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Abstract—This paper presents a new task-space Non-
singular Terminal Super-Twisting Sliding Mode (NT-STSM)
controller with adaptive gains for robust trajectory tracking
of a 7-DOF robotic manipulator. The proposed approach
addresses the challenges of chattering, unknown distur-
bances, and rotational motion tracking, making it suited for
high-DOF manipulators in dexterous manipulation tasks.
A rigorous boundedness proof is provided, offering gain
selection guidelines for practical implementation. Simula-
tions and hardware experiments with external disturbances
demonstrate the proposed controller’s robust, accurate
tracking with reduced control effort under unknown dis-
turbances compared to other NT-STSM and conventional
controllers. The results demonstrated that the proposed
NT-STSM controller mitigates chattering and instability in
complex motions, making it a viable solution for dexterous
robotic manipulations and various industrial applications.

Index Terms—Adaptive control, non-singular terminal
sliding mode control, 7-DOF robotic manipulator, super-
twisting sliding mode control, task space control.

I. INTRODUCTION

THE development of robust control algorithms is necessary
for industrial robotic manipulators in applications such

as remote surgery, cooperative multi-robot manipulation, and
handling varying payloads. These applications require precise
trajectory tracking, robustness to disturbances, and energy-
efficient control strategies. High degree-of-freedom (DOF)
manipulators offer an extensive range of motion, however,
their complex nonlinear dynamics, with model uncertainties
and external disturbances, pose significant control challenges.

Sliding mode (SM) control provides precise tracking capa-
bilities and is robust against disturbances and uncertainties.
Non-singular Terminal Sliding Mode (NTSM) control offers
fast, finite-time convergence speed and avoids singularities,
making it appealing for robotic manipulators [1]. However,
its high-frequency switching causes undesirable chattering and
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high control effort, which risks exceeding actuator limits,
increased energy usage, and excessive mechanical wear, limit-
ing its practical implementation. Super-Twisting Sliding Mode
(STSM) control [2] alleviates this issue by smoothing the
control signal, making it suitable for robotic applications [3].

In recent years, SM control has been widely applied to
joint space manipulator control. Fixed-gain approaches include
fractional-order NTSM controllers [4] and fixed-time termi-
nal SM controllers [5], which provide fast convergence and
accurate trajectory tracking. Adaptive gain strategies further
improve tracking performance, reduce control effort, and relax
the need for prior disturbance bounds [6], [7]. Adaptive
SM control has been combined with time-delay estimation
[8], fault-tolerant control [9], and neural-network uncertainty
modeling [10], [11]. However, these controllers are complex,
remain limited to low-DOF manipulators (2 to 4-DOF), and
are often applied only in simulation.

One exception is [12], which applied a fractional-order
terminal SM controller to a real 7-DOF manipulator. Yet this
work only validates simple joint trajectories and does not
include external disturbances or payload variation. Another
disadvantage of these works is that joint space controllers
require converting task space objectives to joint references,
introducing susceptibility to modeling errors and uncertainties
[13]. This motivates task-space control approaches in certain
applications requiring precise Cartesian tracking.

Task space control, where reference trajectories are defined
in Cartesian space and used directly in the controller, is effec-
tive for robotic tasks such as high-precision assembly, force
interactions, and collaborative manipulation [14]. However,
robust task space SM control remains less explored, especially
for high-DOF systems, due to challenges in handling both
translational and rotational motion simultaneously. Existing
task-space SM control approaches are limited to low-DOF
manipulators [13], or focus only on translational motion
[15], [16]. A recent task-space adaptive SM controller was
developed for a 4-DOF Delta robot [17], but it is limited
to simulation. Moreover, few works consider chattering in
rotational motion, which is sensitive to this problem and
requires consideration of rotational representations.

The combination of NTSM and STSM control into a non-
singular terminal super-twisting SM (NT-STSM) controller has
been explored in [18]–[21]. However, existing controllers are
designed in joint space, validated only on low-DOF platforms,
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and often impose restrictive gain relationships in their stability
proofs. This lack of experimental validation and flexibility
highlights the need for a practical task-space NT-STSM design
applicable to high-DOF manipulators.

Despite the theoretical advantages of SM control, its prac-
tical use in real-time, high-DOF robot applications remains
limited due to chattering, challenges in gain tuning, and a
lack of experimental validation. Existing NT-STSM designs
focus on joint space and do not address the unique challenges
of tracking rotational motion in Cartesian space. This paper
addresses these gaps by proposing a task-space NT-STSM
controller with adaptive gains guaranteeing convergence and
robustness through a new stability analysis. The controller is
experimentally validated on a 7-DOF manipulator in a task
with a time-varying payload, demonstrating practical feasi-
bility and improved performance. In summary, the proposed
approach applies to the control of robotic manipulators with
an arbitrary number of DOFs for dexterous manipulations. The
contributions of this work are:
1) An NT-STSM controller is proposed with an adaptive gain

law designed to improve tracking performance and reduce
chattering without requiring prior knowledge of disturbance
bounds. A novel boundedness proof is derived with tun-
able gain selection guidelines for practical implementation.
Compared to [21], the proposed boundedness proof relaxes
the relationship between the STSM gains, providing im-
proved performance on a 7-DOF robotic manipulator.

2) The proposed NT-STSM controller is designed in task
space with unit quaternions representing orientation. Unlike
prior task-space SM control approaches [13], [15], [16],
this work explicitly incorporates unit quaternions, allowing
for efficient rotational motion while preventing kinematic
singularities. As demonstrated in Section IV, the rotational
motion can be more prone to chattering, reinforcing the
importance of the proposed chatter-free task space NT-
STSM controller.

3) The proposed NT-STSM controller’s tracking performance
and robustness against unknown disturbances are validated
with simulations and experiments on a 7-DOF Franka
Emika Robot with extensive comparisons. The proposed
controller demonstrates lower position and orientation
tracking error while maintaining low control effort and low
chatter, compared to the conventional PD control and NT-
STSM controller developed in [21]. Unlike NTSM and
STSM controllers, which suffer from severe chattering
and instability, the proposed controller maintains smooth
trajectory tracking.

II. PRELIMINARIES

A. Dynamic Model
Consider a 7-DOF robot manipulator with the joint space

dynamics of the form [22, Ch. 3]

M(q)q̈ + C(q, q̇)q̇ + G(q) = τ + τd(q), (1)

where q, q̇, q̈ ∈ R7 are the joint position, velocity, and
acceleration vectors, respectively, M(q) ∈ R7×7 is the inertia
matrix, C(q, q̇) ∈ R7×7 is the Coriolis and centripetal torque

matrix, G(q) ∈ R7 is the gravitational torque vector, τ ∈ R7

is the joint torque control input vector, τd(q) = τf (q) +
τu(q, q̇) + τe ∈ R7 is the summation of the internal torque
friction, τf (q), the unmodelled dynamics due to modelling
inaccuracies, τu(q, q̇), and the external torque exerted on the
manipulator, τe. In task space, the dynamics of the robot
manipulators may be represented as [22, Ch. 3]

M̄(q)ẍ+ C̄(q, q̇) + Ḡ(q) = u+ fd(q). (2)

The end-effector pose in task space is denoted as x =[
pT , ξT

]T ∈ R7 where p ∈ R3 is the translational position
and ξ =

[
η, ϵT

]T ∈ S3 ⊂ R4 is the orientation in the
form of a unit quaternion. The quaternion is made up of η,
a scalar denoting the real part, and ϵ =

[
ϵx, ϵy, ϵz

]T
, a

vector denoting the imaginary part. The end-effector velocity
and acceleration are denoted as ẋ =

[
ṗT , ωT

]T ∈ R6 and
ẍ =

[
p̈T , ω̇T

]T ∈ R6, where ω, ω̇ ∈ R3 are the angular
velocity and acceleration of the end-effector, respectively.

The end-effector velocity and joint velocity are related by
the Jacobian matrix, as ẋ = J(q)q̇. For the remainder of the
paper, the dependencies of the dynamic terms on q and q̇ will
be omitted.

Property 1: The Cartesian parametric matrices in (2) are
related to the joint space matrices in (1) by [22, Ch. 3]

τ = JTu, M̄ = (JM−1JT )−1,

C̄ = M̄(JM−1Cq̇ − J̇ q̇), Ḡ = M̄JM−1G.

Property 2: The inertia matrix, M, is positive-definite
symmetric, Ṁ − 2C is skew-symmetric, and the Jacobian
matrix, J , has full rank [22, Ch. 3].

B. Trajectory Generation

The trajectory generator provides the controller with a
desired trajectory,

[
xd, ẋd, ẍd

]T
. This trajectory is inter-

polated between an initial pose, xd0
, and goal pose, xdg

.
The translational motion is calculated using the clamped

cubic spline approach to provide smooth trajectories with zero
velocities at the start and end. Unit quaternions represent the
orientation position, therefore, standard interpolation methods
may not result in consistent and smooth rotational trajectories
[23]. To interpolate between an initial quaternion, ξd0

, and
a goal quaternion ξdg

, the cubic Hermite curve interpolation
method [24] is used:

ξd(t) =
Fa2q(WFq2a(ξdg × ξ−1

d0
)× ξd0)

|Fa2q(WFq2a(ξdg
× ξ−1

d0
)× ξd0

)|
, (3)

W = 3

(
t

T

)2

− 2

(
t

T

)3

,

where T is the time between two poses, ξ1 × ξ2 represents
quaternion multiplication, |ξ| represents the norm of the
quaternion, and ξ−1 represents the inverse of the quaternion,
which in the case of unit quaternions is equal to the conjugate
of the quaternion, ξ∗. Fq2a(ξ) represents a function to convert
a quaternion to a scaled angle axis, Θ, and Fa2q(Θ) represents
a function to convert a scaled angle axis to a quaternion.
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The desired angular velocity is calculated from (3) using
the quaternions as [25]

ωd(t) =
2

∆t

 η′ϵx − ϵ′xη − ϵ′yϵz + ϵ′zϵy
−η′ϵy − ϵ′xϵz + ϵ′yη + ϵ′zϵx
−η′ϵz + ϵ′xϵy − ϵ′yϵx + ϵ′zη

 , (4)

where ∆t is the sampling time, η = ηd(t), ϵ = ϵd(t),
η′ = ηd(t − ∆t), and ϵ′ = ϵd(t − ∆t). The desired angular
acceleration is calculated using the finite difference method.

C. Third Order Sliding Mode Observer
SM observers provide a robust method of estimating the ve-

locity of robotic manipulators. According to experimental tests
in [26], SM observers exhibit consistent and high accuracy
over a range of sensor resolutions and sampling rates, whereas
moving average and derivative filters often had significant
estimation errors. SM observers have the additional benefit
of being robust to inconsistent sensor readings [26]. Similar
to SM controllers, SM observers suffer from chattering in real-
world applications. An approach to reducing chatter is to use a
TOSM observer, although they have slower convergence than
lower-order observers. In [27], linear terms are introduced to
increase the convergence speed. By assigning g1 = x, g2 = ẋ,
and denoting ĝ1 and ĝ2 as the estimated states, a TOSM
observer is adapted from [27] and formulated in task space
˙̂g1 = ĝ2 + αo2 ⊙ |g1 − ĝ1|

2
3 ⊙ sign(g1 − ĝ1)

+ ko2(g1 − ĝ1), (5)
˙̂g2 = M̄−1(u− C̄ − Ḡ) + αo1 ⊙ | ˙̂g1 − ĝ2|

1
2 ⊙ sign( ˙̂g1 − ĝ2)

+ ko1(g1 − ĝ1) + ẑ, (6)
˙̂z = αo0sign( ˙̂g1 − ĝ2), (7)

where αo2, αo1, αo0 ∈ R7 are positive gain vectors, ko2, ko1
are positive scalar gains, and ⊙ is the Hadamard product.
The estimation error of the observed states are defined as
g̃1 = g1−ĝ1, and g̃2 = g2−ĝ2, detailed in [27, Eq. (29)]. The
convergence proof for the TOSM observer is in [27, Theorem
1], showing that g̃1 and g̃2 are stable and converge to zero
in finite time. In implementation, first-order approximation
methods are used to integrate the observer terms.

Despite introducing the linear terms to the observer to
increase the convergence speed, there is still an initial period
during which the estimated states are inaccurate before they
converge. This can lead to unpredictable behaviour of the
manipulator. A finite difference method and an exponential
moving average filter are used to estimate the velocity during
this convergence period as

˙̄x(t) = αe
x(t)− x(t−∆t)

∆t
+ (1− αe) ˙̄x(t−∆t),

where αe is a positive filter design parameter. The position
and velocity sent to the controller are selected as

x̂ =

{
x if |ĝ1 − x| > ηq

ĝ1 if |ĝ1 − x| ≤ ηq
, (8)

˙̂x =

{
˙̄x if |ĝ2 − ˙̄x| > ηq

ĝ2 if |ĝ2 − ˙̄x| ≤ ηq
, (9)

where ηq > 0 is a positive design parameter.
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Fig. 1: Block diagram of the proposed control design.

III. ADAPTIVE ROBUST CONTROLLER DESIGN

In this section, a novel NT-STSM controller is proposed
along with a rigorous boundedness proof. The block diagram
of the controller and observer is shown in Fig. 1.

A. Non-Singular Terminal Super-Twisting Sliding Mode
Controller

Compared to the conventional SM control, an NTSM con-
troller offers appealing characteristics of fast, finite time con-
vergence and avoiding singularities [1]. Consider the nonlinear
sliding surface, s ∈ R6, as

s = e+ βėα, (10)

where ėα is an element-wise exponentiation, i.e., (ėα)i =
(ėi)

α, β > 0, α = ι1/ι2, and ι1 > 0, ι2 > 0 are adjacent odd
numbers such that 1 < α < 2, and

e =

[
p̃
ϵ̃

]
∈ R6, ė =

[
˙̃p
˙̃ϵ

]
=

[
˙̃p

1
2 (η̃I + [ϵ̃]) ω̃

]
= H

[
˙̃p
ω̃

]
∈ R6,

(11)
where

p̃ = p̂− pd, ˙̃p = ˙̂p− ṗd,

η̃ = η̂ηd + ϵ̂T ϵd, ϵ̃ = −η̂ϵd + ηdϵ̂− [ϵ̂]ϵd,

ω̃ = ω̂ − ωd, H =

[
I 0
0 1

2 (η̃I + [ϵ̃])

]
,

and [ϵ] =

 0 −ϵz ϵy
ϵz 0 −ϵx
−ϵy ϵx 0

 is the skew-symmetric matrix

operator. The formulation of the quaternion error, ϵ̃ and ˙̃ϵ can
be found in [28, Ch. 3].

The main challenge in using a conventional SM controller
in real-world applications is the chattering effect. A second-
order SM controller is a method of reducing chattering without
reducing the controller’s performance. The STSM controller is
a second-order method that introduces a continuous function
of the sliding surface and an integral of the discontinuous
function of the sliding surface to minimize chattering. Inspired
by the NTSM control designs in [1] and the STSM control ap-
proach in [2], the proposed controller incorporates quaternion-
based orientation error to ensure finite-time convergence in
task space and is formulated as follows:

u = M̄
(
ẍd +H−1

(
−ė(2−α)

αβ
− κ1|S|

1
2 sign(s) + ν

))
+ C̄ + Ḡ, (12)

ν̇ = − κ2sign(s),
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where ė(2−α) is an element-wise exponentiation, |S| 12 =
diag(|s| 12 ), and

κ1 =

κ11 0 0

0
. . . 0

0 0 κ16

 , κ2 =

κ21 0 0

0
. . . 0

0 0 κ26

 ,

are positive definite matrices. When implementing the con-
troller on the manipulator, it is transformed into joint space,
where τ = JTu.

Consider the invertibility of H . The determinant of H is
given by det(H) = η̃(η̃2 + ϵ̃T ϵ̃). The error between two unit
quaternions is derived from a quaternion product and must
result in a unit quaternion [29]. According to the unit norm
property of quaternions:

η̃2 + ϵ̃T ϵ̃ = 1,

resulting in det(H) = η̃.
Assumption 1: It is assumed that the desired orientation tra-

jectory ξd is sufficiently close to the current robot orientation
ξ such that |ϵ̃| < ϵ̄, where ϵ̄ is a small constant.

Assumption 1 is ensured by smooth interpolation in (3) and
periodic checks of the robot’s current pose by the trajectory
generator. As a result, the quaternion error ϵ̃ and its derivative
˙̃ϵ can be locally approximated in Euclidean space. This allows
for element-wise operations on ė in (10) and (12), despite
their lack of strict geometric validity on S3. The proximity
between the desired and actual orientations ensures that they
do not result in orthogonal conditions or specific alignments
that would cause det(H) to be zero. In practice, to ensure
numerical robustness, a lower bound on |η̃|, such as |η̃| ≥ 0.1,
may be enforced to avoid inverting a poorly conditioned H .
Therefore, det(H) = η̃ ̸= 0, and H remains invertible.

B. Adaptive Law
Adaptive gains offer a dynamic response to uncertainties

and disturbances, effectively compensating for them without
requiring prior knowledge of their bounds [7]. This is im-
portant for systems characterized by uncertainties and dis-
turbances that can vary over time. The adaptive law for the
controller gains κ1 and κ2 in (12) is designed as

L̇i =


−ηα, if κ1i ≥ κ1max,

ωα|si|sign(|si| − µα), if κ1max > κ1i > κ1min,

ηα, if κ1i ≤ κ1min,

(13)

κ1i = Ω1

√
2γLi

(1− θ)Ω2
, κ2i =

θ + 1

1− θ
Li, (14)

where L =
[
L1 · · · L6

]T ∈ R6 is a positive adaptation
parameter vector, ωα, µα, ηα, κ1max, κ1min, are constant
positive adaptive law parameters and Ω1, Ω2, γ, and θ are
constant positive scalar gain parameters that satisfy 0 < θ < 1
and

Ω1Γ
2
i −2

Ω2

γ
Γi >

1

4
(Γi+Ω1Γi)

2−(1+Ω1)Ω2Γiθ+Ω2
2, (15)

where Γi = αβė
(α−1)
i . See Remarks 1 and 2 in Section III-C

for tuning guidelines.

C. Non-Singular Terminal Super-Twisting Sliding Mode
Controller Convergence Analysis

This subsection presents the boundedness analysis consid-
ering the system (2) under the controller (12). First, the main
theorem is presented. Then, the closed-loop dynamics are
analyzed and reformulated such that the Lyapunov candidate
function can be introduced. Next, the convergence of the
sliding surface to a bounded region is analyzed. Finally, the
tracking bounds of the position and velocity errors are ana-
lyzed when the sliding surface is zero and when it converges
to a bounded region.

The main challenge in analyzing the adaptive NT-STSM
controller lies in proving boundedness without enforcing fixed
gain ratios, such as κ2 = 1

4Γκ1 used in prior work [21]. To
address this, the nonlinear closed-loop dynamics are trans-
formed into a pseudo-linear form using the coordinate ζ,
allowing standard Lyapunov tools to be applied [2]. This
approach introduces additional tuning parameters Ω1, Ω2, γ,
and θ, which define an admissible gain region while preserving
convergence, as detailed in Theorem 1. Practical guidelines for
selecting these parameters based on the convergence analysis
are discussed in Remark 2.

Lemma 1: [30] Assume a positive definite function, V , and
its derivative satisfies

V̇ ≤ −γ1V
γ2 , (16)

where γ1 > 0 and 0 < γ2 < 1. The function V converges to
zero from any initial state within a finite time, determined by

tf (x0) ≤
V 1−γ2(x0)

γ1(1− γ2)
. (17)

Assumption 2: The lumped disturbances on the system, Π =
HM̄−1fd = HJM−1τd, are first-order differentiable and
there exists a vector of positive constants, δ ∈ R6, such that
|Π̇| ≤ δ is globally bounded.

Since H appears in Π, Assumption 2 implicitly assumes the
rate of change of H is bounded, ensuring that the orientation
error does not change too rapidly due to disturbances or
uncertainties.

Assumption 3: The measurement noise in x and ˙̂x is
bounded by a constant ϵc.

Assumption 4: The initial state (x(0), ˙̂x(0)) lies within a
region where the control law (12) is well-defined and the
adaptation dynamics are initialized such that κ1min ≤ κ1(0) ≤
κ1max, where κ1min and κ1max are known constants.

Theorem 1: Consider the system dynamics (2) satisfying
Assumption 2 with the control input (12). If the variable gains,
κ1 and κ2 are selected as in (14), then in the presence of
Lebesgue-measurable noise of maximal magnitude ϵc, while
selecting µα > ϵc, a vicinity of the origin defined by s ≤ µα

is globally and robustly finite time stable for every value of
perturbation derivative |Π̇| ≤ δ. A trajectory starting at s(0)
will converge to the region |s| ≤ µα from any initial condition
|s(0)| > µα in finite time. The upper bound on the time to
reach this domain can be estimated as

tf (s(0)) ≤
2

ϑ
V

1
2
1 (s(0)), (18)
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where

V1 =|s| − 2

√
(1− θ)Ω2

2γL
|s| 12 sign(s)(ν +Π)

+
(1− θ)Ω2

2L
(ν +Π)2 +

1

2
(L− L∗)2, (19)

and ϑ = min{χ,
√
2ωαµα}, χ =

λ
1
2
min(P )λmin(Q̃R)

λmax(P ) , and L∗ ≥ L
is a positive constant. Lastly, the finite time tracking control
convergence is achieved in a finite time according to

tf (e) ≤
2α

β− 1
α (α− 1)

V3(e(0))
α−1
2α

2
1+α
2α

, (20)

where V3 = 1
2e

2. In the presence of measurement noise, the
tracking errors converge to the following regions

|e| ≤ 2µα, |ė| ≤
(
µα

β

) 1
α

. (21)

Proof:
1) Closed-loop Dynamics: This section introduces the

closed-loop dynamics of the manipulator and arranges the
system into an appealing form.

Given the system (2) with the controller (12), the closed-
loop dynamics can be written as

ẍ = ẍd+H−1

(
−ė(2−α)

αβ
− κ1|S|

1
2 sign(s) + ν

)
+M̄−1fd.

(22)
The acceleration error is expressed as in [29]

ë =

[
¨̃p
¨̃ϵ

]
=

[
¨̃p

(η̃I + [ϵ̃]) ˙̃ω

]
, (23)

where ˙̃ω = ω̇ − ω̇d. Rearranging (22) results in

ë = H(ẍ− ẍd)

=
−ė(2−α)

αβ
− κ1|S|

1
2 sign(s) + ν +HM̄−1fd. (24)

The derivative of the sliding surface (10) is derived as

ṡ = ė+ αβdiag(ė(α−1))ë

= ė+ Γ

(
−ė(2−α)

αβ
− κ1|S|

1
2 sign(s) + ν +HM̄−1fd

)
= Γ(−κ1|S|

1
2 sign(s) + ν +Π). (25)

Due to the constraints on α and β in (10), Γ =
αβdiag(ė(α−1)) ≥ 0. Introducing new states as y1 = s and
y2 = ν +Π, we have

ẏ1 = ṡ = Γ(−κ1|Y1|
1
2 sign(y1) + y2), (26)

ẏ2 = ν̇ + Π̇ = −κ2sign(y1) + Π̇, (27)

where |Y1|
1
2 = diag(|y1|

1
2 ) ∈ R6×6.

Define ζ as in [31], taking the i-th Cartesian dimension,

ζ =
[
ζ1 ζ2

]T
=

[
|y1i|

1
2 sign(y1i), y2i

]T
. (28)

For clarity, assume the i-th element for each term in the
remainder of this section. Denoting y1 ≜ y1i, y2 ≜ y2i, κ1 ≜
κ1i, κ2 ≜ κ2i, Γ ≜ Γi, Π̇ ≜ Πi, then

ζ̇1 =
1

2
|y1|−

1
2 ẏ1 =

1

2
|y1|−

1
2Γ(−κ1|y1|

1
2 sign(y1) + y2)

= |y1|−
1
2
1

2
Γ(−κ1ζ1 + ζ2), (29)

ζ̇2 = −κ2sign(y1) + Π̇ = |y1|−
1
2 (−κ2|y1|

1
2 sign(y1)) + Π̇

= |y1|−
1
2 (−κ2ζ1) + Π̇. (30)

Introducing a new variable π(t, y) = Π̇sign(y1), (29) and (30)
can be arranged into

ζ̇ = |y1|−
1
2A

[
ζ1
ζ2

]
, (31)

where A =

[
− 1

2κ1Γ
1
2Γ

−(κ2 − π) 0

]
, similar to the form in [2].

2) Sliding Mode Dynamics Boundedness Analysis: The
following analysis considers the boundedness of the sliding
mode dynamics (31) while considering Lebesgue-measurable
noise and adaptive gain selection (13).

Consider the following Lyapunov function, noting that it is
the condensed form of (19):

V1 = V2 +
1

2
(L− L∗)2, (32)

where L∗ is the upper bound of the gain values L ≤ L∗, and

V2 = ζTPζ. (33)

The matrix P is symmetric and positive definite as

P =

[
p11 p12
p21 p22

]
. (34)

As in [31], since V2 is not locally Lipschitz, conventional
versions of the Lyapunov theorem cannot be used here. How-
ever, V2 is continuous along the state trajectories of y1 = s
and therefore the boundedness can be shown using Zubov’s
Theorem [32, Theorem 20.2]. Following Rayleigh’s Theorem
as in [21], V2 is positive definite and radially unbounded:

λmin(P )||ζ||22 ≤ V2 ≤ λmax(P )||ζ||22, (35)

where ||ζ||22 = |y1| + y22 . Differentiating V2 along the trajec-
tories of the closed-loop dynamics (31)

V̇2 = −|y1|−
1
2 ζT Q̃ζ. (36)

Let Q̃ be defined as

−Q̃ = ATP + PA, Q̃ =

[
q̃11 q̃12
q̃21 q̃22

]
, (37)

which is computed as

Q̃ :


q̃11 = κ1Γp11 + 2p12(κ2 − π),

q̃12 = q̃21 = 1
2κ1Γp12 + p22(κ2 − π)− 1

2Γp11,

q̃22 = −Γp12.
(38)

Although (37) resembles a Linear Time Invariant (LTI)
Lyapunov equation, it results from a coordinate transformation
of the nonlinear dynamics, allowing classical stability analysis
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to be applied [2]. Given that π is bounded, V2 is positive
definite and V̇2 is negative definite for every value of the
perturbation derivative |Π̇| ≤ δ subject to

p11 = 1, p22 > p12
2, p12 < 0, Γ > 0, ∀t ≥ 0, (39)

κ1Γ
2p11p12 +

1

4
(Γp11 − κ1Γp12)

2 + 2Γp212(κ2 − π)

− (p11 − κ1p12)Γp22(κ2 − π) + (κ2 − π)2p222 < 0. (40)

Noting that (κ2 − L) ≤ (κ2 − π) ≤ (κ2 + L), with L
defined in (13). When L < π, then |si| < µα and from
(13), L will increase until the sliding mode occurs or L > π
is established. To maintain the sliding mode and ensure the
boundedness around the origin for perturbation π(t, y) = L,
κ2 > L must be satisfied. Therefore, the condition (40) will
be satisfied if

κ1Γ
2p12 +

1

4
(Γ− κ1Γp12)

2 + 2Γp212(κ2 + L)

− (1− κ1p12)Γp22(κ2 − L) + (κ2 + L)2p222 < 0. (41)

Define {
γ = p22

p2
12
, θ = κ2−L

κ2+L ,

Ω1 = −κ1p12, Ω2 = p22(κ2 + L),
(42)

and the condition (41) is satisfied if

Ω1Γ
2 − 2

Ω2

γ
Γ >

1

4
(Γ + Ω1Γ)

2 − (1 + Ω1)Ω2Γθ +Ω2
2,

0 < θ < 1, (43)

is met. The first inequality in (43) represents the interior of a
size-variable ellipse in the plane of Ω1 and Ω2, of which the
size is determined by γ, θ, and Γ. Functions Ω1,Ω2 ∈ R+

must be selected to satisfy (43), which requires γ > 1, and
is always possible if γθ > 1. Fig. 2 illustrates this elliptical
stability region and how it evolves with Γ.

Given the parameters θ, γ,Ω1,Ω2 that satisfy (43), the
components of (34) that satisfy (39) and (40) are given as

P :


p11 = 1,

p12 = p21 = −
√

(1−θ)Ω2

2γL = −
√

p22

γ ,

p22 = (1−θ)Ω2

2L .

(44)

The variable gains κ1 and κ2, provided values of θ and γ, are
given as

κ1 = Ω1

√
2γL

(1− θ)Ω2
, κ2 =

θ + 1

1− θ
L, (45)

with Ω1 and Ω2 selected as any points within the ellipse (41),
which exist in the first quadrant. This selection assures robust,
finite-time boundedness about the origin of the super-twisting
algorithm.

Case 1a: For the case when Γ ̸= 0, implying ė ̸= 0, using
(36) we have that

V̇2 ≤ −|y1|−
1
2λmin(Q̃R)||ζ||22, (46)

where Q̃R ∈ R+ is computed as

Q̃R :


q̃R11

= κ1Γ− 2Ω2
p12

p22
+ (1 + Ω1)Ω2

1−θ
p12

,

q̃R12 = q̃R21 = Ω2 − 1
2 (Γ + ΓΩ1),

q̃R22 = −Γp12,

(47)

and remains positive definite as long as (43) holds.
By arranging (35) such that −||ζ||22 ≤ − V2

λmax(P ) , Eq. (46)
becomes

V̇2 ≤ −|y1|−
1
2
λmin(Q̃R)

λmax(P )
V2.

Using the fact that |y1|
1
2 ≤ ||ζ||2, it follows that −|y1|−

1
2 ≤

−(||ζ||2)−1 and

V̇2 ≤ −(||ζ||2)−1λmin(Q̃R)

λmax(P )
V2.

Rearranging (35) such that − 1
||ζ||2 ≤ −λ

1
2
min(P )

V
1
2

2

, we have

V̇2 ≤ −λ
1
2

min(P )λmin(Q̃R)

λmax(P )
V

1
2
2 ≤ −χV

1
2
2 , (48)

where χ =
λ

1
2
min(P )λmin(Q̃R)

λmax(P ) > 0. From [33, Lemma 2], it is
possible to assume that there exists a positive constant L∗ such
that L ≤ L∗ and ∀t > 0. Consider the Lyapunov function (32),
taking the derivative along the trajectories of the perturbed
system while using (48) and the gain Li in (13) gives

V̇1 = V̇2 + L̇(L− L∗) (49)

≤ −χV
1
2
2 − ωα|s|sign(|s| − µα)|L− L∗|︸ ︷︷ ︸

Υ

, (50)

Suppose that |s| > µα, this gives

V̇1 ≤ −χV
1
2
2 − ωαµα|L− L∗|. (51)

Note that ωα > 0 and µα > 0. Jensen’s inequality for two
variables, with a ≥ 0, b ≥ 0, and 0 < m < n, implies that
(an + bn)

1
n ≤ (am + bm)

1
m . Setting n = 2, where m = 1

V̇1 ≤ −(χ2V2 + 2ω2
αµ

2
α(

1

2
|L− L∗|2)) 1

2 ≤ −ϑV
1
2
1 , (52)

where ϑ = min{χ,
√
2ωαµα}. Therefore, the finite time

converge to the region |s| ≤ µα is guaranteed from any initial
condition |s(0)| > µα. In this case, the states ė will be driven
onto the sliding manifold s before the states ė converge to
the origin within a domain of |s| ≤ µα. Using Lemma 1, the
upper bound on the reaching time is given as

tf (y0) ≤
2

ϑ
V

1
2
1 (y0), (53)

where y0 is the initial value of y. Experimental evaluation has
shown that a value of µα can be selected slightly higher than
the measurement noise level on the corresponding position or
rotation measurement output (ϵc < µα) to attain a dynamic
reduction of controller gains.

Suppose that |s| < µα. In this scenario, the function Υ
in (50) can be negative. Consequently, V̇1 would be sign-
indefinite, and the closed-loop boundedness of the s-dynamics
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Fig. 2: Ellipses expressing the stable boundary of (43) for dif-
ferent values of Γ. A is not bounded for the given parameters,
B is bounded for Γ = 0.5 and unbounded for Γ = 0.25, and
C is bounded for both Γ = 0.5 and Γ = 0.25.

cannot be concluded. However, when s escapes the boundary
(s > µα), under (13), L immediately begins to increase again
to keep s in the domain. Thus, L continues changing its value,
and s remains around the boundary layer limit |s| = µα. In
conclusion, s initially converges to the domain |s| < µα in
finite time and subsequently remains in the region |s| ≤ µα,
verifying the sliding mode boundedness [34].

Case 1b: Consider the case when ė = 0 and s ̸= 0. From
(43) and (66), as Γ → 0 this vertically compresses the ellipse
represented by (43) towards the Ω1 axis, shown in Fig. 2. This
may result in an obstruction of the reachability of (10).

For the case when ė = 0 and s ̸= 0, (24) becomes

ë = −κ1|s|
1
2 sign(s) + ν +Π

= −κ1|s|
1
2 sign(s)−

∫ t

0

(κ2sign(s)− Π̇)dt. (54)

Since κ2 > |Π̇|, ensuring boundedness around the origin,
ë ̸= 0 indicates that ė = 0 is not an attractor in the reaching
phase. Hence, the reachability of the sliding manifold (10) to a
boundary in the finite time as tf (y0) in (53) is still guaranteed.
Therefore it will not interfere with the convergence of V1.

3) State Convergence Analysis: The following analyses
consider the state tracking stability and convergence of e and
ė, first without noise and second with noise, when the absolute
second order sliding mode (SOSM), ṡ = s = 0, is not possible.

Case 2a: Consider the case with no measurement noise.
From (10), we have

e = s− β|ė|αsign(ė). (55)

When SOSM (ṡ = s = 0) occurs in finite time in the absence
of measurement noise, (55) reduces to

e = −β|ė|αsign(ė). (56)

Considering the definition of α ∈ (1, 2): diag(|ė|α)sign(ė) =
ėα for ė > 0 and ė < 0, the closed-loop dynamics is

ė = −β− 1
α (e)

1
α , (57)

and the finite time convergence of e and ė is achieved.
Consider the Lyapunov function candidate as

V3 =
1

2
e2. (58)

Taking the time derivative of (58) and substituting (57) gives

V̇3 = eė = e
(
−β− 1

α (e)
1
α

)
= −β− 1

α (e)
1+α
α

≤ −β− 1
α 2

1+α
2α V

1+α
2α

3 . (59)

Therefore, we obtain that e and ė can converge to the origin
along the sliding surface in finite time as long as β > 0 and
1 < α < 2. With α ∈ (1, 2), this implies α+1

2α ∈ ( 34 , 1). Using
Lemma 1, the upper bound on the convergence time is

tf (e) ≤
2α

β− 1
α (α− 1)

V3(e(0))
α−1
2α

2
1+α
2α

. (60)

Case 2b: In the presence of bounded Lebesgue-measurable
noise, it was shown in Section III-C that the sliding variable s
will converge to a region |s| ≤ µα, which is guaranteed from
any initial condition |s(0)| > µα. With these considerations,
from (10) we get

e+ β|ė|αsign(ė) = s, |s| ≤ µα, (61)

which can be rewritten, when |ė| ≠ 0, as

e+

(
β − s

|ė|αsign(ė)

)
︸ ︷︷ ︸

π

|ė|αsign(ė) = 0. (62)

When π > 0, then Eq. (62) keeps the NTSM form considered
in (56) and the finite time convergence is maintained and the
error is bounded. Consequently, from π, the velocity tracking
error converges to a region

|ė| ≤
(
µα

β

) 1
α

. (63)

Additionally, from (61)−(63), we can conclude that the
position error will converge to a region

|e| ≤ β|ė|α + |s| ≤ 2µα, (64)

in finite time. This concludes the proof.
Remark 1: In practical applications, µα should be selected

based on the desired steady-state tracking error and the level
of measurement noise. Specifically, it should satisfy µα > ϵc,
where ϵc is the magnitude of the maximum expected noise.
However, as ϵc is often difficult to determine, µα can be
iteratively decreased until an acceptable accuracy is reached
or the adaptive gains continuously increase due to noise.
Typical values for µα may range from 0.001 to 0.01 depending
on hardware and application requirements. The adaptation
rate ωα provides a trade-off where larger values increase
responsiveness to dynamic disturbances and noise but may
induce undesirable oscillations. The gain limits κ1max and
κ1min constrain the adaptive gain range. κ1min should be set
high enough to reject minor disturbances, while κ1max should
be selected based on actuator torque limits to avoid saturation.
The parameter ηα can be set to a small value to contain the
adaptive gains within the limits.

Remark 2: The boundedness proof for the adaptive NT-
STSM controller offers more flexibility in tuning compared to
recent similar applications [21]. The proposed method allows
for a range of acceptable ratios between κ1 and κ2 within
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defined regions Ω1 and Ω2, in contrast to the strict relationship
κ2 = 1

4Γκ1 used in [21]. The relationship between κ1 and κ2

imposed by Theorem 1 is obtained by rearranging (45):

κ2 =
Ω2(θ + 1)

2γΩ2
1

κ2
1, (65)

offering additional freedom through parameters Ω1, Ω2, γ, θ.
Conservatively, Ω1 and Ω2 can be selected as the center of

the ellipse represented by (43), which is given as

Ω1c =
γ − 2θ + γθ2

γ(1− θ2)
, Ω2c = Γ

θγ − 1

γ(1− θ2)
. (66)

However, as illustrated in Fig. 2 and (66), as Γ decreases,
the ellipse is compressed and the viable region for Ω1 and
Ω2 shrinks. From this observation, choosing small values of
Ω1 and Ω2, located in the bottom left region of the ellipse,
ensures stability as Γ decreases. While this is more restrictive
than the traditional STSM control [2], in which any values
of Ω1 and Ω2 within the ellipse can be chosen, it is less
restrictive than the relationship in [21] and allows for the
practical implementation of NT-STSM control on hardware.
Additionally, it is recommended to choose larger values of γ
and θ to maintain a large ellipse boundary as Γ decreases.

Moreover, although the stability condition (43) becomes
more difficult to satisfy as Γ → 0, the proposed controller
remains robust in practice. This is because the proposed NT-
STSM controller drives the velocity error to a bounded region
(63) rather than to zero. Since Γ = αβ|ė|α−1, it is also
driven to a bounded region Γ ∈

(
αµ

α−1
α

α ,Γmax

]
, where

Γmax is based on the maximum allowable velocity of the
system. Additionally, due to measurement noise and persistent
disturbances, ė does not vanish in practical implementations.
The adaptive law (13) is active only outside a boundary layer
defined by µα, enforcing an effective operating region for Γ

that is lower bounded by Γmin = αµ
α−1
α

α . This ensures that
adaptation stops near the sliding surface and the stable region
defined by the inequality (43) remains feasible.

Remark 3: Although the boundedness proof is conducted in
continuous-time, the controller is implemented using explicit
discretization methods. This approach is consistent with stan-
dard practice in nonlinear control, where sufficiently high sam-
pling rates ensure that discrete-time implementations closely
follow continuous-time behavior [35]. As shown in [36], the
asymptotic tracking error of discrete-time STSM control is
proportional to the square of the sampling period and can
be exacerbated by very high control gains. Provided high
sampling frequency and the adaptive law (13) limiting the
overestimation of the control gains, the error due to discretiza-
tion is negligible given our implementation parameters. This
supports the validity of applying the continuous-time analysis
to a discrete-time implementation.

Remark 4: While Theorem 1 is presented in the context of a
7-DOF manipulator executing a 6-DOF task, the formulation
is general to any manipulator with sufficient joint redundancy
or to task spaces of lower dimension.

IV. SIMULATION AND EXPERIMENTAL RESULTS

A. Implementation
Simulations and experiments are performed using a Franka

Emika 7-DOF manipulator, Gazebo simulation environment,
and Robot Operating System (ROS). The controller and ob-
server operate at the Franka Emika manipulator’s real-time
control interface frequency of 1000 Hz to ensure minimal
discretization error [36] and maximum responsiveness. In
simulation, the dynamic parameters M, C, G, and J are esti-
mated using the penalty-based optimization method described
in [37]. In hardware experiments, the manipulator’s internal
software provides real-time numerical values for the dynamic
parameters, which are used in the controller.

The proposed NT-STSM controller is compared with a
proportional-derivative (PD) controller [38], NTSM controller
[1], and STSM controller [3], formulated as

uPD = −Kpe− 2
√
Kpė+ C̄ + Ḡ,

uNT = M̄
(
ẍd +H−1

(
−ė(2−α)

αβ
− κ1sign(s1)

))
+ C̄ + Ḡ,

uST = M̄
(
ẍd −H−1

(
κ1|S2|

1
2 sign(s2) + ν

))
+ C̄ + Ḡ,

ν̇ = − κ2sign(s2),

where s1 = e+ βėα and s2 = e+ βė.
To smooth the control signal and mitigate the chattering

in SM controllers, the sign(s) terms are substituted with
tanh(kss), where ks is a positive design parameter that pro-
vides a trade-off between tracking accuracy and convergence
speed. To ensure a fair comparison, all SM controllers were
implemented using the same adaptive gain law (13) with the
same parameters, as shown in Table I. Three sets of PD
controller gains were tested to determine a fair baseline to
compare with the proposed controller, shown in Table I.

TABLE I: Controller and observer parameters.

PD-low Kptrans = 200 Kprot = 50
PD-med Kptrans = 800 Kprot = 200
PD-high Kptrans = 2000 Kprot = 500

Sliding-Mode β = 1 α = 9/7 ks = 30
Parameters θ = 0.9 γ = 6 Ω1 = 1.5

Eqs. (10), (14) Ω2 = 0.14
Adaptive κ1min = 5 κ1max = 200 ωα = 1000

Parameters µα = 0.001 ηα = 0.1
Eq. (13)
Observer F̄ =

[
20, 20, 20, 20, 20, 20

]T
Parameters αo0 = 1.1F̄ αo1 = 1.5F̄

1
2 αo2 = 1.9F̄

1
3

Eqs. (5), (6), (7) ko1 = 200 ko2 = 400 αe = 0.02
ηq = 0.5

To evaluate the robustness of the controllers to disturbances,
the simulations are conducted with significant joint friction,
unknown to the controllers. The added friction represents in-
ternal mechanical uncertainty, such as unmodeled joint friction
from actuator degradation or wear. The friction parameters are
detailed in Table II, where c is the damping value, µs is the
static friction value, µk is the Coulomb friction coefficient,
and µv is the viscous friction coefficient for each joint. In
the experiment, real-world disturbances, such as unmodeled
joint friction, sensor noise, and dynamic model uncertainties,
inherently test the robustness of the controllers.
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(a) (b)

Fig. 3: Franka Emika 7-DOF manipulator. (a) Gazebo simu-
lation environment; (b) Hardware setup grasping an object.

TABLE II: Simulation joint friction parameters.

c (Nms/rad) µs (Nm) µk µv

Default 0.003 0 0 16
Simulated 0.003 0.5 25 25

Fig. 3 shows the manipulator in the simulation and experi-
mental setups. In the simulation, the robot executes a simulta-
neous motion of 0.05 m translation in the x, y, and z axes and
25◦ rotation about the x, y, and z axes. The controller is tested
without external disturbances and then with external distur-
bances. The series of external disturbances applied to the end-
effector is as follows. At 5 s, fe =

[
0, 5, 0, 0, 0, 0

]
,

at 10 s, fe =
[
5, 0, −5, 0, 0, 0

]
, at 14 s,

fe =
[
0, 0, 0, 1, 0, 0

]
, and at 17 s, fe =[

0, −5, 5, 0, −1, 1
]
, where the first three elements

of fe have units of N and the last three have units of Nm.
The disturbances are each applied for 1 s from each starting
time. The disturbances are applied along different axes and at
different times to test disturbance rejection performance across
a variety of conditions. These forces and torques emulate
environmental contacts, payload changes, or collisions. Their
magnitudes are chosen to represent realistic interactions for the
Franka Emika manipulator, considering the safety thresholds.

In the experiment, the robot manipulates a time-varying
payload of a container holding steel balls with a total mass of
0.5 kg. The robot pours out the contents by executing a 0.1 m
translation in the y-axis and a 40◦ rotation about the z-axis.
As the balls exit the container, the payload mass decreases
nonlinearly, the center of mass shifts, and the rotational inertia
changes. These variations result in unstructured, time-varying
disturbances that affect translational and rotational dynamics.

The controller’s tracking performance is quantified using the
Root Mean Squared Error (RMSE). The translational tracking
error, RMSEp, is defined as the average RMSE over the three
Cartesian axes:

RMSEp =
1

3

3∑
j=1

√√√√ 1

N

N∑
i=1

(pj,i − pd,j,i)
2
,

where N is the number of time steps and j indexes the three
axes. The rotational tracking error, RMSEξ, is calculated from
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Time (s)

0.050

0.025
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Fig. 4: Comparison of x-axis velocity measurements.

the geodesic distance between the actual and desired unit
quaternions using:

RMSEξ =

√√√√ 4

N

N∑
i=1

arccos2(|ξ · ξd|),

where ξ1 · ξ2 denotes the quaternion dot product. To evaluate
the performance along a specific rotational axis, the quaternion
trajectories are converted to Euler angles, ϕ = [ϕx, ϕy, ϕz],
and the RMSE along a particular axis is given as:

RMSEϕk =

√√√√ 1

N

N∑
i=1

(ϕk,i − ϕd,k,i)
2
,

where k is the rotational axis of interest. To evaluate the
chattering, the total variation of the control input is calculated
as:

TVτ =

7∑
j=1

N−1∑
i=1

|τj,i+1 − τj,i|,

where a smaller value of TVτ indicates a smoother control
signal [39].

B. Simulation Results
Fig. 4 compares different velocity estimation methods. The

Franka robot’s built-in velocity measurements (Act) are de-
rived from position data, making them inherently noisy. Ap-
plying a low-pass filter (Smooth) reduces noise but introduces
a measurement delay. During testing, both noise and delay in
velocity estimates led to chattering in the task-space sliding-
mode controllers. To mitigate this, the TOSM observer was
implemented (Ob), where F̄ is tuned based on the results in
[26] to provide a balance between accuracy, noise reduction,
and minimal delay. To minimize the initial estimation error,
the exponential moving average error is used with αe = 0.02
to provide a smooth velocity estimate as the TOSM observer
converges to the actual velocity.

Fig. 4 also highlights why applying SM control is more
challenging for rotational motion. From 0-5 s, when only
translational motion occurs, the velocity noise is low. However,
during rotational motion (9-13 s and 16-20 s), the noise is
significantly higher, increasing susceptibility to chattering.

Figs. 5 and 6 show the position and orientation tracking
results from the simulation without external disturbances.
As expected, increasing the PD gains improved the tracking
accuracy but increased the control effort, shown in Table III,
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Fig. 5: Simulation on the translational position tracking.

where the performance metrics are Root Mean Squared Error
(RMSE) and average control effort, τavg. Note that the PD-
low controller is significantly affected by the frictional distur-
bances, resulting in poor tracking.

Despite chattering reduction techniques, the NTSM con-
troller exhibited severe chattering, leading to instability, and
is omitted. The STSM controller performed well until 14 s,
when it began to chatter significantly until stabilizing at 17
s. As shown in Table III, the proposed NT-STSM controller
achieved comparable translational tracking to the PD-high
controller and the highest rotational tracking accuracy of
all the controllers while maintaining a low level of control
effort. The NT-STSM controller also provides the lowest TVτ

among all controllers, indicating it has the smoothest control
inputs. The NTSM and STSM controllers could be tuned to
reduce chattering, however, this would require reducing κ1

and κ2, which would reduce the tracking accuracy and not be
comparable to the accuracy of the NT-STSM controller.

Applying the NT-STSM controller from [21], originally de-
signed for the joint space, to the task space with its constrained
relationship between κ1 and κ2, resulted in a 71.3% increase
in RMSEp, and a 69.4% increase in RMSEξ, compared to our
approach. This result indicates that the strict gain relationship
required by the stability proof in [21] limits the controller
performance and is not suitable for this application. Compared
to the PD-med controller, the proposed NT-STSM controller
reduced RMSEp by 29.0% and RMSEξ by 27.6%, with
similar control effort. Compared to the PD-high controller,
the proposed NT-STSM controller achieved similar tracking
performance with 13.4% lower control effort. While the PD-
high controller achieves good tracking performance, it does
so with the highest average control effort. This compromises
energy efficiency and may exceed actuator limits. PD-med
achieves a reasonable trade-off between accuracy and control
effort, and is selected as the baseline in the following tasks.

To further demonstrate the robustness of the NT-STSM
controller, the same task was performed under a series of ex-
ternal forces and torques applied to the end-effector. Figure 7
compares translational tracking performance, and Table IV
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Fig. 6: Simulation on the rotational position tracking.

TABLE III: Performance metrics for the tracking task (simu-
lation).

Controller RMSEp RMSEξ τavg TVτ

(m) (rad) (Nm) (Nm)
PD-low 7.25e-3 4.91e-2 3.69e-1 2.95e4
PD-med 2.48e-3 3.11e-2 5.06e-1 6.02e4
PD-high 1.54e-3 2.50e-2 5.66e-1 8.67e4
NTSM N/A N/A N/A N/A
STSM 7.04e-3 1.19e-1 1.92 1.45e5

NT-STSM [21] 6.13e-3 7.36e-2 5.10e-1 1.50e4
NT-STSM (ours) 1.76e-3 2.25e-2 4.90e-1 8.45e3

shows the performance metrics, demonstrating that the PD-
med controller is more affected by disturbances despite having
similar control effort as the NT-STSM controller.

C. Experimental Results

A video of the experiment is available at https://www.
youtube.com/watch?v=ziweWAJxdYU. Fig. 8 and Table V
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Fig. 7: Simulation on the translational position tracking with
external disturbances. The red dashed lines indicate when
external forces are applied.

https://www.youtube.com/watch?v=ziweWAJxdYU
https://www.youtube.com/watch?v=ziweWAJxdYU
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TABLE IV: Performance metrics for the tracking task with
external disturbances (simulation).

Controller RMSEp RMSEξ τavg TVτ

(m) (rad) (Nm) (Nm)
PD-med 2.72e-3 3.06e-2 7.13e-1 6.11e4

NT-STSM 1.89e-3 2.80e-2 7.13e-1 7.89e3
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Fig. 8: Experimental pouring task with selected position and
orientation tracking. The payload starts changing at t = 18 s.

compare the tracking performance of the PD-med and the NT-
STSM controllers along the y and z translational axes and
the ϵz rotational component. While the PD controller achieves
lower tracking error in the y direction and ϵz orientation,
the NT-STSM controller demonstrates significantly improved
tracking along the z-axis, which is most sensitive to the
payload. This is clear at t = 18 s, where the payload change
degrades the PD controller’s performance while the NT-STSM
controller maintains more accurate tracking. Additionally, the
control input of the NT-STSM is significantly lower than the
PD-med. These results confirm the robustness and efficiency of
the proposed NT-STSM controller in the presence of unknown
disturbances or varying payload and validate its viability for
practical robotic applications involving external perturbations.

TABLE V: Performance metrics for the pouring task (experi-
ment).

Controller RMSEpy RMSEpz RMSEϕy τavg TVτ

(m) (m) (rad) (Nm) (Nm)
PD-med 7.30e-3 7.23e-3 2.74e-2 1.30 2.07e4

NT-STSM 9.41e-3 2.74e-3 2.79e-2 8.83e-1 7.98e3

V. CONCLUSION

This paper proposed an adaptive NT-STSM controller for-
mulated in task space for a 7-DOF robotic manipulator. A
novel boundedness analysis established that tracking errors
converge within a known region, providing flexible tuning
guidelines. Compared to conventional controllers, the pro-
posed method improves robustness to disturbances while re-
ducing control effort and chattering, validating its applicability
for real-time task space control of high-DOF manipulators.

The proposed controller achieves smooth, accurate behavior
by combining tanh instead of sign to avoid discontinuities
near the sliding surface, a super-twisting feedback control
structure to smooth the control signal, and adaptive gains
to reduce the control effort. The convergence proof provides
flexible gain constraints that allow the controller to be tuned to
improve tracking and reduce energy consumption compared to
previous NT-STSM controllers. This work demonstrates that
adaptive SM control in task space is an effective solution for
precise robotic manipulation in environments with unmodeled
disturbances and time-varying payloads. This work bridges the
gap between theoretical robustness and practical implementa-
tion on real hardware and provides an avenue for applying SM
control strategies in industrial and collaborative robotics.

Despite its advantages, one limitation of the proposed con-
troller is that it requires manual tuning of multiple parameters,
which requires dedicated operation time. Future work will fo-
cus on automating parameter selection through learning-based
or optimization-based approaches. Based on the convincing
results of this paper, future work will also include extending
this controller to multi-manipulator systems and collaborative
tasks by incorporating the force feedback.
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