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State Estimation for the Kuramoto-Sivashinsky
Equation Using Scanning Outputs

M. C. Belhadjoudja, M. Maghenem, E. Witrant

Abstract— We study state estimation for the nonhomogeneous
Kuramoto-Sivashinsky (KS) equation whose output takes location
at a time-dependent position that browses the spatial domain back
and forth. The only available data are the system’s state and some
of its spatial derivatives at the output’s location. In this context, we
construct a state observer by combining two KS equations. The
first one is defined from one boundary up to the output’s location,
and the second one is defined from the output’s location up to the
other boundary. We design the observer’s boundary conditions at
the output’s location to make the observation error converge, in the
L2 norm, to a ball centered at the origin of radius proportional to
the size of the exogenous term affecting the KS equation. We show
that this radius can be made arbitrarily small by appropriate tuning.
Numerical simulations are performed to illustrate our resulits.

Index Terms— Distributed parameter systems, parabolic equa-
tions, observer design, mobile outputs.

[. INTRODUCTION

Reconstructing the profile of spatiotemporal entities, governed by
Partial Differential Equations (PDE)s, is crucial in various contexts
including environment monitoring, hydrology, meteorology [23], in
addition to identification and control engineering [15, Chapter 5],
[5]. Usually, only limited measurements are collected at each instant,
since the sensors have a limited sensing range and due to the de-
ployment of only few of them. This motivates the need for advanced
estimation algorithms to handle practical scenarios of limited sensing.

For some specific classes of PDEs, boundary outputs are shown to
be enough to reconstruct the state using a state observer. Results in
this direction treated, among others, linear parabolic equations [21],
hyperbolic equations [25], the nonlinear viscous Burgers equation
[14], and the nonlinear heat equation [18]. However, there are still
important classes of PDEs, including the KS equation in its general
forms, for which we do not know yet whether boundary outputs are
enough to design a converging state observer. Positive answers are
provided only when the observer is tailored to a specific boundary
design for the original equation [16]. Otherwise, an observer is
designed in [10] for the linearized equation while using a weighted
space integral of the state at discrete time instants as output. A
relatively more general context of nonlinear KS equations with
free boundary conditions is considered in [20], while assuming that
the state is bounded and measured at a finite number of fixed
output locations. As a result, the proposed observer is shown to
converge exponentially, provided that the number of output locations
is sufficiently large relatively to the size of the initial error.

The use of scanning and mobile outputs for such complex equa-
tions depicts well-motivated scenarios of limited sensing resources, in
which, we might succeed to solve the estimation problem in situations
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where boundary outputs are not enough. For instance, in [6], optimal
output-location trajectories are designed to guarantee state estimation
for linear parabolic equations. An extension to linear wave equations
is proposed in [7]. The problem of state estimation for the nonlinear
heat equation is also considered in [26] via designing the output-
location’s motion. To the best of our knowledge, the state-estimation
problem for the KS equation using scanning or mobile outputs has
not yet been explored in the literature.
In this paper, we consider the nonlinear KS equation

ut + uug + A'UJTT + Uzzxx = f(l?,t), (1)

where x € (0, L) is the space variable, u € R is the state, A > 0 is the
anti-diffusion coefficient, otherwise known as the destabilizing coeffi-
cient, and (x,t) — f(x,t) is an unknown exogenous term accounting
for external perturbations or un-modeled dynamics. Equation (1) is
subject to the Dirichlet-type boundary conditions:

{u(o,t) =hi(t), u(L,t)=ha(t),

e (0,8) = hs(8), un(L,t) = ha(t), foraa. t>0, (2)

where h1, ho, h3, and hy are known time-dependent functions. The
considered mobile output takes location at a time-dependent position
Y € [0, L], which browses the spatial domain [, L — €] back and
forth, for some € > 0. As a result, the available measurements at
time ¢ are u(z,t) for all x € [Y(¢) —e,Y(¢) 4 €] and the first-
and third-order spatial derivatives uz (Y (¢),t) and uzzz (Y (¢),¢). In
particular, when € = 0, only pointwise measurements are gathered.
The proposed observer consists of two KS equations, one defined
on (0,Y(t)) (provided that Y # 0) and the other one defined
on (Y (t),L) (provided that Y (t) # L). Besides copying the KS
dynamics, the observers include boundary and in-domain terms that
involve the collected measurements. As a result, we are able to ensure
that the observation error converges, in the 2 norm, to a ball centered
at the origin of radius proportional to the size of f. This radius can be
made arbitrarily small by tuning the observer’s gains. We emphasis
that we do not restrict the size of A, L, and f nor the size of w.
However, the coefficient A is assumed to be known, and the spatial
L? norm of the unknown function f is assumed to admit a known
upperbound.

The rest of the paper is organized as follows. In Section II, the
proposed sensing scenario is described, and the system of PDEs
constituting the proposed observer is presented. In Section III, we
design the observer boundary inputs and state our main result. In
Section IV, we prove our main result. Finally, in Section V, we
illustrate the main result by performing a set of numerical simulations.

Notation. For a function u : [a,b] X R>g — R, a < b, its partial
derivative with respect to ¢ is denoted by wuy, its first-, second-, third-
and fourth-order partial derivatives with respect to x are denoted
by vz, Uzz, Uzze, and ugzzex, respectively. For brievty, we may
write u(x) to mean the map t — wu(z,t), u(t) to mean the map
z — u(z,t), and u([a,b],t) to mean the set {u(z,t) : x € [a,b]}.
The time-derivative of a function ¢ — Y (¢) is denoted either by
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Y (t) or by %Y(t). We denote by L?(a,b) the space of functions
v : [a,b] — R such that

b
12 (0 :/ v(z)? dz < +oo.
a

We let Cla,b] be the space of continuous functions v : [a,b] —
R. We denote by H"(a,b), for n € {1,2,...}, the Sobolev space
of functions v € L2(a, b) such that vz, vge, until the nt? order
derivative of v belong to L?(a,b). Given v € H*(a,b), we write

2 2 2 2
|U‘H4(a,b) = |U|L2(a,b) + |’U1‘|L2(a,b) + ...+ |’Uxa:1‘w|L2(a’b)~

Given a set X and v : X — R, we let

esssup |v(x)| :=
reX ¢

We denote by H""5(a,b), for n € {1,2,...} and s € (0,
fractional Sobolev space of functions v € H™(a, b) such that

* (@) Izdd
\:r—y|1+25 ray < +00.

We denote by Lloc(0,+oo;H4(a,b)) the space of functions v :
[0,400) x [a,b] — R such that v(t) € H*(a,b) for aa. t €
(0,+00) and [, |o(t ‘LZ( b)dt < o0 for any compact set I C
[0, +00). Finally, a.a. stands for almost all and a.e. stands for almost
everywhere.

inf {|Jv(z)| < ¢ almost everywhere on X}.
€R>

1), the

Il. PROBLEM STATEMENT

We start recalling that a solution to (1)-(2) starting from the initial
condition u, € L*(0, L) is a function u € L7, (0, 4+00; H*(0, L))
with wy € L2, (0, +o0; L2(0, L)), verifying (1) for a.a. z € (0, L)
and for a.a. t > 0, verifying (2) for a.a. ¢ > 0, and such that u(x,0) =
uo(x) for a.a. x € [0, L].

Well-posedness for (1)-(2) is guaranteed only in specific situations.
For example, it is shown in [17] that, when u, € H4(O, L), f=0,

2 2
(oo o) € (U950, 400) ) x (117150, 400) )
and provided that the following compatibility condition holds

uo(0) = h1(0), uo(L) = h2(0),
oz (0) = h3(0), uox(L) = ha(0),

there exists a unique solution to (1)-(2) starting from u,. Moreover,
the map ¢ +— |u(t)| 4 g, 1) is continuous on [0, 400).

Throughout this study, we assume that (1)-(2) admits solutions
defined on [0, +00), according to the concept above.

A. The Scanning Output

Given ¢ € [0, L/2] and a strictly-increasing sequence {7} }5—y C
R>o with Tp := 0, the output location is defined by a continuously
differentiable function Y : R>¢ — [, L — €] such that
S1 - Y(Tyi) =€ forall k € N.
S2- Y(Togq1) =L —ceforal keN.

Furthermore, given a solution w to (1)-(2), the variables
u([Y(t) —e,Y(t) +e],t), uz(Y(t),t), uzzz(Y(t),t) (3)

are available for a.a. t > 0.

Remark 2.1: When € > 0, we conclude that the output location
will not browse the spatial domain all the way to its extremities.
However, when € = 0, the output location browses the entire spatial
domain, while collecting only pointwise measurements. In other
words, the constraints on the sensor’s trajectory differ between the

two cases € > 0 and € = 0. Furthermore, it is worth emphasizing that
in many applications, the available sensing devices provide distributed
measurements over some spatial range, rather than a measurement at
a single point (pointwise measurement); these applications include—
but are not restricted to—thermography sensors for temperature mea-
surement [24], imaging using cameras mounted on unmanned aerial
vehicles [11], scanning tunneling microscopes for surface imaging
[3], and scanning thermal conductivity microscopes for producing
thermal conductivity maps with submicron resolution [8]. °

Example 2.1: A candidate function ¢ — Y (t) verifying S1-S2 is

Y(t) := (L — 2¢)sin(wt)® + ¢, w>0. @)

In this case, Y (t) = ¢ if and only if ¢t € {k7/w : k € N}. Thus, we
would have Ty, := km/w for all k € N.

Similarly, Y'(t) = L—¢ if and only if ¢ € {(2k+1)4- : k € N}.
Thus, we would have

Topir == (2k + 1)7/(2w) Vk € N. (5)

Remark 2.2: In practical situations, if the sensor cannot directly

measure uz (Y (t),t) and uzzz(Y (),t), these values can be ap-

proximated through collecting four pointwise measurements u(Y (),

u(Y (t) + A), u(Y(t) + 24A), and u(Y (t) + 3A) for some A € R
sufficiently small, in which case, we would have

w(Y(t) + A) —u(Y (1))

ua (Y (1)) = : ,
ugaa (Y (1)) =~
w(Y'(t) +3A) = 3u(Y (t) + 2A) + 3u(Y (t) + A) — u(Y(t))

A3
This may suggest the use of four moving sensors, or replacing the

value of u at each location by the most recent value collected at that
location. .

B. Observer Design

The observer dynamics are governed by

Wt + WWg + Mgz + Weaez + 20y =0 x € (07 Y) ©
0t + 00z + Mgz + Oezs + 20y =0  x € (Y, L),
which is subject to the boundary conditions
’lI)(O) = h’17 ’LZ)I(O) = h37 (7)
W) =uY) - (3, Wz(Y)=wuz(Y) whenY #0,
§(E) = ha, 0(L) = ha, ©
7‘A)(Y) U( ) (37 {}x (Y) - ’U,x(Y) when Y 75 L.

Here, dy (z) := §(x — Y) for all z € [0, L] with § being the Dirac
distribution, which verifies

Y L
/0 ()oy (x)de = Li(Y), /Y 8(z)dy (2)do = So(Y).

The latter two equations are obtained from [1, Equation (5)] while
replacing therein w by @ and 9, D by (0,Y) and (Y, L), I" by {0,Y}
and {Y, L}, respectively, and y by Y.

The time-dependent in-domain terms (7 and (2 are designed as

(1= —gg?% + Waaz(Y) — %(Y —2u(Y))¢3
a.e. on [0,+00) when Y # 0, 9)
CQ = %C'g - 5mxz(y) + %(Y - QU(Y))CS

a.e. on [0,4+00) when Y # L, (10)
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where
w:=u—w onl0,Y], 9:=u—9 onlY,L]

Furthermore, the time-dependent boundary term (3 is designed as

Cs = — (19} +a)Vy a.e. on [0,T7), (a1
3T VW14 ) Vi — (W2 +a) Ve ae. on [T1,+00),
where
91(t) ;== esssup |w(zx, t)\2 +01(t) + UT\/?:7 (12)
z€[0,Y (t)]
9a(t) = esssup Jo(e, 0 6+ 2L, (3
z€[Y (£),L] 2
_ ot _ V3 2
Vi(t) = /Tgk (191(5)\/1(3) +3(s) + py= ) ds 14
+ Vi(Tar) Vt € [Tog, Tok42), Vk €N,
. f ; V3
Vo(t) := / <19 \% + + — > d
2(t) s 2(8)V2(s) + Ga(s) + 5 f7 ) ds as)

+Va(Topy1) YVt € [Topg1,Torg3), Ve €N,

and

3 (Y(T2p)=e 9
Vi(Ta) = Z/o W (z, Toy) de,

3 [k ) 5
Va(Tag41) = Z/ o(z, Tog+1) " dz.
Y(Tap41)=(L—¢)
In (14) and (15), the constant f is an upperbound on the function

t— |f(t)|L2(O,L)’ i.e.,

L
esssup/ f(:c,t)zdcc < f2 (16)
t>0 0
Finally, o, 0 > 0 are free design parameters, and
0 ify < =
A3
01 := (17)
(2A+1) {A+%+§,—%} ify > —2—,
A+
0 ifL-Y < —Z
A3
0= A+ A+ 4+ 25| fL-Y > —Z
27 (L-Y)? A+l
2
(18)

The rationale behind the proposed in-domain and boundary designs is
justified in Remarks 3.1, 3.2, and 3.3, after analyzing the variations of
some Lyapunov functions along the dynamics of (w, v). However, to
compute such variations, we need to specify the concept of solutions
to (6)-(7)-(8) under (9)-(10) and (11).

Definition 2.1 (Concept of solutions): Given a solution u to (1)-
(2), the pair (w,?) is a solution to (6)-(7)-(8) under (9)-(10) and
(11) starting from (o, 06) € L2(0,Y(0)) x L?(Y(0), L), if the
following properties hold.

D1- (-,t) € H*(0,Y (t)) for a.a. t > 0 such that Y (¢) # 0, and
o(-,t) € HY(Y (t), L) for a.a. t > 0 such that Y (t) # L.

D2- iy € L?(0,Y(t)) and 9y € L2(Y (t), L) for a.a. t > 0.

D3- For any bounded set I C [0, +00), the following two inequali-

ties hold

max{/l ‘w(t)‘iQ(O,Y(t))dt7 /I‘ﬁ(t)ﬁQ(Y(t),L)dt} < 00,

max{/l\ﬁ)t(t)|2L2(0,Y(t))dt, /I|@t(t)|%2(Y(t),L)dt} < o0,

D4- For any bounded set I C [0, +00), the following two inequali-
ties hold

/I [t (8)] 20,y (17 dt < +00 i Y () # 0 for all ¢ € I,
~ 2 .
/I |”I(t)|L2(Y(t),L)dt <4oo ifY(t)# Lforalltel.

D5- The boundary conditions in (7) and (8) are verified for a.a. t > 0.
Furthermore, a.e. on [0, 4+00) when Y # 0,

Y
/0 (@t () + W(z)We (x) + Mbze(x) + wwxmw(w)) p(x)dx
L _Gp(Y) Ve ech,Y) 19)

Similarly, a.e. on [0, +00) when Y # L,

/YL (ﬁt(:c) + 0(2) 0z (x) + Mgz (x) + f,mm(m)> (@) da

— —GaplY) Vp eIy, L. 20)
D6- w(x,0) = Wo(x) for a.a. x € [0,Y(0)] and o(x,0) = Do(x)
for a.a. x € [Y(0), L].

We believe that proving the existence of solutions for the proposed
observer is out of reach. In particular, the Delta distribution in (6),
which is not locally integrable in x, and the boundary term (3,
involving norms of the state and its delayed versions, make the fixed-
point type arguments not applicable, to the best of our knowledge.
Hence, we assume throughout this paper that the observer’s solutions
exist and are defined on [0, +00).

Remark 2.3: The presence in (6) of the Delta distribution, which
is not locally integrable in z, justifies the considered concept of
solutions. Such solutions are referred to as weak solutions [4]. We
note that the Dirac distribution has also been used in [7] to design a
state observer for the linear wave equation. °

In the following proposition, we show that, under the proposed
concept of solutions, (1, (2, and (3 are well defined. The proof is in
the Appendix.

Proposition 1: Consider u € L%OC(0,+oo;H4(O,L)) and a pair
(w, ) verifying item DI, the first inequality of item D3 for any
bounded set I C [0,400), and item D4 of Definition 2.1. Then, the
functions (1, (2, and (3, in (9), (10), and (11), respectively, verify

¢3(t) < +oo for a.a. t € [0, +00), 21
C1(t) < +oo for aa. t € [0,400): Y(¢) #0, (22)
C2(t) < 4oo for a.a. t € [0,400): Y(t) # L. (23)

a

[1l. MAIN RESULT
Before presenting our main result, we introduce the state estimate

Y(z,t) € [0,Y] x [0, +00),
V(z,t) € (Y, L] x [0,400).

w(z,t)

(e, t) = {ﬁ(m,t)

Furthermore, we introduce the estimation-error variable

(24)

U= u — U.

Theorem 1: Assume that a solution u to (1)-(2) exists and is
defined on [0, 4+00). Let € € [0, L/2], a continuously differentiable
function Y : R>g — [¢, L — €], and a strictly increasing sequence
{T%}3Zy C R>g, with Ty = 0, such that SI-S2 in Section II-A hold
and the variables in (3) are available for a.a. £ > 0. Then, provided
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that a solution (0, 9) to (6)-(7)-(8) under (9)-(10) and (11) exists and
is defined on [0, +00), we conclude that

()] 120,y < [A(T1)] 20,1y exp™ 27T

\/2 (1 — exp_a(t_Tl))
31/4, /oo

where o, o > 0 are the observer’s free design parameters, and f is
an upperbound of the function ¢ — |f(t)|2(g, 1) verifying (16). [

The proof of Theorem 1 is based on the following key lemmas.
The first one derives integral equations governing the evolution of
(w, v), which allow the analysis of the behavior of @.

Lemma 1: Let u be a solution to (1)-(2) and (w0, ¥) be a solution
to (6)-(7)-(8) under (9)-(10) and (11). Then, a.e. on (0, +0c0) (when
Y # 0), we have

+ [ vt>1,

(25)

Y
/O <u7t(x) + W () Wz () + W (@) we () + be (z)d(z)

— (Y / f@)p(z)dz VYo eclo,Y],  @6)
w(0) = wz(0) =0, we(Y)=0, w(Y)=¢s. 27
Similarly, a.e. on (0, +00) (when Y # L), we have
/Y " (ﬁt(az) + (@) e () + 0(2) T (2) + Do (2)5(2)
+ Ana(a) + vsm(m)) olw)do
= Cp(Y / f@)e(x)dr Ve €ClY,L], (28)
O(L) = 04(L) =0, 0(Y) =0, 9(Y)=3. 29
0

Proof: Since u is a solution to (1)-(2), then a.e. on (0, 400)
we have

/Y( 1) + u(@)us(z )+)‘um(x)+uxmzz(x))go(x)dm

/ f(@)p(z)dz Vo €C[0,Y]. (30)
Subtracting (19) from (30), we get
Y
/ (wt (@) — (@) e () + u(a)us ()
0
+ Agzg (SE) + wzxﬂcw(x))@(x)dx
— Ge(Y / f@)e@)ds Vo ec, Y] (D)
Note that
Wz = (u— W) (ug — Wz) = uug + Wz — uy — Vug, (32)
e = W(Uz — We) = Wz — W, (33)
Wz = Wz (u — W) = Wat — WeW. (34)
By summing (32)-(34), we obtain
Wy + Wy + W = Uy — Wy - (35)

Finally, combining (31) and (35), we obtain the first equation in (26).
We prove the second equation in (28) in a similar way. |

Next, we introduce the Lyapunov functional candidates

Y L
Vi(w) := %/0 B(z)’de, Va(D):= %/ ¥(z)%dx.

Y
The next Lemma, whose proof is in the Appendix, derives some key
upperbounds on (V1, Vz) along the dynamics of (i, 7).
Lemma 2: Let o > 0, let u be a solution to (1)-(2), and let (w, 0)
be a solution to (6)-(7)-(8) under (9)-(10) and (11). Then, a.e. on
(0,400), we have

(36)

Vi <91Vi+ 7/ f(z)%dz + C1§3 +¢ - wmm(Y)C?,

+ Z(Y - 2u(Y))<3 when Y # 0, 37)

3
Vo < 92V + */ f(z)%dz + C2C3 -G+ 2vzm(Y)C3
3

- (Y —2u(Y))¢3 whenY # L, (38)
where the time-dependent variables 191 and ¥} are introduced in (12)
and (13), respectively. g

Before proving Theorem 1, the following remarks are in order.

Remark 3.1: According to (37) and due to the cubic term (g’
therein, one would want to select (3 < 0 with |[(3] large to force
V1 to decay towards a certain neighborhood of the origin whose
radius depends on f. However, to achieve the same decay property
for V5, according to (38) and due to the cubic term —<§’ therein, one
would want to set (3 > 0 with |(3| sufficiently large. Hence, forcing
the decay of both V7 and V3 is not possible under this approach. To
resolve this bottleneck, the proposed design of ((1,(2) is key, as it
guarantees, a.e. on (0, 4+00), that

V1<’L91V1-|—7/ f d:E-‘ng when Y # 0,
(39)
V2<192V2+7/ f(z dl’+<3 when Y # L.
[ ]
Remark 3.2: If we set (1 = (2 = (3 = 0, which means that
w(Y) = u(Y) whenever Y # 0 and 9(Y) = w(Y') whenever Y #
L, by Lemma 2, we conclude that, for a.a. time,

V1<l91V1+7/ f(z dm when Y # 0,
(40)
V2<192V2+f/ f(z)?dz whenY # L.

If we additionally assume that € = 0, then

Vi(@(Tar)) = Va(9(T2k+1)) =0  VkeN.
This implies, when f = 0, that
Vi(() = Va(o(t)) =0Vt > T1.

However, when Vi (w(To)) # 0 or Va(9(Tog41)) # 0, due to
€ >0, or when e =0 but f # 0, V1 and V5 are not prevented from
growing unboundedly. This is mainly because ¥; and 2 can grow
unboundedly. Hence, the proposed non-trivial design of (3 is key to
guarantee robustness with respect to both the perturbation f and the
output-position offset ¢. °

Remark 3.3: Knowing the upper-bound f verifying (16), one can
attempt to design (3 so that, for some «, 8 > 0,!

(3 < —(U1 +a)V) — (92 + a)Vo — BF® ae. on [T1,+00). (41)

! As it appears from the proof of Theorem 1, it is, in fact, possible to enforce
(41) using only the available measurements.
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In this case, using (39), we guarantee that

. 3 1Y
Vi < —aVH——\[/ f(@)%dw — BF?
20 0
a.e. on (T7,400), when Y # 0.

Hence, if f is sufficiently large so that

Y
ﬁ/ f(z)2de — BF? < —1 a.e. on (T, +00),
20 0
we conclude that

Vi <—aVi—1 a.e. on (17,400), when Y # 0. (42)

Consequently, if, e.g., Y (t) # 0 for a.a. t > 0, then, since V}
cannot be negative, (42) contradicts the assumption that the observer’s
solutions are defined on [0, +00). As a result, under the choice of
(3 ensuring (41), the observer’s solutions would not be defined on
[0, +-00) if the upperbound f is excessive. .

V. PROOF OF THEOREM 1

Using the proposed design of ({1,¢2) in (9)-(10), we conclude
that, a.e. on [0, +00),

3 3 3.

5C10s = =205 = S (Y = 2u(Y)) (3 + S daaa(Y)(s when Y £0.
3 3
§C2C3 = 1
Hence, using (37) and (38), we verify the inequalities in (39) for a.a.
t > 0. Now, based on (39), we can make both V7 and Vo decay
towards a neighborhood of the origin of radius dependent on f by

taking (3 negative and sufficiently large in norm. In particular, we
propose to show that our choice of (3 in (11) verifies

GB<-W+a)V1—(2+a)l

2C§) + (Y - ZU(Y))C?% - %ﬁwcx(y)ggg when YV # L.

ae. on [T7,400), (43)

where a > 0 is introduced in (11) and 77 > 0 is introduced in
Section II-A and corresponds to min{7T; : Y (T;) = L — €}. Indeed,
if (43) is verified, then in view of (39), we conclude that, a.e. on
[Tl, —I—OO),

Y
Vi < —aVi + g/ f(x)’dz  whenY #£0, (44)
0

. V3 [t 2
Vo< —aVa+ o | f(z)’dz whenY # L. (45)
o Jy

On the other hand, on each open interval I C [T}, +00) such that
Y (t) = 0 (resp., Y (¢t) = L) for all t € I}, we conclude that V7, (¢) =
0 (resp., Va(t) = 0) for all ¢ € I. Consequently, the inequality in
(44) (resp., (45)) holds also a.e. on I. As a consequence, a.e. on
[T1, +00), we verify

V3

Vi Va < —a(Vi+ Vo) + o 7,

with f being the constant upperbound in (16). Integrating the latter
inequality, we obtain

VA() + Va(t) < (Vi(T1) + Va(T1)) exp™ @1~ )

3

L3

2a0

The latter is enough to guarantee (25).

To complete the proof, we verify (43). To do so, it is enough to
show that

(46)

(1 - eXp_a(t_Tl)) P2 ovt>T. 47

Vi() SVA(t)  VE20,  Va(t) < TVa(t)  VE>Ti

We verify the latter using the classical comparison Lemma; see
Lemma 3.4 in [12]. Indeed, for each k € {0, 1,...}, on the interval

[Tok, To+2), any solution Vi to the first inequality in (39), which
verifies V7 (¢) = 0 if Y'(¢) = 0, is upperbounded by the solution to

/3

= — 3 . 7
Vi= 01V + G o+ o 7 with Vi(Tog) = Vi(Top). - (49)

Integrating the latter ODE, we find (14). The same reasoning applies
to show that Va(t) < Va(t) for all ¢ > 1.

V. SIMULATION RESULTS

In this section, we illustrate our main result with some numeri-
cal simulations performed on MATLAB. The numerical scheme is
described in the Appendix of [2].

We consider the KS equation (1)-(2) with A = 4, L = 30, and
hi1 = he = hs = hgq = 0. The perturbation f is a Gaussian
white noise generated using the MATLAB wgn function, for which,
(16) holds with the upperbound f = 0.054. The equation’s initial
condition is given by wuo(z) := 5exp_(””_15)2 for all z € [0, L].
We plot the response (x,t) — u(z,t) of the KS equation in Figure
1 (left).

The moving output location ¢ — Y'(t) is given by (4) with £ := 2
and w := 27. In particular, according to (5), we have 77 = 0.25.
In Figure 1 (middle), we simulate the response of the observer (6)-
(7)-(8) under (9)-(10) and (11), starting from the initial condition
Wo(x) = 0 for all z € [0,Y], 0o(z) := 0 for all z € [Y, L], and
using the observer’s gains («, o) := (1,100). In Figure 1 (right),
we plot the observation error (z,t) — a(z,t) := u(x,t) — a(x,t).
Furthermore, in Figure 2 (left), we plot the evolution in time of the
L? norm of the observation error as well as its upperbound in (25).
As stated in Theorem 1, (25) is also verified in simulation.

Next, we consider the case where the output is affected by a noise.
Namely, we suppose that the available variables are

u(z,t) + &(z,t) Ve e[Y(t)—e Y (t)+ ¢,
Uz (Y(t)’ t) + 51‘ (Y(t)’ t)v Uzzx (Y(t)’ t) + fzxaz (Y(t)’ t)a

for a.a. t > 0, where (z,t) — &(z,t) := 0.01N(z,t), with N
a Gaussian white noise of 1dB generated using the MATLAB wgn
function. We plot in Figure 2 (middle) the evolution of the L? norm
of the observation error. Finally, we consider the case where there
is an uncertainty in the value of A. Namely, while A = 4 in the
original KS equation (1), we let A = 1 in the observer’s dynamics
(6). The evolution of the L? norm of the observation error is plotted
in Figure 2 (right). Although the upperbound in (25) is not verified in
the presence of measurement noise and when A is unknown, which
does not contradict the theory derived for £ = 0 and A = 4 in both
(1) and (6), the L? norm of the observation error remains bounded
in simulation.

VI. CONCLUSION

We proposed a novel framework for state estimation using scanning
outputs. This framework is illustrated in the context of the nonlinear
KS equation in its most general forms, with free boundary conditions
and not necessarily-bounded solutions. Although we do not know
yet whether using only boundary outputs is enough to design a
converging state observer, the flexibility of the proposed sensing
framework allowed us to address the estimation problem. For future
works, we would like to allow the coefficient A and the upperbound
f to be unknown, and to extend our observer-design approach to the
two-dimensional KS equation.
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Fig. 1. Solution of the KS equation (1)-(2) (left), the proposed observer (middle), and the resulting observation error @ := w — 4 (right).
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Fig. 2. The L2 norm of the observation error (blue) versus the right-hand side of the inequality in (25) for ¢ > Ty := 0.25 (red). The nominal
case in the left. With measurement noise in the middle. With uncertainty in X in the right.
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APPENDIX

A. Proof of Proposition 1

To verify (23), we show that

H1(t) < +oo and P2(t) < +oo foraa.t>0, (49)
Vi(t) < 400 and Va(t) < 400 foraa. t>0. (50)

We verify the first inequality in (49) by showing that
esssup |w(zx,t)] < 4oo foraa.t > 0. Q)

z€[0,Y(t)]

According to D1 in Definition 2.1,

W(-,t) € H*(0,Y(t)) for aa. t> 0 such that Y (£) # 0.
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7
This implies that To show that W e L?(I; L?(0,1)), we need to prove that
ess su w(x,t)| < 400 for a.a. t > 0 such that Y (¢ 0. 1 2
22 [0.¥ (1) (e, D] ®# | W(s:t)’ds < +o0 foraatel (55)
Furthermore, having esssup,_g |¥(z,t)] = 0, (51) follows. The / 2
’ d t dt . 56
same reasoning applies to show the second inequality in (49). an I IW( )|L2(071) < Foo (6)

Now, to verify (50), according to Carathéodory’s existence theo-
rem, we need to verify that ¥); and 2 are locally integrable, i.e., for
any bounded interval I C [0, +o0),

/ﬁl(s)ds < 400 and /192 (s)ds < 4o0. (52)
I 1

To show that the first inequality in (52) holds, it is enough to show
esssup |w(z,s)|ds < +oo.

that
/I z€[0,Y(s)]

We start by introducing the bounded set Z := I\{t € I : Y (t) =

and note that
A

J

Furthermore, given ¢ € Z, we have, according to Agmon’s inequality
(see [13, Lemma A.2)),

0},

esssup |w(z,s)|ds =
z€[0,Y (s)]

esssup |w(z,s)|ds.
z€[0,Y (s)]

€ss sup |’Lﬁ(.13, t)|2 < ’Lb(O)Q + 2|w(t)|L2(0,Y(t)) |’LE1 (t)|L2 (0,Y(t))

z€[0,Y(t)]
<

u(0)2 + |"D(t)|2L2(0,Y(t)) + |w$(t)|QL2(0,Y(t))’

which implies that
/ u(0, s)%ds
z

J
—I—/I|w(s)|%2(0’y(s))d8+/I|wx(5)‘3/2(0’y(s))d5

Since Z is bounded and Y(¢) # O for all ¢ € Z, then, according to
the items D3 and D4 in Definition 2.1, we have

max{/Ilw(5)|%2(O,Y(s))d57A‘w$(5)|%2(07y(s))d8} < +o0.

Now, since u € L7, (0, +o00; H*(0, L)), then [ u(0, s)*ds < +o0.
The same reasoning applies to prove the second 1nequa11ty in (52).
Finally, (22)-(23) follow under (21), the fact that |u(Y)| < +o0
and |ugze(Y)| < +oo ae. on [0,+00), and using item DI in
Definition 2.1 which ensures that |¢42(Y)| < 400 a.e. on [0, +00)
when Y # 0, and |0z44(Y)| < 400 a.e. on [0, +00) when Y # L.

esssup |w(z, s)|>ds <
z€[0,Y (s)]

B. Proof of Lemma 2

Let I C (0,400) be a compact interval of non-zero measure such
that Y'(¢) # O for all ¢ € 1. We will show that

Y
Vi = %Y(}? + g / () (x)de ae. on 1. (53)
0

@(sY (), 1)

To do so, we consider the function (s
defined for all (s,t) €

1
:ﬁ/ W(s)?ds
4 Jo

and we would like to show that

. 1 )
= g/ W(3)2d8+ g/ W(S)Wt(s)ds ae.on I.
4 Jo 2 /o
(54)

According to Lemma 1.2 in [22, Page 176], to prove the latter
identity, it is sufficient to show that W € L*(I;L?(0,1)) and
Wy € L?(I; L2(0,1)).

1) = W(s,t) =
[0,1] x I. Note that we have

a.e.on [,

To prove (55), we use Young’s inequality, to obtain

1 1Y
/ W(S)st:—/ D
0
dl’-‘ri

<
_ZY/ 2Y

Furthermore, since Y (t) # 0 for all ¢ € [ and Y is continuous,
then minge; Y (¢) > O‘ Consequently, the function ¢ — 1/Y (¢) is
bounded on /. As a result, to guarantee (55), it is enough to show

that
Y Y
max / w(:r)2da:,/ w(z)?dr y < +oo ae. on I.
0 0

The latter, however, is verified since u(t) € H*(0,L) and @ (t) €
H*(0,Y(t)) for aa. t € I.
Next, to prove (56), it is enough to show that

max{ /1 [0(8) 220y 1y /1 |u(t)|%2(0’y(t))dt} < +oo.

The latter is true because u € L2 (0,4o00; H(0,L)) and
I; |1Z;(t)|%2(0’y(t))dt < 400, according to the third item in Def-
inition 2.1.

Similarly, we show that W; € L?(I; L?(0,1)) by proving that

[ wien

and /|Wt(t)|%2(071)dt < +oo0.
I

Y
u(a:)Qdm ae. on I.

ds<+oo fora.a.tel, 57

(58)
To do so, we note that
W =

As a result, (57) follows if we show that

Y Y
max {/ u?t(;r)de,/ ut(x)zda:} < 400 and
0 0
Y Y
max {/ wz(:c)2d:r7/ ux(as)2dac} < 400 ae. on I.
0 0

However, the latter inequalities are verified because u; € L%(0, L)

a.e. on I, and, according to the second item in Definition 2.1, w: €

L%(0,Y) ae. on I. Furthermore, u; € L?(0,L) a.e. on I, and,

according to D1 in Definition 2.1, @, € L?(0,Y) a.e. on 1.
Finally, to prove (58), it is sufficient to show that

max{/l ‘wm(t)|i2(O,Y(t))dt7/l |“I(t)\2L?(o,y(t))dt} < 400,

max{/I|wt(t)\%2(0’y(t))dt,/l\ut(t)\%g(oﬁy(t))dt} < too.

The latter inequalities hold because u € L7 (0, 4o00; H*(0, L)),
ut € L?,.(0,+00; L?(0, L)), and because of the third and fourth
items in Definition 2.1.

Now that we have shown that W € L2(I; L%(0,1)) and W; €
L*(I; L*(0,1)), we can invoke Lemma 1.2 in [22, Page 176] to
conclude that the identity (54) holds a.e. on I. This inequality can
be rewritten as

3y Y ()i + g /OY () (%d&(z) + d&(@) de.

Y swy; + we ae. on 1.

=1y
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Using integration by parts, we find

Y o 1Y
5(3 5/0 w(zx) dx.

Combining the latter two equations, we obtain (53). Now, by setting
@ :=w(t) in (26) for a.a. t € I, we get, a.e. on I,

/OY 2W(T)We (x)dx =

Y
V= gYCg + g/o w(x)We(x)dx
. Y
—3¥d+Jac-3 [ o) (@i + o))

8
—~

W

=]
~

Next, using integration by parts, we obtain

(60)

Y RN y [V
/0 w(x)wxi(a:)dx— [w(az)wx(x)]o /0 wy(x)dx  (61)
= / Wy (z)? da (62)
0
Y - - - - - Y
/0 W(2)Wazze () de = [0(2)Wrze () — W (2)Waa (:c)]o
Y
—1—/0 Wz (T) di
= wmxm(Y)<3 +/0 wxz(m) dx (63)

Next, using Young’s inequality, we conclude that

e R N R Iy
/0 W (x)W () (x)dzr < 5/0 (w(z) W (x)” + e (x)”)de,

which implies that

>|2/0Y~

Y
/ W(z)W(x)We (z)dx < 1 esssup |W(x
0 z€(0,Y)

1Y 2
+ f/ Wy (x) dx
2 Jo

Y
< 2 esssup |(z)> Vi + 1/ Wy (z)?dz.  (66)
3 ze(0,Y) 2 Jo

Moreover, applying the Cauchy-Schwarz inequality, we obtain

/f dx<\// fla de

Y
< 28 /O f(a)2ds | VWA,

w(x)2dx

(67)

Next, given ¢ > 0 and using Young’s inequality, we obtain

/f d<—V+—/f

Combining (65) and (66)-(67), we find

Vi <G+ 3(Y 2u(Y)) (3 — wrm( )C3+§41C2
+ <esssup | (x )| Uf) i+ */ f(z

z€(0,Y)

%((Mé) /wam(x)Qdm/O o (2)2d ) (68)

Now, to construct an upperbound on the term

(A+%) /waz(:c)zdx/oy B () de,

we employ Wirtinger’s inequality (see Section 7.7 in [9]) and the
inequality 23.1 in [19, Page 84]. Having

(A+1/2) (Y/n)? (69)
and since W4 (0) = Wz(Y) = 0, then according to Wirtinger’s
inequality, we have

Y v 2 Y
/ ﬁ)z(:c)zda: < (—) / wm(x)de,
0 ™ 0
which implies that
1 Y 2 Y 2
<)\—|—7>/ Wz () dx—/ Wz (x) dx
2/ Jo 0
2 Y
(D) () ) [ e o
2 s 0

Consequently, using (69) and (70), we obtain

( 1) Yo 2 Yo 2
A= / Wy () dx—/ Wez(x)dx < 0. (71)
2/ Jo 0

Now, we suppose that Y > 7/+1/X + 1/2. Using the inequality 23.1
in [19, Page 84], we obtain

/OY u”)z(w)zdx < (A—i— L + )1/22) / w(az)zdm

L / ' Wrw(z)? da (72)
A+ 3 Jo o '
Multiplying both sides of (72) by (A + 1/2), we find
1 Yo Yo 2
A= Wg(x) dx — W (x) dx
2/ Jo 0
<A ly(ael + Vi (73)
-3 2 Y2

Combining (71) and (73), we obtain

3(< 1) ) . i ) ’ ’
—((X+= / Wy () da:—/ Wer(x)dz | < 01V7, (74)
2 2 0 0

where 67 is as defined in (17). Finally, from (68) and (74), (37)
follows. We prove (38) in the exact same way.
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