic q-profile with q0 = qmin 
= 1.1 represented by magenta diamonds, and it was tracked 
for 3.2 s ≤ t ≤ 7.1 s. The profile represented by the magenta 
trace is the achieved q-profile at t = 7.1 s, when the plasma 
has practically reached a steady state. Note that this first 
target profile is indeed achieved with no apparent offset. 
However, PLH = 1.13 MW at t = 7.1 s versus 1.11 MW in the 
discrete control case, and a detailed analysis shows that, in 
both cases, the achieved q-profiles are not quite in a true 
steady state at t = 7.1 s. Between t = 7.1 s and t = 7.2 s the 
target profile changes to a negative shear safety factor profile 
with q0 = 3.5 > qmin = 1.7 (red diamonds on figure 6), until 
t = 13.1 s when it changes again to a weak shear q-profile 
with q0 = 1.7 and qmin = 1.6 (blue diamonds on figure 6). The 
solid red and blue traces show the q-profiles achieved at 
t = 13.1 s and t = 18 s, respectively. The controller behaves 
very similarly as in figure 5, but with small steady state 
offsets on axis and a better tracking of the target profile in 
the region of minimum q, between x = 0.3 and x = 0.5, where 
q(x) is less sensitive to small power variations. Here, PLH = 
2.38 MW at t = 13.1 s and 1.79 MW at t = 18 s versus 
2.34 MW and 1.72 MW in the discrete control case. For 
comparison, the dashed lines on figure 6 represent the         
q-profiles achieved at the same times in the previous case, 
i.e. with q0 control only. The reasons why the two sets of 
profiles are not strictly identical are that neither the targets 
nor the achieved profiles are true steady states, and that 
METIS is highly nonlinear so that, with the same steady state 
power but different power history, its results may not always 
be strictly identical. 

5.2	Control	of	q(x)	and	βp	with	LHCD,	ICRH	and	the	
reduced	MPC	controller	

An example of the simultaneous control of q(x) and βp on 
the slow (resistive) time scale, using LHCD and ICRH 
actuators, is displayed on figures 7 and 8. In this example, 
four different βp targets were tracked: βp,target = 1.2 from t = 
4.2 s to t = 5.1 s, and βp,target = 2, 1.5 and 2.5 for 5.2 s ≤ t ≤ 
7.1 s, 7.2 s ≤ t ≤ 9.1 s and t ≥ 9.2 s, respectively. The           
q-profile is controlled from t = 3.2 s and between x = 0 and 
x = 0.5 with the same piecewise linear weight function as in 
the previous example: µ(xk) = 1 for 0 ≤ xk ≤ 0.5 and 0.01 for 
xk ≥ 0.6. In order to assess the robustness of the q-profile 
control at different plasma pressures (see figure 8), the target 
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q(x) is kept constant while the βp target changes. The R 
matrix was set to zero and λkin was set equal to 1 because 
normalized input, output and state variables are used in the 
controller implementation. As before, we set λfast = 0 
because the fast model and its kinetic states are not used 
here, but we set λF = 0.3 in the substituted direct feed-
through term of the model kinetic output equations (60-61). 
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Figure 7. Simultaneous distributed q(x) control and βp control with 
LHCD and ICRH. Control of q(x) starts at 3.2 s while βp control 
starts at 4.2 s. Top: q0(t) with slow (solid black) and fast (dash-dot 
red) βp control, q0,target(t) (dashed black) and qmin(t) (dotted blue). 
For comparison the dotted red trace is from discrete q0 and slow βp 
control. Middle: βp(t) with slow (solid black) and fast (dash-dot 
red) control, and βp,target(t) (dashed black). A zoom between t = 9.1 s 
and t = 9.7 s is displayed in a small insert. Bottom: LHCD (red) 
and ICRH (black) actuator powers. In all frames, the solid traces 
are for slow βp control and the dash-dot traces are obtained with 
the full two-time-scale MPC controller, which yields faster βp 
control (see insert). 

 
Now, the second magnetic eigenmode has a characteristic 

time of 0.24 s and the βp response in the truncated equation 
(31) may be somewhat faster than τS. Thus, we have reduced 
the prediction horizon and the target reshaping time to half 
the resistive diffusion time, τtarget = τH = τS/2= 0.42 s, to see 
the effect of a faster control on q(x). Finally, in our METIS 
implementation of the internal controller model, the LHCD 
and ICRH input powers were normalized to 3 MW and 
1.5 MW, respectively. For t ≥ 4.2 s when both q(x) and βp 
are controlled simultaneously, with distributed q(x) control, 
the KS matrix in equation (41) is a 11x2 matrix that depends 
on the power normalizations, and whose positive singular 

values are equal, here, to 0.57 and 0.41. Therefore, its first 
two SVD components are significant and can be retained. We 
have therefore chosen nsvd = 2 and V(t) = U(t). 

Figure 7 shows the time evolution of q0, qmin, βp,target, and 
of the achieved βp and actuator powers. Figure 8 shows the 
target q-profile and the achieved q-profiles at the start of the 
control phase and at the end of each constant βp,target phase. 
An additional profile is shown at t = 10 s, which corresponds 
to the largest transient q0 offset during the transition to the 
βp = 2.5 plasma equilibrium (see figure 7 and the dashed 
black line in figure 8).  
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Figure 8. Combined distributed q(x) control and slow βp control 
with LHCD and ICRH. Achieved q(x) at t = 3.2 s (solid black), 5.1 s 
(dotted), 7.1 s (red), 9.1 s (blue), 10 s (dashed black) and 12.5 s 
(green). These times are depicted on figure 3 by vertical lines. The 
target q-profile is constant (diamond symbols) and µ(x) = 1 for 0 ≤ 
x ≤ 0.5. q(x) control starts at 3.2 s while βp control starts at 4.2 s. 
 

As mentioned before, small steady state offsets cannot be 
avoided with only two actuators for distributed q(x) control 
and simultaneous control of βp. The q-profile offset is mostly 
apparent near the magnetic axis where the safety factor is 
highly sensitive to any perturbation. The steady state q0 
offset disappears when only q0 and βp are controlled, as 
shown by the dotted red trace on figure 7 (top frame) at 
t = 7.1 s, 9.1 s and 12.5 s. 

5.3	Faster	control	of	βp	using	the	two-time-scale	
ARTAEMIS	model	and	MPC	controller	

To illustrate the implementation of MPC theory in 
controllers using singularly perturbed dynamic models, we 
shall describe now the simultaneous control of q(x) and βp 
including in the MPC algorithm the first-order perturbation 
of the identified model, i.e. the fast model and the kinetic 
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states. The effect can already be seen on figure 7 where we 
have added, for comparison, the result of the fast βp control 
using the full two-time-scale MPC controller with λfast = 1.5 
(red dash-dot traces) to the slow control results obtained with 
the same common controller parameters, and with λF = 0.3 in 
equations (60-61). 
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Figure 9. Combined q(x) and βp control from t = 3.2 s using LHCD 
and ICRH. Top: q0(t) for discrete q0 and fast βp control (dotted red), 
q0(t) for distributed q(x) and fast βp control (dash-dot red), q0,target(t) 
(dashed black), and qmin(t) (dotted blue). Middle: βp(t) for discrete 
q0 and fast βp control (dash-dot), βp(t) for discrete q0 and slow βp 
control (solid black), and βp,target(t) (dashed black). Bottom: LHCD 
(red) and ICRH (black) powers. In all frames, the solid traces are 
for slow βp control and the dash-dot traces are obtained with the 
full two-time-scale MPC controller. 
 

Another example is shown on figures 9 and 10, where we 
have combined a βp ramp request, from βp = 1.5 up to 
βp = 2.5 for 3.2 s ≤ t ≤ 5 s, to the subsequent tracking of three 
different q(x) profiles at constant βp, either with discrete q0 
control (solid lines in figure 10) or with distributed q(x) 
control (dotted lines in figure 10). Both q(x) and βp controls 
start at t = 3.2 s. The first q-profile target has q0 = 2.1 and 
qmin = 1.6, the second one has q0 = qmin = 1.4, and the last one 
has q0 = 3.5 and qmin = 1.7 with a large negative magnetic 
shear over a broad region of the plasma (x ≤ 0.32). It can be 
noted from figure 9 that the regulation of βp is not perturbed 
by the changing q(x) targets. Here, we chose the same time 
horizon as in section 5.1, τH = τS = 0.84 s, but we have 
increased the target reshaping time to τtarget = 2τS = 1.68 s in 
order to exhibit the difference in the approach of q0 to its 
targets. As expected and confirmed by comparing the top 

frames in figures 7 and 9, increasing τtarget results in a 
smoother approach to the various q0 targets. The KS matrix is 
a 2x2 matrix in the discrete q0 and βp control case, with 
singular values equal to 1.19 and 0.49, and a 11x2 matrix in 
the distributed q(x) and βp control case, with µ(xk) = 1 for 0 ≤ 
xk ≤ 0.5 and 0.01 for xk ≥ 0.6, with singular values equal to 
0.57 and 0.41. Again, two SVD components can then be 
retained in both cases so we chose nsvd = 2 and V(t) = U(t). 
Also in both cases, the R matrix was set to zero, and λkin was 
set equal to 1. 

Figures 9 (top frame) and 10 show the results obtained 
with the full two-time-scale MPC controller, for both discrete 
q0 and βp control and distributed q(x) and βp control, with 
λfast = 3. As in figure 7, the q-profile offset is mostly apparent 
for t > 15 s near the magnetic axis and it disappears when 
only q0 and βp are controlled (dotted red trace on the top 
frame of figure 9). The middle frame in figure 9 shows the 
difference between the evolution of βp during the slow (λF = 
0.3) and fast βp control, with simultaneous distributed q(x) 
control in both cases. The gain in using the full two-time-
scale MPC controller can be assessed by looking at the small 
insert where the βp traces are magnified. 
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Figure 10. Simultaneous q0 and fast βp control with LHCD and 
ICRH. Achieved profiles at t=3.2 s (black), 5 s (magenta), 9 s (red), 
13 s (blue), and 18 s (green). The q(x) targets (diamond symbols) 
are held constant between these times, which are depicted by 
vertical lines on figure 9. Both q(x) and βp control start at 3.2 s. The 
dotted lines are from distributed q(x) control and fast βp control, for 
comparison. 

 
Finally, on figures 11 and 12, combinations of four 

different values of βp,target = 1.5, 2, 2.5 and 3, and three 
different q-profiles are tracked successively using the same 
distributed q(x) control parameters as before, with τH = τS = 
0.84 s, τtarget = 2τS = 1.68 s, nsvd = 2 (the singular values of 
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the 11x2 KS matrix are 0.57 and 0.41) and λkin = 1. One can 
compare the results obtained with fast βp control (λfast = 3, 
dash-dot lines) and with slow control only (λF = 0.3, solid 
lines). Again, the benefit of using the full two-time-scale 
MPC controller can be assessed from the small insert where 
the βp traces are magnified. The q-profile targets are all 
reached in about 2.5 s (~ 3 resistive times) and the actuators 
adjust to reach the various βp targets within about 0.2 s 
(~ 5τF) with fast control and 0.4-0.5 s (≥ 10τF or 0.5τS) with 
slow control, while restoring the desired q-profile shape after 
each large βp perturbation. 
 

0.5
1

1.5
2

2.5

q 0, q
m

in

0

1

2

3

p

5 10 15 20
Time (s)

0

1

2

Po
w

er
 (M

W
)

 PIC

 PLH

9 9.2 9.4
2

2.5
3

q0,target
qmin

q0

p,target

p

 
 
Figure 11. Simultaneous control of q(x) and βp with LHCD and 
ICRH. Control of q(x) starts at 3.2 s while βp control starts at 4.2 s. 
Top: q0(t) for distributed q(x) control and slow βp control (solid 
black), q0(t) for distributed q(x) control and fast βp control (dash-
dot red), q0,target(t) (dashed black) and qmin(t) (dotted blue). Middle: 
βp(t) for distributed q(x) control and slow βp control (solid black), 
βp(t) for distributed q(x) control and fast βp control (dash-dot red) 
and βp,target(t) (dashed black). Bottom: LHCD (red) and ICRH 
(black) actuator powers. In all frames, the solid traces are for slow 
βp control and the dash-dot traces are obtained with the full two-
time-scale MPC controller. 
 

A last remark can be made concerning the relative effects 
of the actuators on the evolution of q(x) and βp. From the 
bottom frames of figures 9 and 11, the q-profile is clearly 
more sensitive to PLH while βp is more sensitive to PIC. This 
is, however, peculiar to the chosen LHCD and ICRH 
systems, and in the configuration in which they were used in 
the high-βp experiments on EAST. It does not represent the 
general kinetic control case with a larger number of 
actuators, for which the present controller has been designed. 

Even in the simulations described above, PLH and PIC cannot 
be fully mapped to the individual controlled variables, q(x) 
and βp, so the coupled magnetic and kinetic controller 
synthesis is relevant. 

6.	Initial	SISO	control	experiments	on	EAST	using	the	
ARTAEMIS	MPC	controller	

The reduced ARTAEMIS MPC controller defined in 
section 4.4 was used for the first time on the EAST tokamak 
at a time when only one actuator (LHCD at 4.6 GHz 
hereafter referred to as LH2) was available, with enough 
dynamics and reliability when the PCS commands were bound 
to the range 1 MW to 2.5 MW. ECRH feedforward power was 
also available from two gyrotrons delivering 0.9 MW at 
140 GHz, and the 2.45 GHz LHCD system (LH1) could also be 
used for short 0.5 MW pulses. In this configuration, single-
input-single-output (SISO) control was tested, either for the 
central safety factor, q0, or for the poloidal beta parameter, 
βp. In both cases, offset-free MPC is possible with the 
controller synthesis described in section 4. 
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Figure 12. Simultaneous distributed q(x) and fast βp control with 
LHCD and ICRH, and with µ(x) = 1 for 0 ≤ x ≤ 0.5. Control of q(x) 
starts at 3.2 s while βp control starts at 4.2 s. Achieved q(x) at t = 
3.2 s (dashed black), 9 s (magenta), 13 s (red), 17 s (blue), 21 s 
(green), and 25 s (solid black). The q(x) targets (diamond symbols) 
are held constant between these times, which are depicted by 
vertical lines on figure 11. 

6.1	ARTAEMIS	model	for	SISO	control	experiments	

The ARTAEMIS system identification procedure described 
in section 3 was applied here to real experimental data in a 
typical high-density single-null H-mode scenario. In this 
scenario, the toroidal field was BT = 2.5 T, the plasma current 
was Ip = 350 kA and the line-averaged electron density was 
nel ~ 4.2 x 1019 m-3. In all shots, a small additional 0.5 MW 

Page 21 of 37 AUTHOR SUBMITTED MANUSCRIPT - NF-107118.R2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t



Nuclear	Fusion	XX	(XXXX)	XXXXXX	 D.	Moreau	et	al		

	
	

22	

LH1 pulse was injected from 0.95 s to 2.25 s in order to reduce 
the poloidal flux consumption during the plasma current ramp-
up, and a constant 0.9 MW ECRH power was injected from the 
two gyrotrons during the current flattop. The system 
identification data was obtained from a steady state reference 
discharge with a constant LH2 power at 1 MW (shot #93295) 
and from three other discharges, with chirping frequency 
(shots #93296 and #93297) and PRBS (pseudo-random 
binary sequence) modulations of the LH2 actuator (shot 
#93298), with powers between 1 and 2.5 MW. 
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Figure 13a. Safety factor on the magnetic axis, q0(t), from real-time 
EFIT magnetic equilibrium reconstruction (solid) and q0,target(t) 
(dashed red) in EAST discharge #94832. Control starts at t = 2.7 s. 
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Figure 13b. Coupled LH2 power (solid black) and MPC command 
before (dotted magenta) and after (dashed red) the PI actuator 
control in EAST discharge #94832. The coupled power (solid) 
closely matches the original controller command (dotted magenta). 
Control starts at t = 2.7 s. 
 

To cope with the nonlinear response of the LH2 system to 
the PCS command, a simple additional PI feedback 
controller was used to track the desired power modulations. 

The PI gains were chosen following the so-called SIMC 
tuning rule [44] and the actuator controller was also used in 
cascade with the MPC controller module to track the MPC 
power command in the closed loop experiments. The 
magnetic and kinetic parameters of interest were estimated 
by the real-time EFIT reconstruction code. 

 
A linear two-time-scale state space model having the 

ARTAEMIS structure defined in sections 2-3, with five 
significant eigenmodes in the slow model and only one 
eigenmode in the fast model, was identified from the 
modulation data. Both the input and output data were filtered 
with a non-causal low-pass filter of order 5, and a cutoff 
frequency, ffilt = 3.3 Hz for the separation between the slow 
and fast data. The fit parameters, f, obtained from equation 
(18) in the four discharges were found as 84%, 51%, 63%, 
and 67% for ι (x)  and as 57%, 49%, 75% and 73% for δβp. 
They are somewhat smaller and more broadly distributed 
than the values reported in section 3, obtained with 
simulation data. This is due to the noise and uncertainties 
inherent to the experimental data, and also to undesired 
variation of some plasma parameters in the experiments. 
Nevertheless, as in figures 2-3, the identified model was 
found to reproduce satisfactorily the coupled evolution of the 
internal poloidal flux profile, ψ(x, t), of the inverse of the 
safety factor profile, ι (x,t)  = 1/q(x, t) and of the poloidal 
beta parameter, βp(t). Another example of the ARTAEMIS 
system identification using experimental data will be given 
in section 8. Two important parameters characterizing the 
identified models are the largest (negative) eigenvalues of AS 
and AF, obtained here as -0.95 s-1 and -60.6 s-1, which 
correspond to time constants τS = 1.05 s and τF = 0.017 s for 
the resistive diffusion and thermal transport, respectively. 

6.2	Experimental	SISO	control	of	q0	with	LHCD	

The first MPC control experiment aimed at tracking 
piecewise-constant waveforms for the safety factor on axis, 
q0. The control cycle time was set to 0.02 s so that, at each 
time step, we had enough CPU time to reconstruct the 
plasma magnetic equilibrium from the real-time 
measurements and solve the QP problem in the MPC 
algorithm. In the discharge #94832, the target q0 was set at 
2.4 from t = 2.7 s to t = 4.5 s and was raised to q0,target = 2.8 
at t = 4.52 s. 

The controller parameters were chosen as nsvd = 1 (since 
there is only one actuator), R = 0, τH = 0.52 s ~ τS/2 for the 
horizon, and τtarget = 0.26 s ~ τS/4. The target reshaping time 
is smaller than the value chosen for the simulations in section 
5 in the aim of approaching the targets faster. The q-profile 
weight function, µ(x), was replaced by the Dirac distribution, 
δ(x), and the kinetic weights λkin and λfast were set to 0 since 
there is no kinetic control in this experiment. The time 

Page 22 of 37AUTHOR SUBMITTED MANUSCRIPT - NF-107118.R2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t



Nuclear	Fusion	XX	(XXXX)	XXXXXX	 D.	Moreau	et	al		

	
	

23	

evolutions of q0 (solid black trace) and of the piece-wise 
constant q0 target (dashed red trace) are shown on figure 13a. 
The LH2 power commands obtained from the controller 
(dotted magenta trace) and at the output of the PI actuator 
control module (dashed red trace) are shown on figure 13b.  
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Figure 14a. Poloidal beta parameter, βp(t), from real-time EFIT 
magnetic equilibrium reconstruction (solid) and βp,target(t) (dashed 
red) in EAST discharge #94829. Control starts at t = 2.7 s. 
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Figure 14b. Coupled LH2 power (solid black) and MPC command 
before (dotted magenta) and after (dashed red) the PI actuator 
control in EAST discharge #94829. The coupled power (solid) 
closely matches the original controller command (dotted magenta). 
Control starts at t = 2.7 s. 

 
The LH2 power effectively coupled to the plasma is also 

shown on figure 13b (solid black trace). The coupled power 
closely matches the original controller command (and 
therefore the MPC algorithm request), showing the 
effectiveness and appropriate tuning of the actuator control 
module. The tracking of the q0 targets is successfully 
performed without steady state offset, in about one second, 

which is of the order of the resistive diffusion time. This is 
relatively shorter than in the simulations of section 5 thanks 
to the smaller target reshaping time. In these experiments, the 
inputs to the observer, U(t), ιm(t)  and κm(t) in equations 

(45-48), were taken from noisy raw measurements and both 
the power command (figure 13a) and the controlled safety 
factor (figure 13b) were affected by high-frequency noise.  

6.3	Experimental	SISO	control	of	βp	with	LHCD	

In other discharges, βp SISO control was tested. An 
important feature of plasma transport physics, on which the 
postulated two-time-scale ARTAEMIS model structure is 
based (section 2), is that the slow evolution of the kinetic 
variables, κ(t), is not only driven by low frequency 
components of the heating powers, but it is also partly driven 
by the evolving magnetic equilibrium, i.e. by the poloidal 
flux profile, ψ(x,t). This is why the dynamic model couples 
both ψ(x,t) and βp(t) to the slow states of the system through 

the Cψ and CS matrices in equations (11-12), in which the 
kinetic vector, κ, now stands for βp. The slow states of the 
system, XS(t), are defined as the eigenmodes of the resistive 
diffusion equation. They govern the dynamics of ψ(x,t) and 
ι (x,t) but also the slow dynamics of βp(t), and therefore they 
must be kept in the controller internal model even when q(x) 
is not controlled. Now, the MPC controller described in 
section 4 was designed for the control of the safety factor 
profile, q(x), or for the simultaneous control of q(x) and of a 
kinetic vector, κ, which is here equal to βp. It can also be 
used for the control of ψ(x) and βp (similarly to what was 
done in [33] for the control of ψ(x) and βN) by keeping the 
vector ψ(t) in the model equations (21, 23) and in the 
following controller/observer equations, instead of using the 
vector ι (t)  and the model equations (28, 30). The simplest 
way to achieve βp SISO control with the multi-variable 
controller described in section 4, is indeed to select ψ(x) and 
βp as controlled variables and to increase the weight λkin (and 
optionally λfast) in the QP cost function to values much 
larger than the norm of µ(x). 

In the discharge #94829, a piecewise-linear βp target 
waveform with 1.6 < βp,target < 1.9 was tracked. The 
controller parameters were chosen as nsvd = 1 (there is only 
one actuator), R = 0, τH = 0.52 s ~ τS/2, τtarget = 0.26 s ~ τS/4. 
The weight function on the ψ(x) control was the Dirac 
distribution, µ(x) = δ(x), and the kinetic weight, λkin, was set 
to 1000 in order to make the contribution of ψ(x) in the 
controller QP cost function negligible, given that normalized 
variables are used. The effect of the fast system state on the 
controller commands was also negligible with λfast = 1.5 
<< λkin. The controller filter that separates the slow and fast 
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variables was chosen with τfilt = 0.1 s (ffilt = 10 Hz) and the 
number of nodes during the horizon was nnodes = 2. The time 
evolution of βp (solid black trace) and its target waveform 
(dashed red trace) are shown on figure 14a. The LH2 power 
commands obtained from the controller (dotted magenta 
trace) and at the output of the PI actuator control module 
(dashed red trace) are shown on figure 14b, together with the 
LH2 power effectively coupled to the plasma (solid black 
trace). As in the previous case (section 6.2), the coupled 
power closely matches the MPC algorithm request. The βp 
waveform tracking was excellent despite significant noise in 
the measured observer/controller inputs. 

7.	Simulations	of	two-time-scale	MPC	control	using	
LHCD,	ECRH	and	NBI	pulse	width	modulation	

The initial experiments described in section 6 were limited 
to single-input-single-output (SISO) control. When the real-
time command of the neutral beam injectors became 
available on EAST, the ARTAEMIS MPC control algorithm 
could be tested in the more sophisticated multiple-input-
multiple-output (MIMO) control configuration. In the 
perspective of such experiments, METIS simulations were 
performed using several actuators including NBI to 
simultaneously control the q-profile at different radii and the 
poloidal beta parameter, βp. For these simulations, up to four 
actuators were used: LHCD at 4.6 GHz (LH2), two sets of 
co-current NBI injectors at different angles (NB1 and NB2) 
and ECRH at 140 GHz. The actuators have been tuned in 
METIS so that they have nearly the same characteristics and 
the same effect on the plasma as the H&CD systems used on 
EAST. At present, real-time ECRH actuation is not yet 
available from the EAST PCS but, anticipating on future 
developments, ECRH was used as an actuator in METIS 
simulations in order to extend the controller capabilities. Also, 
unlike the LHCD klystrons, which can deliver a continuous 
power waveform within given lower and upper bounds, NBI 
injectors can either be running at full power or switched off, 
and switching from one state to the other can only be done 
after a minimum time. The MPC algorithm must therefore be 
complemented with a pulse-width-modulation (PWM) 
algorithm that delivers NBI pulses in such a way that, when 
averaged over a given period of time, the injected power 
reproduces at best the power that is requested by the 
controller at the beginning of each averaging period. The 
NBI power request can therefore be updated only after a 
number of time samples while the LH2 power request is 
updated at each time step. The minimum pulse width that can 
be handled by the EAST NBI system is 0.1 s, which is larger 
than the characteristic thermal diffusion time and is not best 
suited for the control of kinetic parameters. So, in order to 
reduce the time delay in the NBI action, we have assumed 
that the minimum switching time can be reduced to 0.04 s in 

the simulation tests presented here. The power averaging 
time was chosen as 0.4 s so that the NBI power request from 
the MPC controller is distributed over a maximum pattern of 
ten on/off periods. Thus the averaged power delivered by 
each beam during the averaging period can only vary by 
steps of 10 % of the available beam power. With a controller 
cycle time of 0.02 s, and an averaging period of 0.4 s, the 
NBI MPC command is updated every twenty cycles. For the 
other actuators, the commands are updated at each time step, 
and they are optimally computed by solving the QP problem 
with the partial knowledge of the NBI power pattern during 
the time horizon of the model prediction. 

We shall now describe the results of closed loop q(x) and 
βp control simulations in a high-βp non-inductive scenario on 
EAST with the NBI actuators used in the PWM mode. As in 
section 5, the simulations were performed by inserting the 
METIS plasma simulator at the output of the MPC controller 
in a MATLAB®/Simulink model, and feeding the appropriate 
METIS outputs back into the controller. Many plasma 
parameters or profiles are assumed independent of the 
actuators and are fixed external inputs to the code, together 
with all the chosen METIS options for modelling the various 
physical phenomena. The reference scenario around which 
the linear response model was identified was based on a real 
high-density discharge (#94429), a steady state single-null  
H-mode discharge, at a toroidal magnetic field, BT = 2.5 T, 
line-averaged electron density, nel = 4.4 x 1019 m-3, and 
plasma current, Ip = 0.4 MA. This reference discharge uses 
NBI and has a higher plasma density than that used in 
sections 3 and 5. It was obtained using a 0.5 MW LH1 
prelude from 0.95 s to 2.25 s during the plasma current ramp-up. 
Then, during the current flattop, 0.9 MW from ECRH, 1.6 MW 
from LH2 and 2 x 1.3 MW from the two sets of co-current 
injectors at a beam voltage of 65 kV were injected in steady 
state. The steady state poloidal beta and internal inductance 
parameters were βp = 2.3 and li = 0.75, respectively, and the 
q-profile exhibited a negative shear in the plasma core, with 
a minimum q around 3.1 at x ~ 0.4 and q0 ~ 4 on axis. In 
order to identify the various matrices in the ARTAEMIS 
model corresponding to the selected operation scenario, 
nonlinear open loop simulations with various PRBS power 
modulation waveforms were performed. Three slow 
eigenmodes and one fast eigenmode could be identified from 
the data. The largest (negative) eigenvalues of AS and AF 
were -1.6 s-1 and -24.7 s-1, which correspond to time 
constants τS = 0.6 s and τF = 0.040 s for the resistive and 
thermal diffusion characteristic times, respectively. 

In all the closed loop control simulations, the time 
evolution of plasma parameters and profiles was based on the 
actual experimental data from shot #94429 until t = 3.2 s 
when control was switched-on. For t ≥ 3.2 s, with a cycle 
time of 0.02 s, the LH2, the ECRH and the two co-current 
NBI actuator powers were prescribed by the MPC controller 
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commands (using PWM with an amplitude of 1.3 MW for 
NB1 and NB2), and the evolutions of the plasma parameters 
and profiles (e.g. ψ(x, t), q(x, t), βp, li, etc.) were simulated. 
The controller filter for the separation of the slow and fast 
control was chosen with τfilt = 1/ffilt = 0.22 s and the number 
of nodes during the horizon was nnodes = 2. These parameters 
have been unchanged in all the simulations. 
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Figure 15. Simultaneous control of q0 and q1 = q(x=0.4) with 
LHCD, ECRH and NBI. Top frame: q0 (solid black trace), q0,target 
(black dashed), q1 (solid red trace) and q1,target (red dashed) vs time. 
Middle frame: NB1 (bottom, black) and NB2 (top, red) PWM 
(0=on, 1=off). Bottom frame: LH2 (red) and ECRH (black) 
actuator powers. 

7.1	Control	of	the	safety	factor	profile	

With three independent actuators (LH2, NB1 and NB2), 
one could expect to control the safety factor profile at three 
different radii. However, with the three actuator powers 
normalized to 1.3 MW, the singular value decomposition of 
the model steady state response, i.e. of the KS matrix, limited 
to three q-profile outputs at x = 0, 0.3 and 0.6, yields singular 
values of 0.494, 0.016 and 0.005. For only two outputs at 
x = 0 and x = 0.4 the singular values are 0.472 and 0.014. A 
strong drop between the first and second singular values of 
KS means that there is significant redundancy in the plasma 
responses to the different actuators. Adding that the PWM 
NBI actuation cannot be accurate and tends to produce 
oscillations at the period of the beam averaging time, it is 
difficult to control the q-profile at more than one radius 
without an extra degree of freedom from another actuator. 
We shall here anticipate that, in the future, ECRH can 
ultimately be controlled by the EAST PCS in a relatively 
high frequency PWM mode (>> 50 Hz). So, we shall assume 
in METIS that an additional ECRH actuator can deliver a 

continuous power. Then, with this additional actuator also 
normalized to 1.3 MW, the KS singular values are 0.578 and 
0.109 for q(x) control at x = 0 and x = 0.4, so we can use 
nsvd = 2 in the controller. 
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Figure 16. Simultaneous control of q0, q1 = q(x=0.4) and βp with 
LHCD, ECRH and NBI. Top frame: q0 (solid black trace), q0,target 
(black dashed), q1 (solid red trace) and q1,target (red dashed) vs time. 
Second frame: βp (solid black trace), βp,target (black dashed). Third 
frame: NB1 (bottom, black) and NB2 (top, red) PWM (0=on, 
1=off). Bottom frame: LH2 (red) and ECRH (black) actuator 
powers. 

 
A closed loop simulation result is displayed on figure 15 

where the controller is tracking four different target pairs for 
q0 and q1 = q(x=0.4). The targets are [q0,target, q1,target] = [1.9, 
2.6], [2.9, 3.1], [2.2, 2.8] and [4.1, 3.1] during the time 
periods t = 3.2-7 s, 7-11 s, 11-15 s and 15-21 s, respectively. 
These targets correspond to monotonic, weak shear and 
negative shear profiles. The controller parameters were 
chosen as nsvd = 2, R = 0, τH = 0.8 s and τtarget = 0.4 s. The 
weight function, µ(x), was replaced by the sum of Dirac 
distributions, δ(x)+δ(x-0.4), and λkin = λfast = 0 since there is 
no controlled kinetic variable. The constraint matrices L and 
M in the minimization of the cost function (53) were defined 
as to limit the LH2 power to PLH2 ≤ 2.5 MW, the ECRH 
power to PEC ≤ 2 MW and the beam power to PNB1 ≤ 1.3 MW 
and PNB2 ≤ 1.3 MW. The control of q0 and q1 is excellent (see 
figure 15). The time required for tracking the different targets 
is consistent with the resistive time and there is no steady 
state offset, as could be expected with nsvd = 2 for two 
controlled variables. The middle frame shows the evolution 
of the two NBI PWM waveforms (0 = power off, 1 = power 
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on), and the bottom frame shows the LH2 and the ECRH 
powers requested by the controller. 

7.2	Simultaneous	control	of	q(x)	and	βp	

For the simultaneous control of q(x) and βp with LHCD, 
ECRH and the two sets of co-current NBI injectors, the 
singular value decomposition of the KS matrix, limited to 
three outputs, q0, q1 = q(x = 0.4) and βp, with equal 
normalizations of the four actuators, yields singular values 
that are equal to 1.13, 0.229 and 0.096. With nsvd = 3, 
simultaneous control of three parameters such as q0, q1 and 
βp should therefore be possible without offsets. In the 
example shown on figure 16, four different sets of q0, q1 and 
βp targets were tracked, namely [q0,target, q1,target, βp,target] = 
[1.9, 2.6, 1.81], [2.9, 3.1, 1.92], [2.2, 2.8, 1.93] and [4.1, 3.1 
2.35] during the time intervals t = 3.2-7 s, 7-11 s, 11-15 s and 
15-21 s, respectively. As before, the controller parameters 
were chosen as R = 0, τH = 0.8 s, τtarget = 0.4 s and the weight 
function, µ(x), was replaced by the sum of Dirac 
distributions, δ(x)+δ(x-0.4). But here, for the additional 
control of βp, we chose λkin = 1 and λfast = 1.5. The PWM 
algorithm introduces a 0.4 s delay and generates low 
frequency on/off power jumps in the NBI controller 
actuation. The resulting oscillations of the controlled 
variables around their targets, at a frequency of 2.5 Hz, are 
small and acceptable for the control of q(x), but their 
amplitude is large for βp, showing limited kinetic control 
accuracy. Increasing the maximum frequency at which NBI 
can be switched on and off and decreasing the power 
averaging time would be necessary for better kinetic control. 

8.	MPC	kinetic	control	experiments	on	EAST	using	
LHCD	and	NBI	pulse	width	modulation	

Experimental tests of the ARTAEMIS/MPC kinetic control 
algorithm were done in the MIMO configuration during a 
recent experimental campaign on EAST. The neutral beam 
injectors and the LHCD klystrons could be controlled in real 
time by PCS commands so that a maximum of three 
independent actuators could be used for plasma control. The 
first actuator was the LHCD system at 4.6 GHz (LH2), as in 
the initial SISO experiments reported in section 6, and two 
additional actuators were obtained by grouping beams that 
have the same injection angle with respect to the plasma. A 
total of four deuterium beams can be injected through ports 
A and F of the EAST tokamak with two beams in each port, 
the right beam and the left beam. The geometry of the beams 
is the same in both ports, but the right beams (R-beams) and 
the left beams (L-beams) are tilted in the co-current direction 
at different angles with respect to perpendicular injection.   
As a result, the injection from the L-beams is more tangential 
than the injection from the R-beams and we can consider the 
L-beams and the R-beams as two different actuators named 

NB-L and NB-R, respectively. Each actuator consists of two 
equivalent injectors driven at the same beam voltage, one 
through the A-port and the other one through the F-port. The 
power delivered by the NB-L actuator is the sum of the 
powers injected by the two L-beams from ports A (NB1-L) 
and F (NB2-L), irrespectively of the contribution from each 
beam. The same applies for the NB-R actuator and the two 
R-beams (NB1-R and NB2-R). 

An important difference between these experimental tests 
and the simulations discussed in section 7 is that the 
minimum allowed pulse width from the EAST NBI system is 
0.1 s instead of 0.04 s as assumed above for the simulations. 
The power averaging time was not increased above 0.4 s in 
order to keep the same delay in the NB-L and NB-R action as 
in the simulations. However, this choice was made at the 
expense of a less accurate tracking since the NBI power 
request from the MPC controller was now distributed over a 
maximum PWM pattern of only four on/off periods of 0.1 s 
and, therefore, the averaged power delivered by each beam 
during the averaging period can only vary by steps of 25 % 
of the available beam power. Given that there are two beams 
in each NBI actuator, the averaged actuator power in a      
0.4-second period can vary by minimum steps of 12.5% of 
the total actuator power. 

8.1	Identification	of	ARTAEMIS	models	from	
experimental	EAST	data	

New experiments were dedicated to the identification of 
ARTAEMIS models with the LH2, NB-L and NB-R inputs. 
The reference operation scenario around which the models 
were obtained was based on a negative toroidal field 
discharge (#122565) with BT = -2.5 T, Ip = 0.4 MA and a 
line-averaged plasma density, nel = 4.5 x 1019 m-3. In order to 
reduce the poloidal flux consumption during the plasma 
current ramp-up and extend the current flat-top duration from 
t = 2.2 s until t = 13.5 s, a short 0.5 MW pulse was injected 
from the 2.45 GHz LHCD system (LH1) between t = 1 s and 
t = 2.5 s. Then, the following powers were injected during 
the current flat-top: ECRH (1.8 MW from three gyrotrons at 
140 GHz) for t ≥ 5.1 s, ICRH (1.5 MW from two antennas) 
for t ≥ 5.4 s, and LHCD at 4.6 GHz (LH2) with a constant 
1.2 MW power flat-top between t = 2.6 s and t = 5 s, a power 
ramp from 1.2 MW to 2 MW between t = 5 s and t = 6 s and 
a constant power of 2 MW for t ≥ 6 s. Stable and 
reproducible stationary H-mode plasmas could be obtained 
between t = 6 s and t = 13.5 s using this operation scenario. 

Many successful discharges were then run with the same 
parameters and the same feedforward power sequence from 
LH1, ECRH and ICRH, but with power modulations from 
the control actuators. The LH2 power was modulated 
between 1 MW and 2 MW, and the power delivered by the 
four beams was modulated between 0 MW and full power, 
i.e. ~ 0.6 MW, with beam voltages ~ 47.5 kV and with 

Page 26 of 37AUTHOR SUBMITTED MANUSCRIPT - NF-107118.R2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t



Nuclear	Fusion	XX	(XXXX)	XXXXXX	 D.	Moreau	et	al		

	
	

27	

minimum pulse widths of 0.1 s. The power modulations were 
obtained from an algorithm that can generate many different 
PRBS waveforms such as those shown on figures 17 and 18. 
Figure 17 shows an example of low frequency PRBS 
modulations for the LH2 and NB-R actuators applied on 
discharge #126960, in which the NB-L actuator was off. 
Figure 18 shows an example of high frequency PRBS 
modulations applied to the LH2 actuator on discharge 
#126963. They were used for the identification of the fast 
response model. Because of the minimum pulse width of 
0.1 s, the NBI powers cannot be modulated at high 
frequency. In this discharge, the NB-L power was constant     
(PNB-L = 1.1 MW) and the NB-R actuator was off. 
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Figure 17. Slow LH2, NB1-R and NB2-R power modulations 
injected from PRBS commands on discharge #126960. The NB-L 
actuator is off. 
 

A two-time-scale ARTAEMIS model was then identified 
from the experimental plasma response to the modulated 
inputs. Both the input and output data were filtered with a 
non-causal low-pass filter of order 5, and a cutoff frequency, 
ffilt = 4 Hz, for the separation between the slow and fast data. 
For the experimental control of q(x), βp and li using the 
LH2, NB-L and NB-R actuators, a good model could be 
identified from three steady state shots with different 
combinations of actuator powers and seven shots in which 
PRBS modulations were applied either individually to the 
three actuators or to different combinations of them. 
However, no attempt was made to minimize the number 
of discharges that were used to identify the models, either 
from simulated METIS data or from EAST data because 
the focus in these experiments was on testing and 
validating the MPC controller with the best possible data-
driven models. With the future development of more 
accurate nonlinear simulation codes, large datasets 
obtained from simulations can be used for system 
identification if the cost of running dedicated 

experimental discharges is unacceptable. Another 
significant improvement of the method in this respect 
could come from the development of real-time adaptive 
identification of the ARTAEMIS models. 
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Figure 18. Fast LH2 power modulations (blue trace) injected from 
PRBS commands on discharge #126963. NB1-L (solid black trace) 
and NB2-L (dotted red trace) powers are also shown. The NB-R 
actuator is off. 
 

Four significant eigenmodes were found for the slow 
model and two eigenmodes were found for the model 
governing the fast dynamics of βp and li. The largest 
(negative) eigenvalue of AS corresponds to a resistive time 
constant τS = 1.49 s. Note that this time constant is 
significantly larger than in the model used for the SISO 
control experiments of section 6 (τS = 1.05 s) because the 
reference scenario for the SISO experiments had a much 
lower plasma temperature. The total reference power (ECRH 
+LH2) was 1.9 MW while here the total power 
(ECRH+ICRH+LH2) in the reference discharge  amounts to 
5.3 MW for about the same plasma density. The AF matrix 
was found triangular. Its first eigenvalue corresponds to a 
time constant of 0.126 s and is mostly related to the 
dynamics of the internal inductance parameter. The second 
eigenvalue corresponds to a smaller time constant of 0.030 s, 
representative of the poloidal beta parameter dynamics. As 
an example of the fits obtained from the identified two-time-
scale ARTAEMIS model, a comparison between the reduced 
ψ(x) experimental data at x = 0, 0.1, ... 0.9 and the simulated 
data obtained from the model is shown on figure 19a for the 
discharge #126960. The corresponding integrated fit 
parameter obtained from equation (18) for ψ(x) is f = 60%. 
Comparisons between the reduced δβp and δli experimental 
data and the simulated data obtained from the ARTAEMIS 
model are also shown for the same discharge on figures 19b 
and 19c, respectively. The fit parameters obtained here for

Page 27 of 37 AUTHOR SUBMITTED MANUSCRIPT - NF-107118.R2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t



28	

	

-0.02
0

0.02

(0
)

-0.02
0

0.02

(0
.1

)

-0.02
0

0.02

(0
.2

)

-0.02
0

0.02

(0
.3

)

-0.02
0

0.02

(0
.4

)

-0.02
0

0.02

(0
.5

)

-0.02
0

0.02

(0
.6

-0.02
0

0.02

(0
.7

)

-0.02
0

0.02

(0
.8

)

6 7 8 9 10 11 12 13
Time (s)

-0.02
0

0.02

(0
.9

)

 

6 7 8 9 10 11 12 13
Time (s)

-0.1
0

0.1

p

 
Figure 19b. Reduced poloidal beta response to the PRBS 
commands in discharge #126960 (see figure 17). Comparison 
between the experimental data (dashed black trace) and the 
ARTAEMIS-simulated data (solid red trace). 
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Figure 19a. Reduced poloidal flux response (Wb) at x = 0, 0.1, ... 
0.9 to the PRBS commands in discharge #126960 (see figure 17). 
Comparison between the experimental data (dashed black traces) 
and the ARTAEMIS-simulated data (solid red traces). 
 

Figure 19c. Reduced internal inductance parameter response to 
the PRBS commands in discharge #126960 (see figure 17). 
Comparison between the experimental data (dashed black trace) 
and the ARTAEMIS-simulated data (solid red trace). 
 

δβp and δli from the full two-time-scale model are 60% and 
59%, respectively. 

8.2	Closed	loop	MIMO	control	experiments	on	EAST	

The ARTAEMIS model found above from the 
experimental plasma response to PRBS input data was then 
used to perform the first ARTAEMIS/MPC closed loop 
experiments combining the control of the q-profile and 
kinetic parameters on EAST. The objective was to test the 
controller ability to simultaneously track several different 
targets for the safety factor on the magnetic axis, q0, and at 
half radius, q1 = q(x=0.5), as well as the poloidal beta and 
internal inductance parameters, βp and li. In closed loop, the 
power commands sent to the LH2 actuator and to the four 
beams, NB1-L, NB1-R, NB2-L and NB2-R, are computed in 
real time by the ARTAEMIS/MPC algorithm combined with 
the PWM algorithm for the beams. These commands were 
computed with a controller cycle time of 0.02 s (or 0.025 s in 
the last example), which was larger than the maximum time 
for executing the combined MPC/PWM algorithm in the 
EAST PCS. This maximum occurs at the first time step in 
each 0.4-second beam averaging period, when the optimal 
LH2, NB-L and NB-R commands are computed from the 

MPC algorithm and cost function in equation (53), with a 
one-second time horizon (τH = 1 s). The resulting NBI 
actuator commands (NB-L and NB-R) are then distributed on 
the four beams by the PWM algorithm, during the twenty 
time steps of the averaging period. This is done in such a 
way that the 0.1 s minimum pulse width constraint is met, 
and that the average NB-L and NB-R powers during the 
twenty steps are as close as possible to the original NB-L and 
NB-R power requests found by solving the QP problem at 
the first step of the period. During the nineteen following 
steps, the four beam powers are thus known and the QP 
solver in the MPC algorithm only has to find the optimal 
LH2 input sequence during the time horizon, given that the 
NB-L and NB-R power sequences are known 6 . The 
constraint matrices L(t) and M(t) used at each time step were 
constant during all the control phases, and defined as to limit 
the LH2 command to the interval 1.0 MW ≤ PLH2 ≤ 2.2 MW 

																																																													
6  When the prediction horizon for the computation of the LH2 
request exceeds the twentieth time step of the beam-averaging 
period, the NB-L and NB-R patterns are still assumed to be known 
and to simply repeat themselves beyond the twentieth time step with 
the same average power. 
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and the two NBI actuators to 0 ≤ PNB-L ≤ 1.1 MW and 
0  ≤  PNB-R  ≤  1.1 MW. The four beam voltages were 
~ 47.5 kV, as in the identification experiments. 

Now, since the 0.4-second NBI power averaging period is 
longer than the characteristic times of the fast model (0.126 s 
and 0.030 s), efficient control of the kinetic variables on the 
fast time scale was not expected. Therefore, the MIMO 
control experiments were all performed with the reduced 
MPC kinetic controller defined in section 4.4, using the slow 

model only, with τfilt = 0.25 s in the Aν matrix of equation 
(42). Thus, we set λfast = 0 because the kinetic states are not 
used, and we set λF = 0.3 in the substituted direct            
feed-through term of the model kinetic output equations (60-
61), as in section 5.2. The weight matrix on the actuators in 
the cost function was set to R = 0, the target reshaping time 
during the horizon was set to τtarget = 0.25 s = τH/4, and the 
number of input nodes for the model prediction during the                                                 
horizon was nnodes = 2. In the aim of reducing the noise in 
the inputs to the observer, an additional low-pass pre-filter 
with a characteristic time τprefilt = 0.4 s was applied to the 
measured U(t), ιm(t)  and κm(t) data entering equations (45-

48). The controller parameters defined above have been 
unchanged for all the experiments described in this section.  

Ideally, during closed loop experiments, the main plasma 
parameters and the operation scenario should be consistent 
with the controller internal model. In particular, the toroidal 
field, plasma current and density, and the requested 
feedforward powers, as well as their time sequence, should 
be the same as those used in the system identification 
experiments. As a matter of fact, the selection of accessible 
and consistent targets was made in advance using data from 
these open loop experiments, in order to save time during the 
closed loop session and test many different controller 
configurations in a limited time. However, the LH1 system at 
was not available during the closed loop session. Also, 
despite many attempts to improve ICRH power coupling, the 
maximum power injected from the two antennas did not 
exceed 0.9 MW, or 1.1 MW in some discharges, instead of 
1.5 MW requested. Finally, the ECRH power was sometimes 
reduced to 0.5 MW delivered by only one gyrotron instead of 
1.8 MW requested from three gyrotrons. This lack of power 
in most discharges had important consequences on the results 
because the controller internal model and the control targets 
to be tracked were all obtained with the LH1 prelude during 
current ramp-up and with the maximum available ICRH and 
ECRH powers. The limitation of the injected powers in the 
feedforward mode with respect to the powers foreseen for the 
selection of the control targets, often led to the saturation of 
one or more actuators, which, in many cases, prevented the 
targets from being hit. In this respect, the power limits of the 
LH2 actuator were another source of control inaccuracy. 

Although, the LH2 power command at the output of the 
controller was ranging from 1 MW to 2.2 MW, the output 
power from the klystrons was restricted to the interval 
1.1 MW to 2 MW in order to ensure optimum real-time 
operation.  

Five controller configurations have been tested during the 
time allowed for the experimental session, all using the three 
actuators, NB-L, NB-R and LH2, and typical results are 
described below for each configuration. 

8.2.1	Discrete	 q0	 control. The first configuration aimed 
at the control of the safety factor on the magnetic axis. 
Figure 20a shows the evolution of q0 in the discharge 
#128569 where three successive targets were tracked: q0,target 
= 2.26 for 5.5 s ≤ t ≤ 8.48 s, q0,target = 2.61 for 8.5 s ≤ t ≤ 
11.48 s and q0,target = 2.39 for 11.5 s ≤ t ≤ 13.5 s. Figures 20b, 
20c and 20d show the powers requested by the controller and 
the powers really injected. In this configuration, the q-profile 
weight function, µ(x), was replaced in the cost function (53) 
by the Dirac distribution, δ(x), and we set λkin = 0 since there 
is no kinetic control. With three actuators and only one 
controlled variable, the 1x3 KS matrix has only one SVD 
component, so nsvd = 1. In the example shown, the ICRH and 
ECRH feedforward powers were only 0.9 MW (instead of 
1.5 MW) and 0.5 MW (instead of 1.8 MW), respectively. As 
a result, the lowest target, q0,target = 2.26, could not be 
reached and the LH2 actuator was saturated at its minimum 
value of 1.1 MW (while the controller assumed that a 
minimum of 1 MW was available and the PCS command did 
request 1 MW). The NB-R actuator was also saturated at its 
minimum (power off).  

Despite the minimum pulse width constraint in the on/off 
operation of the NBI actuators, the next two targets were 
successfully reached in a time that is of the order of the 
characteristic resistive time of the model, identified as 
τS = 1.49 s for this range of plasma parameters and this 
operation scenario. A similar result was obtained for the 
SISO control of q0 with LH2, in section 6.2 and figures 20a 
and 13a are indeed quite comparable, with about the same 
experimental noise level. Interestingly, a clear signature of 
the MPC/PWM algorithm can be seen on figure 20b, which 
exhibits a 0.4-second periodic pattern on the LH2 power. The 
amplitude of these power oscillations could in principle be 
reduced, and their frequency increased, by reducing the 
minimum pulse width of the beams and the beam averaging 
time. On the technical side, it must be noted from figures 20c 
and 20d that the power modulation PCS commands 
generated by the combined MPC/PWM algorithms were 
perfectly executed by the NBI system. 

8.2.2	Discrete	control	of	q0	and	q(x	=	0.5). The second 
configuration that was tested corresponds to the simultaneous 
control of the safety factor at two different normalized radii, 
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Figure 20a. Control of the safety factor on the magnetic axis with 
LH2, NB-L and NB-R: q0(t) from real-time EFIT magnetic 
equilibrium reconstruction (solid black) and q0,target(t) (dashed red) 
in EAST discharge #128569. Control starts at t = 5.5 s. The ECRH 
and ICRH feedforward powers are limited to 0.5 and 0.9 MW, 
respectively, instead of 1.8 and 1.5 MW requested. 

 
Figure 20b. Coupled LH2 power (solid) and PCS command (red 
dashed) in EAST discharge #128569. Control starts at t = 5.5 s. 
Actuator saturation at 1.1 MW between 5.6 s and 8.5 s. 

6 8 10 12
Time (s)

0

0.2

0.4

0.6

0.8

1

1.2

P N
B

-L
 (M

W
)

 
6 8 10 12

Time (s)

0

0.2

0.4

0.6

0.8

1

1.2

P N
B

-R
 (M

W
)

 
 
Figure 20c. Injected NB-L power (solid) and PCS command (red 
dashed) in EAST discharge #128569. Control starts at t = 5.5 s. 

 
Figure 20d. Injected NB-R power (solid) and PCS command (red 
dashed) in EAST discharge #128569. Control starts at t = 5.5 s. 
Actuator saturation at 0 MW between 6 s and 8.7 s. 
 

x = 0 and x = 0.5. In this configuration, the q-profile weight 
function, µ(x), was replaced in the cost function of equation 
(53) by the sum of Dirac distributions, δ(x)+δ(x-0.5) and 
λkin = 0 since there is no kinetic control. In equation (41), the 
model steady state response, i.e. the KS matrix, was limited to 
two q-profile outputs at x = 0 and x = 0.5 and was therefore a 
2x3 matrix. The NB-L, NB-R and LH2 actuators were 
normalized to 1.12 MW, 1.12 MW and 1.2 MW, 
respectively, and with these normalizations, the singular 
values of the KS matrix were equal to 0.0927 and 0.0037. The 
strong drop between the first and second singular values 
indicates that the combination of actuators corresponding to 

the second singular vector of KS has little effect on the 
system dynamics. It also means that an offset-free control 
objective would have resulted in large amplitudes of the 
actuator requests. In other words, the values of the safety 
factor at x = 0 and x = 0.5 are closely related and it is 
difficult to decouple them. To reduce the occurrence of 
actuator saturation, KS was therefore truncated to the first 
element of its singular value expansion for the computation 
of the optimal control action (nsvd = 1). The controller then 
only achieved a least-square minimization of the offsets 
between the targets and the measured values of q0 and q1 = 
q(x=0.5). The evolution of q0 and q1 is shown in figure 21a
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Figure 21a. Simultaneous control of q0 and q1 = q(x=0.5) with the 
LH2, NB-L and NB-R actuators: q0 (solid black trace), q0,target 
(dashed black), q1 (solid blue) and q1,target (dashed blue) vs time in 
EAST discharge #128550. Control starts at t = 5.5 s. The line-
averaged plasma density is limited to 4 x 1019 m-3 instead of the 
requested 4.5 x 1019 m-3. The feedforward ICRH power is limited to 
0.7 MW instead of the requested 1.5 MW. 

 
Figure 21b. Coupled LH2 power (solid) and PCS command (red 
dashed) in EAST discharge #128550. Control starts at t = 5.5 s. 
Actuator saturation at 1.1 MW between 5.6 s and 8.5 s. 

6 7 8 9 10 11
Time (s)

0

0.2

0.4

0.6

0.8

P N
B

-L
 (M

W
)

 
6 7 8 9 10 11

Time (s)

0

0.2

0.4

0.6

0.8

1

1.2

P N
B

-R
 (M

W
)

 
 
Figure 21c. Injected NB-L power (solid) and PCS command (red 
dashed) in EAST discharge #128550. Control starts at t = 5.5 s. 

 
Figure 21d. Injected NB-R power (solid) and PCS command (red 
dashed) in EAST discharge #128550. Control starts at t = 5.5 s. 
Actuator saturation at 0 MW between 6 s and 8.7 s. 
 

for the discharge #128550 in which two successive sets of 
targets were tracked. The targets were [q0,target q1,target] = [2.39 
2.86] for 5.5 s ≤ t ≤ 8.48 s, and [q0,target q1,target] = [2.58 3.0] 
for 8.5 s ≤ t ≤ 11.5 s. 
 

Figures 21b, 21c and 21d show the powers requested by 
the controller and the powers really injected. It is important 
to note that, in this discharge, the line-averaged plasma 
density was limited to nel = 4 x 1019 m-3 instead of the 
reference 4.5 x 1019 m-3, and the feedforward ICRH power 
was limited to 0.7 MW instead of the requested 1.5 MW that 
was used in the shots from which the different q(x) targets 
were chosen. This is why the first set of targets could not be 

reached between t = 5.5 s and t = 8.5 s. In this time interval, 
both the NB-R and LH2 actuators were saturated at their 
lowest possible values, 0 MW and 1.1 MW, respectively, so 
that q0 and q1 could not decrease further without the full 1.5 
MW ICRH power and the requested 4.5 x 1019 m-3 plasma 
density. Here also, the LH2 power was technically bounded 
above 1.1 MW instead of 1 MW as specified in the controller 
(see figure 21b). 

The second set of targets was successfully reached, 
consistently with the resistive diffusion time of the model 
(τS = 1.49 s) and with the characteristic oscillations that are 
due to the on/off operation of the neutral beams and to the 
MPC/PWM algorithm. 
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Figure 22a. Simultaneous control of q0 and βp with LH2, NB-L and 
NB-R: q0 (solid black trace), q0,target (dashed black), βp (solid blue) 
and βp,target (dashed blue) vs time in EAST discharge #128557. 
Control starts at t = 5.5 s. The line-averaged plasma density is 
equal to 4.8 x 1019 m-3 between t = 6 s and t = 9.5 s, and up to 
5 x 1019 m-3 for t > 9.7 s, instead of the requested 4.5 x 1019 m-3. 
The feedforward ICRH power is limited to 0.7 MW instead of the 
requested 1.5 MW. 

 
Figure 22b. Coupled LH2 power (solid blue), LH2 PCS command 
(dashed blue), injected NB-L power (solid black) and    NB-L PCS 
command (dashed black) in EAST discharge #128557. Control 
starts at t = 5.5 s. NB-L actuator saturation between 6 s and 10.3 s, 
and for t > 12.5 s. 
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Figure 22c. Injected NB-R power (solid black) and NB-R PCS 
command (dashed red) in EAST discharge #128557. Control starts 
at t = 5.5 s. Actuator saturation at 1.1 MW for t > 10.1 s. 

8.2.3	 Simultaneous	 control	 of	 q0	 and	 βp. In the 
discharge #128557, the simultaneous control of the central 
safety factor and of the poloidal β parameter was tested. As 
in section 8.2.1, the q-profile weight function, µ(x), was 
replaced in the controller cost function (53) by the Dirac 
distribution, δ(x), and the weight of βp control, λkin, was set 
to 0.3. The actuator normalizations were the same as in 
section 8.2.1 and 8.2.2 and the singular values of the 2x3 KS 
matrix were equal to 0.2898 and 0.0215. Here, the ratio 
between the two singular values was more favourable than in 
the previous configuration so the full KS matrix was retained 

(nsvd = 2) to possibly realize offset-free control of q0 and βp. 
Two successive sets of targets were tracked: [q0,target βp,target] 
= [2.26 1.71] for 5.5 s ≤ t ≤ 9.48 s, and [q0,target βp,target] = 
[2.61 2.01] for 9.5 s ≤ t ≤ 13.5 s. Unfortunately, in this 
discharge, plasma density control was poor and the line-
averaged density reached 4.8 x 1019 m-3 between t = 6 s and 
t = 9.5 s and even 5 x 1019 m-3 for t > 9.7 s. In addition, the 
feedforward ICRH power was limited to 0.9 MW instead of 
the requested 1.5 MW that was used in the shots from which 
the different q0 and βp targets were chosen. The evolution of 
q0 and βp is shown on figure 22a. The powers requested by 
the controller and the powers really injected are shown in 
figures 22b and 22c. The q0 targets could not be reached in 
these high-density/low-power conditions. Nevertheless, βp 
control was excellent during the first phase with βp,target = 
1.71. The βp = 2.01 target was also nearly hit despite the 
saturation at 1.1 MW of the NB-R actuator and also, for 
t > 12.5 s, of NB-L. 

8.2.4	 Simultaneous	 control	 of	 q0	 and	 li. The fourth 
configuration tested in this experimental session addressed 
the simultaneous control of the central safety factor and the 
internal inductance parameter, li. The weights in the 
controller cost function were the Dirac distribution, δ(x), for 
the q-profile, and λkin = 0.3 for li. Here, the NB-L, NB-R and 
LH2 actuators were normalized to 0.5 MW, 0.5 MW and 
2.2 MW, respectively, and the singular values of the 2x3 KS 
matrix were equal to 0.1302 and 0.0053. The full KS matrix 
was retained (nsvd = 2) to possibly realize offset-free control 
of q0 and li. In the discharge #128560, the tracked targets 
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Figure 23a. Simultaneous control of q0 and li with LH2, NB-L and 
NB-R: q0 (solid black trace), q0,target (dashed black), li (solid blue) 
and li,target (dashed blue) vs time in EAST discharge #128560. 
Control starts at t = 5.5 s. The feedforward ICRH power is limited 
to 1.1 MW instead of the requested 1.5 MW. 

 
Figure 23b. Coupled LH2 power (solid blue), LH2 PCS command 
(dashed blue), injected NB-L power (solid black) and    NB-L PCS 
command (dashed black) in EAST discharge #128560. Control 
starts at t = 5.5 s. LH2 actuator saturation between 5.9 s and 6.3 s. 
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Figure 23c. Injected NB-R power (solid black) and NB-R PCS 
command (dashed red) in EAST discharge #128560. Control starts 
at t = 5.5 s. 
 
 
were q0,target = 2.79 and li,target = 0.85 for 5.5 s ≤ t ≤ 9.5 s. The 
feedforward ICRH power was limited to 1.1 MW instead of 
the requested 1.5 MW that was used in the shots from which 
the targets were chosen. Nevertheless, there is no actuator 
saturation except between t = 5.9 s and t = 6.3 s when LH2 is 
limited at 2 MW instead of 2.2 MW requested. The evolution 
of q0 and li is shown on figure 23a. The powers requested by 
the controller and the powers really injected are shown in 
figures 23b and 23c. The values of q0 and li are perfectly 
regulated around the targets. 

8.2.5	 Simultaneous	 control	 of	 q0,	 βp	 and	 li. The last 
controller configuration was tested in the discharge #128566 

with the same three actuators and with three simultaneously 
controlled variables: the central safety factor, the poloidal β 
parameter and the internal inductance parameter. As in the 
previous case, the q-profile weight function, µ(x), was 
replaced by the Dirac distribution, δ(x). Here, the kinetic 
vector κ(t) contains two elements, δβp(t) and δli(t), and the 
diagonal elements of the 2x2 kinetic weight matrix, λkin, 
were both set to 0.2, thus giving equal weights on the control 
of βp and li. Using the same actuator normalizations as in the 
previous case, the singular values of the 3x3 KS matrix were 
0.1088, 0.0226 and 0.0034. Again, the full KS matrix was 
retained (nsvd = 3) to possibly realize simultaneous offset-free 
control of three plasma parameters, q0, βp and li. The tracking 
of two sets of targets is illustrated on figure 24. These targets 
are [q0,target βp,target li,target] = [2.47 1.85 0.92] for 5.5 s ≤ t ≤ 
8.48 s and [q0,target βp,target li,target] = [2.31 1.75 0.96] for 8.5 s ≤ 
t ≤ 11.5 s. In this controller configuration, it was found that 
the CPU time required for reconstructing the plasma 
magnetic equilibrium and solving the QP problem could 
periodically exceed 0.02 s, every 0.4 seconds, i.e. at times 
when the three actuators are unknown. The controller cycle 
time was therefore raised to 0.025 s for these experiments. 
The evolution of q0, βp and li in the discharge #128566 is 
shown in figure 24a and the powers requested by the 
controller and really injected are shown in figures 24b and 
24c. Here again, the feedforward ICRH power was limited to 
1.1 MW instead of the requested 1.5 MW that was used in 
the shots from which the targets were chosen. For these 
targets, the NB-R actuator was saturated (power off). The 
tracking of βp and li was relatively successful despite the 
oscillations generated by the MPC/PWM commands, but the 
central safety factor was always larger than its target value. 
This is partly due to the lack of ICRH power, and possibly to 
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Figure 24a. Simultaneous control of q0, βp and li with LH2, NB-L 
and NB-R in EAST discharge #128566: q0 (solid black trace), 
q0,target (dashed black), βp (solid red) and βp,target (dashed red), li 
(solid blue) and li,target (dashed blue) vs time. Control starts at 
t = 5.5 s. The feedforward ICRH power is limited to 1.1 MW 
instead of the requested 1.5 MW. 

 
Figure 24b. Coupled LH2 power (solid blue), LH2 PCS command 
(dashed blue), injected NB-R power (solid black) and   NB-R PCS 
command (dashed black) in EAST discharge #128566. Control 
starts at t = 5.5 s. LH2 actuator saturation between 8.6 s and 9.3 s 
and NB-R saturation between 6.1 s and 11.5 s. 
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Figure 24c. Injected NB-L power (solid black) and NB-L PCS 
command (dashed red) in EAST discharge #128566. Control starts 
at t = 5.5 s. 
 
the unoptimized relative weights of the various controlled 
variables in the controller cost function. Figure 24a suggests 
that an extension of the control phases to durations larger 
than three seconds could have allowed the three targets to be 
reached, but there was not enough time in this experimental 
session to repeat the tests and optimize the controller 
parameters in each control configuration. 

9.	Summary	and	conclusion	

A real-time control method that combines the efficiency 
of model-predictive control with the use of singular 
perturbation theory has been developed for the first time. 

This original method is particularly suitable for the control of 
complex systems with multiple time scales, such as tokamak 
plasmas. It allows plasma kinetic controllers based on 
extremely simple data-driven models to be synthesized. The 
so-called two-time-scale models govern the evolution of the 
system on the resistive and kinetic time scales, and they can 
be identified using the classical prediction-error method. 
They are then augmented to include new disturbance states 
and outputs so that a real-time estimation of the mismatch 
between measured and predicted outputs can be made 
through a state observer. Offset-free control can thus be 
obtained when the number of actuators is equal to the 
number of controlled variables or larger, despite disturbances 
acting on the system and on the measurements. 

 
The efficiency of the method has been demonstrated 

through extensive nonlinear closed loop METIS simulations 
applied to high-βp operation scenarios in the EAST tokamak, 
with different controlled variables and different sets of 
actuators. In the first set of simulations, control of the plasma 
safety factor profile, q(x), and of the poloidal β parameter 
was tested using LHCD and ICRH in a scenario with BT = 
2.5 T, Ip = 0.42 MA and nel ≈ 2.7 x 1019 m-3. In a second set 
of METIS simulations, simultaneous control of q(x) at two 
radii and of βp was also tested in a scenario with a higher 
plasma density, nel = 4.4 x 1019 m-3, and using up to four 
actuators: LHCD, ECRH, and also two sets of co-current 
NBI injectors at different angles driven in a pulse-width-
modulation mode. Adequate two-time-scale models were 
identified in both scenarios from simulation data obtained 
with randomly modulated actuator waveforms and pseudo-
random binary sequences. 

Page 34 of 37AUTHOR SUBMITTED MANUSCRIPT - NF-107118.R2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t



Nuclear	Fusion	XX	(XXXX)	XXXXXX	 D.	Moreau	et	al		

	
	

35	

In the low-density scenario, three typical control examples 
were reported. The first tests were dedicated to the control of 
the q-profile using only the 4.6 GHz LHCD actuator. Offset-
free tracking of various q0 targets was achieved in a few 
resistive times in the case of a discrete control of q0. 
Distributed q(x) control for 0 ≤ x ≤ 0.5 was also shown with 
targets including monotonic, weak shear and negative shear 
profiles. The controller behaved very similarly as in the 
discrete q0 control case, but with small steady state offsets on 
axis compensated by a better tracking of the target profile 
between x = 0.3 and x = 0.5. The second tests addressed the 
simultaneous control of q(x) and βp with LHCD and ICRH, 
using the MPC controller reduced to the resistive time scale 
to track different combinations of q(x) and βp targets. Steady 
state offsets cannot be avoided with only two actuators for 
distributed q(x) control and simultaneous control of βp. The 
q-profile offsets are mostly apparent near the magnetic axis 
and they disappear when only q0 and βp are controlled. In the 
third tests, the full two-time-scale MPC controller was used 
with the same actuators to simultaneously control q(x) and 
βp. The benefit of using the full controller was demonstrated. 
The q-profile targets were all tracked in about 2.5 s and the 
various βp targets were reached within about 0.2 s with the 
full controller and 0.4-0.5 s with the reduced controller. 

In the high-density scenario, simultaneous control of q(x) 
at two radii and of βp was tested in METIS simulations using 
LHCD, ECRH and NBI actuators. Technically, NBI injectors 
can either be “on” or “off” so they cannot deliver a 
continuously varying power. They must therefore be 
operated in a pulse-width-modulation mode so that the 
controller power commands computed at a given time are 
applied in an average sense during a number of future time 
steps corresponding to a fixed power-averaging period. Such 
a PWM algorithm was therefore included in the MPC 
controller and validated in the closed loop METIS 
simulations. In the first simulation tests, the MPC/PWM 
controller was used to track four discrete target pairs for q0 
and q1 = q(x=0.4), corresponding to monotonic, weak shear 
and negative shear q-profiles. The tracking of both q0 and q1 
was excellent, in a time that is consistent with the resistive 
time, and with no steady state offset. In the second 
simulation tests, four different sets of q0, q1 and βp targets 
were tracked. The PWM algorithm introduces a 0.4 s delay 
corresponding to the NBI power-averaging period, and 
generates low frequency oscillations of the controlled 
variables around their targets. The oscillations are small and 
acceptable for the control of q(x), but their amplitude is large 
for βp, showing reduced kinetic control accuracy. Increasing 
the maximum frequency at which NBI can be switched on 
and off would be necessary for better kinetic control. 

The MPC control technique described in the present paper 
was also tested experimentally on EAST. Two control 

configurations were considered. In the first scenario, LHCD 
at 4.6 GHz was the only available actuator and the single-
input-single-output version of the MPC controller was 
validated. The toroidal field was BT = 2.5 T, the plasma 
current was Ip = 350 kA and the plasma density was 
nel ~ 4.2 x 1019 m-3. An experimental ARTAEMIS model was 
identified using data from real discharges with chirping 
frequency and PRBS modulations of the LHCD actuator. The 
first control experiments aimed at tracking piecewise-
constant waveforms for q0. Tracking of the q0 targets was 
successfully performed without steady state offset, and in 
about one second, i.e. one resistive diffusion time. In other 
discharges, βp control was tested showing excellent tracking 
of a piecewise-linear βp waveform despite significant noise 
in the measurements. 

More recent experiments were dedicated to multiple-
input-multiple-output control. The operation scenario was 
based on a negative toroidal field, BT = -2.5 T, Ip = 0.4 MA 
and a relatively high plasma density, nel = 4.5 x 1019 m-3, 
with constant ECRH and ICRH powers of 1.8 MW and 
1.5 MW, respectively, to sustain a good H-mode discharge. 
A maximum of three independent actuators could be 
operated from real-time PCS commands and were used for 
plasma kinetic control: LHCD at 4.6 GHz (LH2) with a 
minimum power of 1 MW, and two NBI actuators, NB-L and 
NB-R, with different injection angles. Open loop power 
modulation experiments with LH2, NB-L and NB-R PRBS 
inputs were dedicated to the identification of an experimental 
ARTAEMIS model for this scenario, including the constant 
ECRH and ICRH powers. The minimum allowed pulse width 
from the EAST NBI system was 0.1 s, instead of 0.04 s 
assumed for the simulations, but the NBI power-averaging 
time was 0.4 s, as in the simulations. The objective of the 
experiments was to simultaneously track different targets for 
the safety factor on the magnetic axis, q0, and at half radius, 
q1 = q(x=0.5), and for βp and li. Since the neutral beam 
power-averaging period was longer than the characteristic 
times of the fast model, the control experiments were 
performed with the reduced kinetic controller, i.e. using the 
slow model only, and with a cycle time of 0.02 s or at most 
0.025 s in one case. Five controller configurations have been 
tested during the time allowed for the experimental session, 
all with the three actuators, NB-L, NB-R and LH2, with up 
to three controlled variables chosen among q0, q1, βp and li. 
In all the tests, the power modulation commands generated 
by the combined MPC/PWM algorithm were perfectly 
executed by the NBI systems. The chosen cycle time was 
large enough to reconstruct the plasma magnetic equilibrium 
from the real-time measurements and solve the QP 
optimization problem at each time step. It was adequate for 
tracking different steady state targets in a time that is 
consistent with the plasma resistive time scale and with the 
required averaging period of 0.4 s for the NBI/PWM 
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actuators. This was the goal of the experiments. It would not 
be adequate if the discharges had shown rapid transition 
phases, which are not considered in this paper, and which 
would require a specific control strategy and hierarchy, with 
much faster actuation. An example of a faster control using 
the full two-time-scale model and fast actuators only, but the 
same 0.02 s cycle time necessary for magnetic reconstruction 
and QP optimization on EAST, was shown in section 5.3. 

The main difficulty encountered during the experiments 
was the inaccessibility (without hitting actuator saturation 
limits) of control targets that were selected in advance, in 
situations where the baseline feedforward powers and, 
sometimes, the plasma density were far from their desired 
reference values. Thus, the lack of ECRH and/or ICRH 
power in most discharges had important consequences on the 
results because the controller internal model as well as all the 
chosen control targets had been obtained with reference 
powers that were available in a previous experimental 
session. This led to the saturation of one or several actuators, 
which prevented some selected targets to be reached. 
Nevertheless, in cases that were free from actuator saturation, 
q0 and q1 targets were successfully reached, in a time that is 
consistent with the resistive diffusion time and with the 
characteristic oscillations that are due to the PWM operation 
of the neutral beams. During the simultaneous control of q0 
and βp, the plasma density was too high and the feedforward 
ICRH power was limited to 0.9 MW instead of the requested 
1.5 MW. In these high-density/low-power conditions, the q0 
targets were not accessible but βp control was successful. 
There was almost no actuator saturation during the 
simultaneous control of q0 and li, so their values were also 
successfully regulated. In the last example with three 
controlled variables, q0, βp and li, the tracking of βp and li 
was satisfactory but q0 was always too large due to the lack 
of ICRH power and to NB-R saturation. 

As a general conclusion, both nonlinear simulations and 
real tokamak experiments have demonstrated the relevance 
of combining model-predictive control, data-driven models 
and singular perturbation methods for plasma kinetic control. 
The performance of the controllers is validated a posteriori, 
based on the successful tracking of the controlled parameters 
towards their targets, in a time that is consistent with the 
plasma resistive time scale. In previous designs based on 
near-optimal control and the use of two-time-scale models, 
the convergence to the targets was much too slow and often 
characterized by large oscillations [35]. In both approaches, 
there were no particular quantitative requirements that the 
controllers would have to satisfy for validation. Some 
experimental tests presented in this paper were not fully 
conclusive because the required baseline power from H&CD 
systems was not available and the actuators could not 
compensate for the lack of power from other systems. It 
would have been interesting to select control targets that 

were consistent with the available baseline power, on the day 
of the experiment, or to repeat some tests with different 
controller parameters, but this was not possible in the 
allocated time. It would require longer and several 
experimental sessions. 

Finally, as a perspective, this control method could be 
improved by implementing a real-time adaptive identification 
of the two-time-scale models. With adequate actuators, it 
could also be easily extended to the simultaneous control of 
the q-profile and other kinetic parameters or profiles such as 
βN, the plasma rotation, the ion or electron temperature, 
and/or the fusion reaction rate in burning plasmas. For such 
further developments, the advantage of using empirical 
models obtained by applying singular perturbation methods 
to system identification is that the resulting two-time-scale 
state space models are extremely simple and this reduces the 
computational burden in the control algorithm. From the 
origin, with near-optimal control, the ARTAEMIS framework 
was based on the separation of the resistive and kinetic time 
scales [30]. This is indeed a very relevant approximation, 
particularly for large tokamak devices and fusion grade 
plasmas. Although this approximation was not generally 
needed for profile control investigations on several middle-
size tokamaks, it provides interesting simplifications for the 
development of MIMO controllers for large fusion plasmas, 
and it may be of interest for future research on this subject. 
Extrapolation of MPC kinetic profile control to burning 
plasmas may require approximations of this kind. Among 
other possible developments, the recently proposed hybrid 
MPC scheme [45], which combines constraints that apply to 
continuous actuators with the discrete Boolean nature of NBI 
constraints is an interesting extension of conventional MPC. 
It is more demanding in terms of computational time but it 
could be worth trying with the ARTAEMIS models and 
framework. 
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