Stabilisation of network controlled systems with a predictive approach

Emmanuel Witrant

with D. GEORGES, C. CANUDAS DE WIT and O. SENAME

Laboratoire d'Automatique de Grenoble, UMR CNRS 5528 ENSIEG-INPG, B.P. 46, 38 402, St. Martin d'Hères, FRANCE

NECS project: www-lag.ensieg.inpg.fr/canudas/necs Ressources: www-lag.ensieg.inpg.fr/witrant/

 1^{st} Workshop on Networked Control System and Fault Tolerant Control October 6^{th} , 2005

Network with a transfer protocol

- Deterministic model of the network
 - allow for non-deterministic behavior: robustness
 - \Rightarrow use system information to increase performance
- Application to secure networks (TCP-SPX-LAN)
- Open-loop unstable system

Contents

- I. Overview of Network Problems
- II. Problem Formulation
- III. Background on the State Predictor
- IV. Computation of the Predictor's Horizon
- V. Explicit use of the Network Model

I. Overview of Network Problems

- 1. Quantization, encoding/decoding:
 - related to information theory,
 - control with limited information,
 - time-varying sampling,
 - differential coding $\Delta\text{-}\mathsf{Modulation}.$
- 2. Congestion and packet loss:
 - congestion control,
 - discrete analysis and game theory.
- 3. Link and bandwidth allocation
 - distributed systems,

- quality of service,
- control under communication constraints.
- 4. Time-delays
 - Lyapunov-Krasovskii/Razumikhin approaches: constant timedelays/upper bound.
 - Passivity: teleoperation,
 - Stability: robustness,
 - Stochastic approach: LQG control.
 - \Rightarrow Pole-placement: state predictor.

Modern cars:

- multiple safety/comfort devices,
- VAN/CAN,
- high jitter.

<u>SX-29:</u>

- open-loop unstable,
- LAN,
- high performance control.

Global Hawk (UAV):

- local + remote control,
- wideband satellite and Line-Of-Sight data link communications.

ITER:

- large multi-systems device,
- LAN: control and data signals,
- scheduled tasks.

II. Problem Formulation

• The network dynamics is described by a dynamical model,

$$\dot{z}(t) = f(z(t), u_d(t)), \quad z(t_0) = z_0$$

 $\tau(t) = h(z(t), u_d(t))$

i.e. for secure networks (one flow)[Misra & all 00]: TCP with AQM

• The remotely controlled system has the form

 $\dot{x}(t) = Ax(t) + Bu(t - \tau(t))$ y(t) = Cx(t)

• Hypotheses

- (A, B) and (A, C) controllable and observable
- the network dynamics is such that (secure network)

$$\begin{aligned} 0 &\leq \tau(t) \leq \tau_{max}, & \forall t \geq 0 \\ \dot{\tau}(t) &< 1, & for \ almost \ all \ t \geq 0 \end{aligned}$$

NB: $\tau(t)$ is the delay *experienced* by the signal, i.e. $\dot{\tau}(t) = 1 \Leftrightarrow$ the data never gets to its destination.

III. Background on the State Predictor

• based on a state predictor with a time-varying horizon $\delta(t)$ [Artstein 82, Nihtilä 89, Uchida & all. 03] [Springer 2005]

$$x(t+\delta(t)) = e^{A\delta(t)}x(t) + e^{A(t+\delta(t))} \int_{t}^{t+\delta(t)} e^{-A\theta} Bu(\theta - \tau(\theta))d\theta$$
$$u(t) = -Kx(t+\delta(t))$$

• results in the pole placement of the *time-shifted* closed-loop system

$$\frac{dx(t+\delta(t))}{d(t+\delta(t))} = (A-BK)x(t+\delta(t)) = A_{cl} x(t+\delta(t))$$

 \Rightarrow Non-linear time transformation $t \mapsto t + \delta(t)$ but exponential convergence if A_{cl} Hurwitz & hyp. on $\tau(t)$ are satisfied.

• explicit use of the network dynamics: $\delta(t) = \tau(t + \delta(t))$

IV. Computation of the Predictor's Horizon $\delta(t) = \tau(t + \delta(t)) \ \text{[IEEE CCA 2004]}$

• Let

$$S(t) \doteq \hat{\delta}(t) - \tau(t + \hat{\delta}(t))$$

with

$$\dot{S}(t) + \sigma S(t) = 0$$

and $\sigma > 0$, to prevent for the numerical instabilities,

 \Rightarrow find $\hat{\delta}(t)$ such that $\hat{\delta}(t)$ reaches asymptotically the manifold S(t) = 0.

Using the assumption $\dot{\tau} \neq 1$, $\hat{\delta}(t)$ has the following dynamics

$$\begin{split} \dot{\hat{\delta}}(t) &= -\frac{\sigma}{1 - d\tau(\hat{\zeta})/d\hat{\zeta}} \,\hat{\delta} + \frac{d\tau(\hat{\zeta})/d\hat{\zeta} + \sigma\tau(\hat{\zeta})}{1 - d\tau(\hat{\zeta})/d\hat{\zeta}} \\ \text{where } \hat{\zeta} &= t + \hat{\delta} \text{ and } |\epsilon(t)| = |\delta(t) - \hat{\delta}(t)| \leq \frac{|\hat{\delta}_0 - \tau(\hat{\delta}_0)|e^{-\sigma t}}{1 - \nu} \end{split}$$

V. Predictor with an Estimated Horizon

$$u(t) = -Ke^{A\hat{\delta}(t)} \left[x(t) + e^{At} \int_{t}^{t+\hat{\delta}(t)} e^{-A\theta} Bu(\theta - \tau(\theta)) d\theta \right]$$

The control law writes equivalently

$$u(t) = -Kx(t + \hat{\delta}(t))$$

Using
$$t \mapsto t + \delta(t)$$
:
 $x'(t + \delta) = Ax(t + \delta) + Bu(t)$
 $= Ax(t + \delta) - BKx(t + \delta)$

which is analyzed from

$$\Sigma_{t}: x'(\zeta) = (A - BK)x(\zeta) + BKA \int_{-\epsilon}^{0} x(\zeta + \theta)d\theta$$
$$-(BK)^{2} \int_{-2\epsilon}^{-\epsilon} x(\zeta + \theta)d\theta$$

Lemma 1. Consider the system Σ_t with appropriate distributed initial conditions. If the following conditions hold

i) A_{cl} is Hurwitz,

ii) $\epsilon(t)$ converges exponentially and is such that

$$0 < \dot{\epsilon}_M \doteq \sup_t \dot{\epsilon}(t) < \frac{1}{2}$$

then the trajectories of $x(\zeta(t))$ are asymptotically bounded.

 \Rightarrow σ must be selected such that

$$\sigma < \frac{1-\nu}{2|\hat{\delta}_0 - \tau(\hat{\delta}_0)|}$$

Remark: $\dot{\epsilon}_M$ is given by the precision of the network model or can be set with the transfer algorithm.

V. Explicit use of the Network Model [video]

Theorem described by

$$\dot{x}(t) = Ax(t) + Bu(t - \tau(t))$$

where (A, B) is a controllable pair. Suppose that the delay dynamics and σ are such that

A1)
$$0 \le \tau(t) \le \tau_{max}$$
,
A2) $\dot{\tau}(t) \le \nu < 1$,

A3) $0 < \dot{\epsilon}_M \doteq \sup_t \dot{\epsilon}(t) < \frac{1}{2}$

A

1. Consider the system then the state feedback control law

$$\begin{aligned} u(t) &= -Kx(t+\hat{\delta}(t)) \\ \dot{\hat{\delta}}(t) &= -\frac{\sigma}{1-d\tau(\hat{\zeta})/d\hat{\zeta}}\hat{\delta} + \frac{d\tau(\hat{\zeta})/d\hat{\zeta} + \sigma\tau(\hat{\zeta})}{1-d\tau(\hat{\zeta})/d\hat{\zeta}} \\ \frac{d\tau}{d\hat{\zeta}}(\hat{\zeta}) &= \frac{dh}{d\hat{\zeta}}(z(\hat{\zeta}), u_d(\hat{\zeta})) \\ \frac{dz}{d\hat{\zeta}}(\hat{\zeta}) &= f(z(\hat{\zeta}), u_d(\hat{\zeta})), \quad z(0) = z_0 \end{aligned}$$

with $\hat{\zeta} = \hat{\zeta}(t) = 1 + \hat{\delta}(t)$ and $\hat{\delta}(0) = \hat{\delta}_0 \in [0, \tau_{max}], \text{ ensures that}$ the closed-loop system trajectories are asymptotically stable.

Conclusions and Perspectives

- Remote stabilization via communication networks
 ⇒ stabilizing an open-loop unstable system with a time-varying delay.
- The proposed controller:
 - based on a $\delta(t)$ -step ahead predictor,
 - results in an exponentially converging (non uniform) closed-loop system and pole placement on the time-shifted system,
 - applied to remote output stabilization and observer-based control,
 - robust with respect to time-delay uncertainties.
- Perspectives:
 - feedback/observer gain co-design,
 - extension to the nonlinear case,
 - investigate the network delay estimation and the dedicated network control [Briat05],
 - coupling between the system controller and the dedicated network controller.