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Other systems sharing the network

Network with a transfer protocol

Router

TP

System

TP TP

Controller

TP

• Open-loop unstable system

• Deterministic model of the network

• Application to secure networks (TCP-SPX-LAN)

1



Contents

I. Background on Time-Delay

II. Problem Formulation

III. Control Design

IV. Application: control of an inverted
pendulum through a TCP network

2



I. Background on Time-Delay

• Lyapunov-Krasovskii/Razumikhin approaches [Niculescu, Kharitonov,
Verriest, Yu...] : constant time-delays/upper bound.

• Passivity [Anderson/Spong, Niemeyer/Slotine...] : teleoperation,

⇒ Pole-placement [Kwon/Pearson, Manitius/Olbrot...] : state predictor.

• Stability [Bo Lincoln 03, Meinsma/Zwart, Sename...] : robustness,

• Stochastic approach [Nilsson 98...] : LQG control.
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II. Problem Formulation

• The transmission protocol dynamics write as

ż(t) = f(z(t), ud(t)), z(t0) = z0

τ(t) = h(z(t), ud(t))

i.e. for secure networks (one flow)
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z(t) =
[

W (t)
q(t)

]

ud(t) =
[

p(t)
C(t)

]

h(., .) ∼ R(t)
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• The remotely controlled system has the form

ẋ(t) = Ax(t) + Bu(t− τ(t))

y(t) = Cx(t)

• Hypotheses

– (A,B) and (A,C) controllable and observable
– the network dynamics is such that

0 ≤ τ(t) ≤ τmax, ∀t ≥ 0

τ̇(t) < 1, for almost all t ≥ 0
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III. Control design

State feedback stabilization:

• based on a state predictor with a time-varying horizon δ(t) [Artstein 82,
Nihtilä 89, Uchida & all. 03]

x(t + δ) = eAδx(t) + eA(t+δ)

∫ t+δ

t

e−AθBu(θ − τ(θ))dθ

u(t) = −Kx(t + δ)
• explicit use of the network dynamics:

δ(t) = τ(t + δ(t))

• results in the pole placement of the time-shifted closed-loop system

ẋ(t + δ(t)) = (A−BK)x(t + δ(t))= Acl x(t + δ(t))
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Dynamic computation of δ(t) = τ(t + δ(t))

• Let
S(t) .= δ(t)− τ(t + δ(t))

with
Ṡ(t) + λS(t) = 0

and λ > 0, to prevent for the numerical instabilities,

⇒ find δ̇(t) such that δ(t) reaches asymptotically the manifold S(t) = 0.

Using the assumption τ̇ 6= 1, δ(t) has the following dynamics

δ̇(t) = − λ

1− dτ(ζ)/dζ
δ +

dτ(ζ)/dζ + λτ(ζ)
1− dτ(ζ)/dζ

where ζ = t + δ.
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ż(t) = f(z(t), ud(t)), z(0) = z0

τ(t) = h(z(t), ud(t))

ẋ(t) = Ax(t) + Bu(t − τ(t))

y(t) = Cx(t)

Linear System

Network Model

δ(t) − τ(t + δ(t)) = 0

Predictor Horizon

u(t) = −KeAδ(t)

[

x(t) + eAt

t+δ(t)
∫

t

e−AθBu(θ − τ(θ))dθ

]

Time-Varying Predictive Control

0 ≤ τ(t) ≤ τmax

τ̇ (t) < 1

Time-Delay

u(t)

u(t − τ(t))

x(t)
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Theorem (output feedback): With the previous hypotheses and

∞ > υ(t) ≥ 0,

|υ̇(t)| < 1 ∀t

where υ(t) is the time-delay of the sensor channel. The observer-based
feedback control law

u(t) = −KeA(δ+υ) ˆ̄x(t)−KeA(t+δ)

∫ t+δ

t−υ

e−AθBu(θ − τ(θ))dθ

˙̄̂x(t) = Aˆ̄x(t) + Bu(t−υ − τ(t− υ)) + H{y(t−υ)− C ˆ̄x(t)}

with ˆ̄x(t)=̇x̂(t− υ(t)) ensures that the closed-loop system is bounded, and
that the state x(t) converges exponentially to zero.
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IV. Application: control of an inverted pendulum
through a TCP network

TCP network:
From the fluid flow model developed by [Misra & all 00] and assuming that
N(ζ) is known at t, δ(t) is obtained from

τ(ζ) =
1
2

[
q(ζ)
Cr

+ Tpcs

]
,

dτ

dζ
(ζ) =

1
2Cr




N(ζ)∑

i=1

Wi(ζ)
Ri(ζ)

− Cr


→ δ(t)

T-shape ECP Inverted Pendulum:

• Dynamics: 4th order, OL unstable, nonminimum phase, coupled
nonlinearities...

• Linearized model → A, B

• LQR synthesis → K
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Experimental setup
Network model (simulated):

dW1(t)

dt
=

1

R1(t)
− W1(t)

2

W1(t− R1(t))

R1(t− R1(t))
p1(t),

dW2(t)

dt
=

1

R2(t)
− W2(t)

2

W2(t− R2(t))

R2(t− R2(t))
p2(t),

dq(t)

dt
= −300 +

2X

i=1

Wi(t)

Ri(t)
, q(0) = 5

τ(t) = R1(t)/2

with

R1(t)
.
=

q(t)

300
+ 0.001

R2(t)
.
=

q(t)

300
+ 0.0015

p1,2(t) = 0.005q(t− R1,2(t))

W1(0) = W2(10) = 10packets.

Inverted Pendulum:

ẋ =

2
664

0 1 0 0
−21.54 0 14.96 0

0 0 0 1
65.28 0 −15.59 0

3
775 x+

2
664

0
8.10
0

−10.31

3
775u(t−τ)
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Experimental results
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Conclusions and Perspectives

• Remote stabilization via communication networks
⇒ stabilizing an open-loop unstable system with τ(t).

• The proposed controller:

– based on a δ(t)-step ahead predictor,
– results in an exponentially converging closed-loop system and pole

placement on the time-shifted system,
– applied to remote output stabilization and observer-based control.

• Perspectives:

– robustness with respect to uncertainties on the time-delay (finite
spectrum assignment robustness),

– consider some more specific network features.
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