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Other systems sharing the network

N

System Controller

TP TP TP TP

Network with a transfer protocol

e Deterministic model of the network

— allow for non-deterministic behavior: robustness
= use system information to increase performance

e Application to secure networks (TCP-SPX-LAN)

e Open-loop unstable system
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. Overview of Network Problems

TP

@ TP TP @
1. Quantization, encoding/decoding: e quality of service,
e related to information theory, e control  under = communication
e control with limited information, constraints.
e time-varying sampling, 4. Time-delays
e differential coding - A-Modulation. e Lyapunov-Krasovskii/Razumikhin
2. Congestion and packet loss: approaches: constant  time-
e congestion control, delays/upper bound.

Passivity: teleoperation,

Stability: robustness,

Stochastic approach: LQG control.
Pole-placement: state predictor.

e discrete analysis and game theory.
3. Link and bandwidth allocation
e distributed systems,

U/...



Modern cars:

e multiple safety/comfort devices,
e VAN/CAN,
e high jitter.

SX-29:

e open-loop unstable,
e LAN,

e high performance control.

Global Hawk (UAV):

e local + remote control,

e wideband satellite and Line-Of-Sight
data link communications.

ITER:

e large multi-systems device,
e LAN: control and data signals,

e scheduled tasks.
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Il. Problem Formulation

e The network dynamics is described by a dynamical model,

Z(to) — 20

i.e. for secure networks (one flow)/Misra & all 00]: TCP with AQM
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e The remotely controlled system has the form

#(t) = Ax(t)+ Bu(t — (1))
y(t) = Cx(1)

e Hypotheses

— (A, B) and (A, C') controllable and observable
— the network dynamics is such that (secure network)

0<7(t) < Tmaz, V>0
T(t) < 1, for almost all t > 0

NB: 7(t) is the delay experienced by the signal, i.e. 7(t) = 1 < the data
never gets to its destination.



l1l. Control design

based on a state predictor with a time-varying horizon §(t) [Artstein 82,
Nihtils 89, Uchida & all. 03] [Springer 2005]

t+6(t)
c(t+06(t) = eWg(t)4 AU / e Y Bu(d — 7(0))db
t
u(t) = —Kax(t+0(t))
results in the pole placement of the time-shifted closed-loop system

dz(t + 5(t))
d(t +6(t))

= (A— BE)a(t +6(t))= Ay x(t + 5(1))

= Non-linear time transformation ¢ +— ¢ + 6(¢t) but exponential
convergence if A, Hurwitz & hyp. on 7(¢) are satisfied.

explicit use of the network dynamics:  §(t) = 7(t + d(t))
I



Dynamic computation of §(t) = 7(t + d(t)) [IEEE CCA 2004]

o Let

A

S(t) = 0(t) — 7(t + 4(¢))
with

S(t) + AS(t) = 0

and A > 0, to prevent for the numerical instabilities,
= find &(¢) such that &(¢) reaches asymptotically the manifold S(¢) = 0.

Using the assumption 7 # 1, S(t) has the following dynamics

5

o A ~dr(Q)/d¢ + AT(C)
=T’ T 1= dr0)/dc

WhereC:t—|—5.



Output feedback and two-channels delays [IFAC TdS 2003]

u(lg Linear System )
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Observer + <
u(t)| State Predictor

t46
u(t) = —KetOTmz(t) — KeAHo) / e Y Bu(h — 7(0))do

t—11

2(t) = A#(t)+ Bult—m —7(t — 7)) + H{y(t—m1) — C3(t)}, #(H)=i(t — 71(t))



Linear System

u(t —7(t))

Time-Delay
0< T(t) < Tmaz
T(t) <1

S| i(t) = Az(t) + Bu(t — 1(t))

y(t) = Cx(t)

Network Model

7(t) = h(z(t), ua(t))

£(t) = f(2(), ua(t)), 2(0) = 20

V

N

Predictor Horizon

5(t) — 7t + 6(t)) = 0

!

Time-Varying Predictive Control

t+8(t)

u(t) = —KeP® | z(t) + et [ e A9Bu(d — 7(0))dd

t

|
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IV. Robustness with respect to delay uncertainties

Problem description: e(t) =7(t) —7(t), {enm, énmr} = sup,{e(t), é(t)}7?
The estimated delay 7(t) is modelled by

2(t) = fe(Z(t): Umeas.(t), uae(t)), 2(0) = Z
%(t) — he(z(t)aumeas.(t)pud

D
~~
N
~—
~—

The closed-loop system writes as
t(t) = Ax(t)+ Bu(t —7(t))

_ t+6(t
w(t) = —KeA0 | p(t) 4 At / =49 Bu(0 — 7(0))do
t

6(t) = T(t+6(t) FAT=06#Y9)

= algebro-differential system with a delayed state
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I.e. differentiating the integral term leads to

X)) = 4 0 X(t)
| —(14+6)eMBKet A—(1+6)e BKeA?
T AS(t—7) A5(t—7)
N BKeO BKeO ] X(t— 1)

0 0 _
+ BKeAS(t—T') BKeAg(t—?) ] X(t o 7-)

— A _OBK _ﬁK ] X(t) when t(t)=7=0

= Artstein’s equivalence principle does not work.

12



Exact method:

e System dynamics

#(t) = Ax(t)— BKe*" Tyt —7)—~ BKI(t—T1)
I(t) = [ e Bu(t+ 0 —7(t + 6))do
with the control law  u(t) = —KeA® [(¢) + Z(¢)]
e Proposed analysis

1. consider Z(t) as a norm-bounded disturbance on the state :

A(t)=—BKZI(t—71) with |A(t)]<oo and lim A(t) #0

t— 00

— the state remains bounded,

2. show that this perturbation vanishes (stability of the control law).

13



e Solution

— LMI: stability of the state & control law,
— heavy tools inducing conservatism,
= formal approach but far from physical reality:

| >| w(t) = (A — (1+8)e PBEe™)w(t)
7_-(t)? €M 6]\4 - ) i
| +BE (e Dyt — 7) — Pyt — 1))
Z 5(t)

Z(t) = e Y Bu(t+ 0 — 7(t + 0))do
‘ distributed IC 0 _ |

u(t) = —KeA(S(t)w(t) Asymptotically stable

Z(t)
B(1) = Aw(t) — BEAa(t - 1)
— BKI(t—r7) BIBS
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Approximated method: [IEEE TAC 2005]

e Fundamental facts

— a norm-bounded disturbance on a nominally stable time-delayed system
leads to a norm-bounded state,
— the control law quickly exhibits slow variations,
— the main disturbing effect comes from the fact that we have x(t+d(t))
instead of x(t + 0(t)).

e Problem formulation

B} #
AS(t Atz BHE) A6
w(t) = —Ke*" z(t)+e e Bu(6 — 7(0))do
t
AS(t Atz t+o(t) A6
= —Ke*W® x(t) + e e " Bu(f —71(0))do
t
_ #
AtZ T4
+ e e Blu(@ —T71(0)) —u(@ —7(0))]do

t

~ —Kz(t + 5(t))
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>  '(t+6(t)) = Ax(t + 6(t)) + Bu(t)

EM, EM = BIBS

< ~Ka(t+5(t) fe

: _ Z t—|—g(t) :
ffffff — KA ) e Y Blu(6 — 7(0)) — u(6 — 7(0))]d0 |-

t

= 2'(t+0(t)) = (A— BK)z(t+6(t)) + BK (x(t + 6(t)) — z(t + 4(¢)))

16



e Proposed solution [Gu, Kharitonov and Chen 03]

— Approximation of the time-varying delay: €(t) is characterized by its
average €,, max. deviation €45 and max. variation €,

(—€q
2'(¢) = Ax(¢)~ BKa(C—ea)+ BK / Ax(0) — BKz(0 — ¢(6))] do
e(t)
8
= z'(¢) = Aaz(%) — BKx(¢ — €4) + €eaBKus(¢)
G yi(t) = — x(t) ) £,.,6,,&
= Nig=sy nEréy
é ya2(t) = Ax(t) — BKui(t)
= w(®) = Aw(t) = VL éuy(t - et)) H
B S ) = Awp®) =~ ya(0)ds
€d t—e(t) ] <
[Gu, Kharitonov and Chen 03]: v(A) < 1 €5 €€ E(1)
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— Scaled small gain: show that vo(Gx) < 1 for X = diag(X; X2),
X1,X9 € R™ "™ non-singular, with

¢ c {;@)

analyzed with a parameterized Lyapunov-Krasovskii functional

Aoz (t) + A1z(t — r) + Eu(t)
Gox(t) + Gia(t — r) + Du(t),

8
~~

-
~—

V(t,g) = ¢ (0)P(0)+2¢" (0) - Q(E)e(8)ds

N / [ ¢T(§)R(§,n)¢(n)dn] d+ [ TS0

—Tr

which is then discretized for LMI synthesis.
=> more realistic result:

x full use of the predictor’s properties,

*x Gu's approach is far less conservative.
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Example

0 1 0 0
—21.54 0 1496 O 8.10
0 0 0 | x + u(t — 1)
6528 0 —1559 0 | | —10.31
€N 0.00 1009 018|027 | 036|045 | 054 | 063|072 0.81 | 0.90
ca(ms) | 81 | 7.8 | 76 | 73 | 7.0 | 6.7 | 63 | 58 | 52 | 44 | 3.4

le. €y = 0.6167, €4 = 2¢, = €4 = 5.9ms

€(t) = €4 + €4 8in (
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Retard et estimation (ms)
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V. Application: control of an inverted pendulum through
a TCP network

T-shape ECP Inverted Pendulum:

e Dynamics: 4'" order, OL unstable, nonminimum phase, coupled
nonlinearities...

e Linearized model — A, B
e LQR synthesis — K

TCP network:
From the fluid flow model developed by [Misra & all 00] and assuming that
N(() is known at ¢, §(t) is obtained from

(N(C) s
e O =5 | X g | 0

=3
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Experimental setup

Network model (simulated): Inverted Pendulum:
dwy(t) 1L W) Wit — Rqi(t)) (t)
i Ri() 2 R(t-Rye) 1
dWo(t) 1 Wa(t) Wa(t — Ro(t)) )
dt 0 2 Ro(t— Ro(t) 2\
dq(t) > wyt) _
() = Rqi(t)/2
with
Loqt)
Rq (t) = % + 0.001
Loq()
Ro(t) = S0 +0.0015
p1,2(t) = 0.005¢(t — Ry 2(%))
W1(0) = Wy5(10) = 10packets.
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Comparison with other methods

. . Fixed horizon predictor:

u(t) = —K [eATmama;(t)

t+Tmax
+eAlttTmaz) / e_AQBu(G — Tmaz)d0
t

e better when 7(t) close to Tz,

e HF disturbance on the control
signal,

e deteriorated system response.




force (N)

Buffer strategy:

u(t) = —K [eATm“xa:(t)

t+Tmaz
+eAlttTmaz) / e_AQBu(Q — Tmaz)d0
t

e a buffer with delay 7,4, — 7(2) is set at
the system'’s input,

e HF disturbance on the control signal,

e deteriorated system response.
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Robustness issues

Robustness wrt. model uncertainties
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Robustness issues (2)

Delay estimation effect
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Conclusions and Perspectives

Remote stabilization via communication networks
=> stabilizing an open-loop unstable system with a time-varying delay.

The proposed controller:

— based on a §(t)-step ahead predictor,

— results in an exponentially converging (non uniform) closed-loop system and pole
placement on the time-shifted system,

— applied to remote output stabilization and observer-based control,

— robust with respect to time-delay uncertainties.

Perspectives:

— experiments: faster system or longer delay (wireless),

— extension to the nonlinear case,

— investigate the network delay estimation and the dedicated network control [Briat05],
— coupling between the system controller and the dedicated network controller.
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