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Abstract— : In this paper, we discuss on-line adaptive
estimation of distributed diffusion and source term coefficients
for a non-homogeneous linear parabolic partial differential
equation describing heat transport. An estimator is defined
in the infinite-dimensional framework having the system state
and the parameters’ estimate as its states. Our scheme allows to
estimate spatially distributed and space-time distributed param-
eters. While the parameters convergence depends on the plant
signal richness assumption, the state convergence is established
using the Lyapunov approach. Since the estimator is infinite-
dimensional, the b-splines Galerkin finite element method is
used to implement it. In silico simulations are provided to
illustrate the performance of the proposed approach.

I. INTRODUCTION

Distributed parameter systems (DPS) widely exist in
industrial processes: thermal processes, fluid processes and
transport-reaction processes. These physical and chemical
systems are governed by partial differential equations
(PDE) and complex spatiotemporal nonlinear dynamics.
In many situations, it is difficult to get an accurate
nominal PDE description due to incomplete physical or
chemical knowledge (unknown system parameters, unknown
disturbances...). These uncertainties make the modeling
problem tedious. Three different problems in DPS are of
prime interest: (i) model reduction (ii) system identification
(”black-box modeling”) and (iii) parameter estimation
(”grey-box modeling”), where the PDE structure is available
and only some parameters need to be known. The latter, is
the one of our interest.
Heat transport is a complex DPS phenomenon where various
mechanism of heat exchange occur. It is described by a
general non-homogeneous second order linear parabolic
partial differential equation (PDE). In this work, we consider
one-dimensional heat transport governed by a diffusion-
reaction PDE with mixed Dirichlet-Neumann boundary
conditions and where the source term (the input power
adsorbed by the process) is distributed and poorly known.
In our previous works ([1], [2]), we attempted to solve this
problem for thermonuclear heat transport in an early lumping
estimation approach. First the problem was discretized using
the Galerkin formulation and then a modified Kalman filter
was applied to estimate both the diffusion coefficient and
the unknown input. In order to investigate the problem of
heat transport in its original description (a DPS process) late

S. Mechhoud, E. Witrant and L. Dugard are with UJF-
Grenoble 1/CNRS, Grenoble Image Parole Signal Automatique
(GIPSA-lab), UMR 5216, B.P. 46, F-38402 St Martin d’Hères,
France {sarah.mechhoud, emmanuel.witrant,
luc.dugard} @gipsa-lab.grenoble-inp.fr

lumping estimation approach is analysed. In this paper, we
focus on the infinite-dimensional framework using on-line
or adaptive estimation techniques.
Off-line methods for functional parameters in DPS were
extensively studied both in finite and infinite-dimensional
frameworks ([3], [4], etc.). The identification methods
were based mainly on output least squares and maximum
likelihood estimators. These techniques lead generally to
nonlinear optimization problems. An on-line estimator
utilizes the PDE characteristics and consequently the inverse
problem remains linear.
Adaptive estimation for infinite dimensional dynamic
systems with both constant, spatially varying and time-
varying parameters with known input was first addressed in
[5] and their earlier works (for example: Dr. Scondo and
Dr. Demetriou’s Ph. D theses). They also established the
abstract framework of this problem using functional analysis
tools and Sobolev spaces properties. In [6], constructively
enforceable identifiability conditions based on manipulable
quantities were introduced for the first time. Unlike [5],
the proposed adaptive estimator used the PDE features to
reduce the order of the spatial derivatives by obviating the
repetition of the spatial derivative structure of the plant in
the tuning laws. In [7], model reference adaptive control
(MRAC) of a linear parabolic partial differential equation
with time-varying coefficients was treated.
Two main contributions are presented in this work. First, the
identifiability conditions of the simultaneous diffusion/input
estimation problem are shown. Since the input is unknown,
these conditions are passive. Then, spatially varying
and space-time input/parameters’ simultaneous on-line
estimation is considered. The problem of spatially varying
parameters can be viewed as a particular case of space-
time DPS systems. In this paper, it serves both as an
introduction to our inverse problem, where consistent results
can be found and as an extension of [6]’s work to the
joint input/parameter identification problem In the second
part, distributed space-time varying input/parameter are
examined. Inspired by [7] paper, we demonstrate that a
region of convergence of the state error can be expressed
explicitly as a function of the identifiers’ tuning parameters.
Throughout this paper, we assume that distributed sensing
and measurements are available. The question of input
estimation is not only related to heat transport but arises, to
cite few, in fault detection, machine tool and manipulator
applications, chaotic systems and general inverse problems.

This paper is organized as follows. The heat transport



model and the framework of our PDE problem are presented
in Section II. In Section III, we treat the diffusion and source
term identifiability conditions. The adaptive estimators for
functional state, input and parameters are considered in
Section IV. In order to illustrate the performance of the
proposed identifiers, computer simulations are carried out
in Section V.

II. HEAT TRANSPORT MODEL

In general heat transfer textbooks, the heat equation is
derived using conservation of energy principle and Fourier’s
law of heat conduction [8]. Its one dimensional linear form
is given by

∂T

∂t
=

1

x

∂

∂x

(
x χe(x, t)

∂T

∂x

)
− 1

τ
T (x, t) + S(x, t);

∂T

∂x
(0, t) = 0 ; T (1, t) = 0;

T (x, 0) = 0; x ∈ Ω; t ∈]0, tf ],

(1)

where t is the time, x is the normalized spatial variable i.e.
x ∈ Ω =]0, 1[, χe is the diffusion coefficient, τ(< ∞) is a
damping time modelling energy losses, T is the temperature
S is the power density absorbed from an external heating
system.
In system (1), the second and third equations represent initial
and boundary conditions, chosen to guaranty the symme-
try and boundedness of the solution near zero. The value
T (1, t) = T (x, 0) = 0 refers to an equilibrium temperature
level and not to the absolute zero temperature. The diffusion
coefficient χe is assumed to belong to the space Qχ = {f :
f(x, t) ∈ C0(0, tf ;C1(Ω)),∃c1, c2 ∈ R+

∗ c2 > f(x, t) >
c1 > 0}, the reaction coefficient τ in R+

∗ and the source
term S in QS := C0(0, tf ; C0(Ω)) ∩ L2(0, tf , L

2(Ω)).
These assumptions guarantee the existence, uniqueness and
differentiability of the classical solution of PDE (1) in QT :=
C1(0, tf ;C2(Ω))(see [9], chapter 07, page 375).
In the following, τ is considered as a known variable and we
aim to estimate χe and S. The raison for which τ is assumed
to be a constant coefficient is related to the complexity of
proving the structural identifiability of the three parameters.

III. DIFFUSION AND SOURCE TERM IDENTIFIABILITY

The input/parameter estimation convergence is necessary
guaranteed if we can ensure the problem identifiability:
whether it is possible to uniquely extract the solution for
the model unknown variables from the measurements.
In the finite-dimensional framework, this problem has been
extensively studied (see [10] and references therein) both
for structural (noise-free model) and practical aspects.
In adaptive estimation techniques, this is equivalent to
ensure plant signals richness. The finite-dimensional notion
of persistence of excitation was extended to infinite-
dimensional systems first by [5] and [11]. Later, in [6],
constructively enforceable identifiability conditions were
given and the construction of persistently exciting input was
shown. In this paper, the structural identifiability question is

treated in the spirit of [6] paper, extended to deal with both
diffusion/source term reconstruction and the only available
input under which identifiability is considered are the PDE’s
(1) boundary conditions.

Definition: ([6]) A set of parameters {χe(x, t), S(x, t)} of
the PDE (1) is said to be identifiable with the corresponding
boundary conditions if and only if:

∀x ∈]0, 1[,∀t ≥ 0, ∀χe 6= χe, ∀ S 6= S :

div

(
∆χe

∂T

∂x

)
+ ∆S = 0⇒ ∆χe = ∆S = 0,

(2)

where div is the divergence operator in the cylindrical
coordinates supposing a gradient in the x direction only:

div(.) :=
1

x

∂

∂x
(x .), ∆χe = χe − χe and ∆S = S − S.

The concept of persistent excitation relies on the ability
of finding the Fourier expansion of the plant state on an
arbitrary orthonormal basis in L2(0, 1). T (x, t) can be
written as:

T (x, t) =

∞∑
n=0

ln(t) cos(πnx). (3)

where the Fourier coefficients ln are linearly independent
functions (for more details see [6]). Sufficient conditions
for simultaneous diffusion and source term identification are
given as follows.

Theorem 3.1: If the boundary conditions (and the input)
of the PDE (1) generate a persistent excitation of the system
(such that the Fourier coefficients of the plant state are
linearly independent), then the parameter χe and the external
input S are identifiable (with these boundary conditions).

Proof 3.1: Substituting the Fourier expansion of T given
in (3) into (2) yields:∑∞

n=0 {[div(∆χe)nπln(t) +
nπ

x
∆χeln(t)]sin(nπx) +

+(nπ)2∆χeln(t)cos(nπx)} −∆S = 0. (4)

The input S can also be written as a Fourier series:

S(x, t) =

∞∑
n=0

ωn(t)cos(nπx)

where {ωn(t)}n=∞n=0 are linearly independent. Substituting S
in (4) gives:

∞∑
n=0

{[div(∆χe)nπln(t) +
nπ

x
∆χeln(t)]sin(nπx) +

+[(nπ)2∆χeln(t)−∆ωn(t)]cos(nπx)} = 0. (5)

Since the sets {cos(nπx)} and {sin(nπx)} have no inter-
secting zero and {ln(t)}∞n=0 are linearly independent (per-
sistent excitations hypothesis), we conclude that (5) implies:

∆χe = 0 and (∆ωn = 0⇔ ∆S = 0).



Remark: Since the input is unknown and the aim of this
work is to estimate it simultaneously with the diffusion
coefficient, unlike what was done in [6], input persistent
generators cannot be constructed. The persistent excitation of
the plant is investigated a posteriori, once the measurements
are available by checking the linear dependence of the plant
Fourier coefficients unless a simulator on which tests can be
carried out is accessible.

IV. ADAPTIVE ESTIMATOR DESIGN FOR DISTRIBUTED
TIME-SPACE INPUT AND DIFFUSION COEFFICIENT

For sufficiently rich signals, the simultaneous estimation of
the input and the diffusion coefficient can be achieved using
an adaptive estimator. The adaptive law is developed based
on stability considerations or using simple optimization
techniques to minimize the output error equation.
In this section, we first assume that the parameters
(S and χe) are time independent. Our initial objective
is to demonstrate that under this assumption, a stable
adaptive estimator for the simultaneous problem exists
and guarantees the L2 and point-wise convergence of both
state and parameters (input and diffusion coefficient). The
problem of distributed slowly time varying coefficients and
time-varying parameters with known upper bounds will be
addressed in the next subsection.

A. Adaptive estimator for spatially varying parameters and
input

The adaptive identifier is a model-based estimator. It takes
the form of PDE (1) to which an innovation term (correction)
is added and a gradient-type update law for the parameters’
estimate is associated. Supposing that distributed sensors are
available and measure the system state, this estimator is
described by:

∂T̂

∂t
=

1

x

∂

∂x

(
x χ̂e(x, t)

∂T̂

∂x

)
− 1

τ
T̂ (x, t) + Ŝ(x, t)

−ϑ0 (T̂ (x, t)− T (x, t));

∂T̂

∂x
(0, t) = T̂ (1, t) = 0; T̂ (x, 0) = T̂0(x) ≥ 0;

(6)



∂χ̂e
∂t

= ϑ1
∂

∂x

(
T̂ − T

) ∂T̂
∂x

; χ̂e(x, 0) = χ̂e0(x);

∂Ŝ

∂t
= −ϑ2 (T̂ − T ); Ŝ(x, 0) = Ŝ0(x);

∀x ∈ ]0, 1[ ; t ≥ 0,

(7)

where ϑi ≥ 0, i = 0, 1, 2 are the adaptation gains, χ̂e0(x) >
0 is a smooth function and S0(x) is a continuous function.

Theorem 4.1: If the plant (1) is identifiable (under persis-
tent excitations), the adaptive identification law given by (6)
combined with the parameters identifiers in (7) ensure the
L2 convergence of the state and parameters deviations.

Proof 4.1: Let us first define the state and parameters
deviations


∆T = T̂ − T, ∂∆T

∂x
(0, t) = ∆T (1, t) = 0;

∆χe(x, t) = χ̂e(x, t)− χe(x);

∆S(x, t) = Ŝ(x, t)− S(x);

(8)

and their derivatives:



∂∆T

∂t
= div

(
χe(x)

∂∆T

∂x

)
+ div

(
∆χe(x, t)

∂T̂

∂x

)
−(

1

τ
+ ϑ0)∆T (x, t) + ∆S.

∂∆χe
∂t

= ϑ1
∂T̂

∂x

∂∆T

∂x
.

∂∆S

∂t
= −ϑ2 ∆T (x, t).

(9)

Since χ̂e0(x) > 0 and τ ∈ R+
∗ are bounded, Ŝ(x) is a

continuous bounded function. There exists a unique local
solution for the global system (1), (6) and (7).Thus the prob-
lem is well-posed and we introduce the following Lyapunov
functional

V (t) =
1

2

∫ 1

0

(
[∆T (x, t)]2 +

1

ϑ1
[∆χe(x, t)]

2

+
1

ϑ2
[∆S(x, t)]2

)
dx.

(10)

Taking into account the system (9) and using the Gauss’
divergence formula:

∫ 1

0

div

(
χe
∂∆T

∂x
∆T

)
dx = χe

∂∆T

∂x
∆T
∣∣∣1
0

and:

div

(
χe
∂∆T

∂x
∆T

)
= ∆T div

(
χe
∂∆T

∂x

)
+ χe

(
∂∆T

∂x

)2

we obtain the following integration by parts for the diver-
gence term:

∫ 1

0

div

(
χe
∂∆T

∂x

)
∆Tdx = χe

∂∆T

∂x
∆T
∣∣∣1
0
−
∫ 1

0

χe

(
∂∆T

∂x

)2

dx.

The time derivative of the Lyapunov functional (10) is given



by:

V̇ (t) = χe(x, t)
∂∆T

∂x
∆T (x, t)

∣∣∣1
0
−
∫ 1

0

χe(x, t)

(
∂∆T

∂x

)2

dx

+∆χe(x, t)
∂T̂

∂x
∆T (x, t)

∣∣∣1
0
−
∫ 1

0

∆χe(x, t)
∂∆T

∂x

∂T̂

∂x
dx

−
∫ 1

0

(
1

τ
+ ϑ0

)
[∆T (x, t)]2dx+

∫ 1

0

∆S(x, t)∆T (x, t)dx

+

∫ 1

0

∆χe(x, t)
∂T̂

∂x

∂∆T

∂x
dx−

∫ 1

0

∆S(x, t)∆T (x, t)dx

= −
∫ 1

0

χe(x, t)

(
∂∆T

∂x

)2

dx−
∫ 1

0

(
1

τ
+ ϑ0)[∆T (x, t)]2dx

≤ −
∫ 1

0

(
1

τ
+ ϑ0)[∆T (x, t)]2dx ≤ 0

(11)

This proves the boundedness of Lyapunov functional (10) for
all t ≥ 0 and L2 boundedness of system solutions (6),(7). In
this special case, the invariance principle can be used (see [6]
and references therein). Therefore, the trajectories of system
(6),(7) converge to the maximal invariant subset of a set of
solutions of (6),(7), for which V̇ = 0. This implies ∆T = 0
and leads to the following expression:

div(∆χe(x, t)
∂T

∂x
) + ∆S(x, t) = 0; ∀x ∈]0, 1[, t ≥ 0 (12)

With the identifiability hypothesis, it follows that:

∆χe(x, t) = ∆S(x, t) = 0; ∀x ∈]0, 1[, t ≥ 0.

and thus, we deduce that

lim
t→+∞

∫ 1

0

{
(∆T )2 + (∆S)2 + (∆χe)

2
}
dx = 0.

Finally, using the same methodology as the one proposed in
[6], parameters’ point-wise convergence can be asserted.

B. Adaptive estimation of space-time parameter and input
with unknown bounds

In this subsection, we discuss space-time varying χe(x, t)
and S(x, t). Considering the same Lyapunov-like function
(10), its derivative in (11) becomes:

V̇ (t) =

∫ 1

0

∆T
∂∆T

∂t
dx+

1

ϑ1

∫ 1

0

∆χe
∂χ̂e
∂t

dx

+
1

ϑ2

∫ 1

0

∆S
∂Ŝ

∂t
dx+

1

ϑ1

∫ 1

0

∆χe
∂χe
∂t

dx

+
1

ϑ2

∫ 1

0

∆S
∂S

∂t
dx

(13)

Retaining the same adaptation laws (6),(7) in (13), yields to:

V̇ (t) = −
∫ 1

0

χe(x, t)

(
∂∆T

∂x

)2

dx

−
∫ 1

0

(
1

τ
+ ϑ0)[∆T (x, t)]2dx

− 1

ϑ1

∫ 1

0

∆χe
∂χe
∂t

dx− 1

ϑ2

∫ 1

0

∆S
∂S

∂t
dx

≤ −(
1

τ
+ ϑ0)

∫ 1

0

[∆T (x, t)]2dx

− 1

ϑ1

∫ 1

0

∆χe
∂χe
∂t

dx− 1

ϑ2

∫ 1

0

∆S
∂S

∂t
dx

(14)

Assuming that Qχ and QS are compact Banach spaces such
that: ∃c3 ∈ R+

∗ : ‖S(x, t)‖2 ≤ c3, and ‖χ̇e(x, .)‖2 ∈
L1(0,∞), gives∫ ∞

0

(
1

τ
+ ϑ0

)
‖∆T (x, .)‖2dt ≤ V (0)− V (∞)

+
c2
ϑ1

∫ ∞
0

‖χ̇e‖2dt+
c3
ϑ2

∫ ∞
0

‖Ṡ‖2dt <∞

(15)

Therefore, limt→+∞ ‖∆T‖2(., t) = 0.
The convergence of the state estimation error to zero is due
principally to L∞-time-boundedness assumptions on χ̇e and
Ṡ. More general problem would be one on which parameters
χe, S, χ̇e and Ṡ vary in unknown fashion but only L2-
bounded. In this case, L2 convergence of the state error can
no long hold and adaptation laws (7) have to be adjusted in
order to take into account parameter time-variations.
To this end, let us consider the following modified adaptation
law: ∀x ∈ ]0, 1[ ; t ≥ 0,

∂χ̂e
∂t

= −σe χ̂e(x, t) + ϑ1

(
∂∆T

∂x

∂T̂

∂x
+ ge(x, t)

)
,

χ̂e(x, 0) = χ̂e0(x);

∂Ŝ

∂t
= −σs Ŝ(x, t)− ϑ2 (∆T + gs(x, t)),

Ŝ(x, 0) = Ŝ0(x),

(16)

where functions ge and gs are given by:

ge(x, t) = −
µ2
e

µe ‖χ̂e(x, .)‖2 + εe
χ̂e(x, t),

µe ≥ ‖fe(x, t)‖2, fe(x, t) , −λe

(
χe(x, t) +

1

σe

χ̇e(x, t)

)
,

gs(x, t) =
µ2
s

µs ‖Ŝ(x, .)‖2 + εs
Ŝ(x, t),

µs ≥ ‖fs(x, t)‖2, fs(x, t) , −λs

(
S(x, t) +

1

σs

Ṡe(x, t)

)
,

λe =
σe

ϑ1

, λs =
σs

ϑ2

, εe > 0, σe > 0, εs > 0, σs > 0.

(17)



The form in which parameter time-variations are considered
in adaptation laws (16) is deduced from [7]. In that work,
the addressed problem was the Model Reference Adaptive
Control (MRAC) of a parameter time-varying parabolic
partial differential equation. In our work, a conversion and
extension to the problem of simultaneous input and param-
eter estimation is examined.
Note that, the terms −σe χ̂e(x, t) and −σs Ŝ(x, t) are the
σ−modification terms, added to enhance parameter conver-
gence and to make the adaptation laws more robust with
respect to bounded unknown model dynamics [12]. How-
ever, these addad terms may deteriorate some convergence
properties and the asymptotic convergence of the state error.

Theorem 4.2: Consider the state parameter and input es-
timators in (6),(16) and (17). If the model is identifiable
(persistently excited), then ∆T , ∆χe and ∆S are uniformly
ultimately L2−bounded. The uniform ultimate boundedness
region can be made arbitrary small by suitable choice of
σe, σs, εe, εs, ϑ1, ϑ2.

Proof 4.2: Substituting (16) in (13) gives

V̇ = −
(

1

τ
+ ϑ0

)∫ 1

0

(∆T )2dx−
∫ 1

0

χe

(
∂∆T

∂t

)2

dx

+

∫ 1

0

∆χegedx−
σe
ϑ1

∫ 1

0

∆χeχ̂edx

− 1

ϑ1

∫ 1

0

∆χeχ̇edx−
∫ 1

0

∆Sgsdx−
σs
ϑ2

∫ 1

0

∆SŜdx

− 1

ϑ2

∫ 1

0

∆SṠdx

Let us note

V0 =

(
1

τ
+ ϑ0

)∫ 1

0

(∆T )2dx−
∫ 1

0

χe

(
∂∆T

∂t

)2

dx, V0 ≥ 0,

using (17) and equality χ̂e = ∆χe + χe, yields to

V̇ = −V0 − λe
∫ 1

0

(∆χe)
2dx− λs

∫ 1

0

(∆S)2dx

+

∫ 1

0

∆χefedx+

∫ 1

0

∆χegedx+

∫ 1

0

∆Sfsdx

−
∫ 1

0

∆Sgsdx.

(18)

Let us investigate (18) term by term, first the terms involving

χe: ∫ 1

0

∆χefedx+

∫ 1

0

∆χegedx =

λe

∫ 1

0

χe

(
χe +

χ̇e
σe

)
dx

+

∫ 1

0

χ̂efe dx−
µ2
e

µe‖χ̂e‖2 + εe
‖χ̂e‖22

+

∫ 1

0

µ2
e

µe‖χ̂e‖2 + εe
‖χ̂e‖2‖χe‖2dx

≤ λe‖χe‖22 +
1

ϑ1
‖χe‖2‖χ̇e‖2 + εe + µe‖χe‖2

(19)

and now, the terms in S:∫ 1

0

∆Sfsdx−
∫ 1

0

∆Sgsdx = λs

∫ 1

0

S

(
S +

Ṡ

σs

)
dx

+

∫ 1

0

Ŝfs dx−
µ2
s

µs‖Ŝ‖2 + εs
‖Ŝ‖22

+

∫ 1

0

µ2
s

µs‖Ŝ‖2 + εs
‖Ŝ‖2‖S‖2dx

≤ λs‖S‖22 +
1

ϑ2
‖S‖2‖Ṡ‖2 + εs + µs‖S‖2.

(20)

Replacing (19) and (20) in (18), we get the following
inequality for the Lyapunov-like function (10):

V̇ ≤ −V0 − λe
∫ 1

0

(∆χe)
2dx− λs

∫ 1

0

(∆S)2dx+ v(t), (21)

where v(t) = λe‖χe‖22 +
1

ϑ1
‖χe‖2‖χ̇e‖2 + εe + µe‖χe‖2 +

λs‖S‖22 +
1

ϑ2
‖S‖2‖Ṡ‖2 + εs + µs‖S‖2.

Since χe(x, .), χ̇e(x, .), S(x, .) and Ṡ(x, .) are L2−bounded,
v(t) is bounded and thus ∆T , ∆χe and ∆S are ultimately
uniformly L2−bounded, the L2−norm of these variables
converge to the region defined by v(t). By making εe, εs, σe
and σs sufficiently small and ϑ1 and ϑ2 sufficiently large,
v(t) can be arbitrary very small.
In addition, if the plant is persistently exciting, a uniform
boundedness region for the parameters estimation error can
be made arbitrary small by a convenient choice of the
estimators parameter gains [7].

V. SIMULATION RESULTS

Simulation with computed data is carried out to evalu-
ate the reconstruction performance of the spatially varying
input/diffusion adaptive identifier (6),(7). The dissipation pa-
rameter τ is assumed to be known and constant. Simulations
are performed using MATLAB/Simulink.
Since the identifier is infinite-dimensional, the bspline-cubic



Galerkin method is used in order to implement it ([3], [1]).
The simulated data is generated by using:

χe(x, t) = (0.1 + 5x+ 2x2 + 4x3)1(t); τ = 0.05

S(x, t) =
105√
2π σ

exp

(
−(x− µ)2

2σ2

)
1(t)

x ∈ [0, 1], t ∈ [0, 1], dx = 0.05, dt = 0.01.

(22)

The choice of χe, τ and S is motivated by the example
proposed by [13], where it was assumed that the diffusion
coefficient has a monomial monotonically increasing func-
tion and the heating source undergoes a spatial Gaussian
form. These parameters were considered constant in time.
Fig. 1 presents the space variations of χe and S used in the
mock-up data to generate T .

Fig. 1: T , χe and S for the mock-up example

To evaluate the reconstruction performance using the adap-
tive identifier (6),(7), the initialization of the filter was
arbitrary. The choice of the bases dimensions in the Galerkin
formulation is as follows. For χe and S, we have chosen a
dimension of n = 9, whereas for T , we have chosen n = 20
for its space basis dimension. It is a good trade-off between
precision and convergence rate as shown in Fig. 2. Note that
the space basis dimension of T is related to the number
of required sensors as we are using the bsplines-Galerkin
method. In practice (for the tokamak facility) more sensors
are available.
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Fig. 2: Estimation errors of χe, S, and T for the mock-up
example

From Fig. 2, the estimation of χe, S and T using the
adaptive identifier (6),(7) is satisfactory. This figure shows
the time evolution of each node relative estimation error.
The filter needs few iterations to converge to the original

variables. The choice of ϑi, i = 0, 1, 2 is crucial. From the
simulation, we observe that for each ϑ0 corresponds a couple
of (ϑ1, ϑ2) and increasing these estimation/adaptation gains
leads to faster state and parameters (χe and S) convergence.
However, similarly to the gradient search method, beyond
some points, larger sizes lead to oscillations and even slow
convergence.

VI. CONCLUSION

In this paper we have studied and tested state input
and parameter adaptive estimation for a linear parabolic
PDE representing heat transport. Two related problems were
considered. First, only space-varying parameter/input were
considered. The proposed identifier tested in simulation
gives good results. For distributed space-time varying in-
put/parameter with unknown bounds, only theoretical results
were given. More simulations on computed and real data
are needed to establish the performance of the proposed
technique.
In comparison with our previous results using a Kalman filter
in the finite dimensional framework, the present approach
provided a clearer analytical framework but is more sensitive
to tuning parameters. In this paper, noise measurement
implication is not investigated. In our future works, this
question will be addressed.
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