E.Witrant and S. Brémond

Outline

Introduction to Fusion

An energy from the stars Fusion Principle Tokamaks

Profiles control

Flux diffusion dynamics Time constant Nonlinearity Inputs Experimental resi

MHD Control

Unstable modes model Stability and delays Control and delay compensation Experiments

References

Profiles Control and Stability in Thermonuclear Fusion: Some Issues for ITER

Emmanuel WITRANT¹ and Sylvain BRÉMOND²

¹UJF / GIPSA-lab (Systems & Control Department), Grenoble, FRANCE. Email: emmanuel.witrant@gipsa-lab.inpg.fr ²CEA, IRFM, F-13108 Saint-Paul-lez-Durance, FRANCE. Email: sylvain.bremond@cea.fr

JD-JN-MACS, Angers, March 17-18, 2009

Motivation

"Control in fusion: towards ITER"

E.Witrant and S. Brémond

Outline

Introduction to Fusion

An energy from the stars Fusion Principle Tokamaks Why ITER?

Profiles control

- Flux diffusion dynamics Time constan Nonlinearity
- Inputs
- Experimental results
- Control

MHD Control

- Unstable modes model Stability and delay Control and delay compensation Experiments
- Conclusions

References

Abundant fuels:

- Deuterium: from all forms of water, for millions of years.
- Tritium: not natural, bred from Lithium.
- Lithium: from earth's crust, if all the world's electricity provided by fusion, known reserves would last for at least one thousand years.

High energetic gain:

 10 g of D (500 *l* of water) and 15 g of T (30 g of L_i) ⇒ lifetime electricity needs of an average person in an industrialized country.

E.Witrant and S. Brémond

Outline

- Introduction to Fusion
- An energy from the stars Fusion Principle Tokamaks

Profiles control

Flux diffusion dynamics Time constant Nonlinearity Inputs Experimental res

MHD Control

- Unstable modes model Stability and delays Control and delay compensation Experiments
- 0011010010110

References

Inherent safety:

- Very small amount of D & T and difficult operating conditions → any deviation results in a rapid cooling of the plasma and its termination.
- No circumstances in which the fusion reaction can proceed into an uncontrollable or critical condition.

Environmental advantages:

- No 'greenhouse' gases (no global warming contribution).
- Rapid decay of the structure radioactivity and the time span before it can be re-used and handled can be minimised (to around 50 years).
- No radioactive 'waste' from the fusion reaction itself.
- The byproduct is H_e an inert and harmless gas.

47

E.Witrant and S. Brémond

Outline

Introduction to Fusion

An energy from the stars Fusion Principle Tokamaks

Profiles control

Flux diffusion dynamics Time constant Nonlinearity Inputs Experimental resu Control

MHD Control

Unstable modes model Stability and delays Control and delay compensation Experiments Conclusions

References

Introduction to Fusion

An energy from the stars Fusion Principle Tokamaks Why ITER?

2 Profiles control

Flux diffusion dynamics Time constant Nonlinearity Inputs Experimental results Control

3 MHD Control

Unstable modes model Stability and delays Control and delay compensation Experiments

▲ロト ▲冊 ト ▲ ヨ ト ▲ ヨ ト つ Q ()

E.Witrant and S. Brémond

Outline

Introduction to Fusion

An energy from the stars Fusion Principle Tokamaks Why ITER?

Profiles control

Flux diffusion dynamics Time constant Nonlinearity Inputs Experimental results Control

MHD Control

Unstable modes model Stability and delays Control and delay compensation Experiments

Conclusions

References

A Short Introduction to Fusion

<ロト <回 > < 回 > < 回 > < 回 > < 回

E.Witrant and S. Brémond

Outline

Introduction to Fusion

- An energy from the stars Fusion Principle
- Tokamaks Why ITER?

Profiles control

Flux diffusion dynamics Time constant Nonlinearity Inputs Experimental results

MHD Control

Unstable modes model Stability and delays Control and delay compensation Experiments

Conclusions

References

An energy from the stars

E.Witrant and S. Brémond

Outline

Introduction to Fusion

An energy from the stars

Fusion Principle

Tokamaks Why ITER?

Profiles control

Flux diffusion dynamics Time constant Nonlinearity Inputs Experimental results Control

MHD Control

Unstable modes model Stability and delays Control and delay compensation Experiments

Conclusions

References

Fusion and fission: exo-energetic processes

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

E.Witrant and S. Brémond

Outline

Introduction to Fusion

An energy from the stars

Fusion Principle

Tokamaks Why ITER?

Profiles control

Flux diffusion dynamics Time constant Nonlinearity Inputs Experimental results

Control

MHD Control

Unstable modes model Stability and delays Control and delay compensation Experiments

Conclusions

References

Fusion vs. fission

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

E.Witrant and S. Brémond

Outline

- Introduction to Fusion
- An energy from the stars Fusion Principle
- Why ITER?

Profiles control

- Flux diffusion dynamics Time constant Nonlinearity Inputs Experimental results
- Unstable modes model Stability and delays Control and delay compensation Experiments
- References

Controlled fusion: Tokamaks

E.Witrant and S. Brémond

Outline

- Introduction to Fusion
- An energy from the stars Fusion Principle
- Tokamaks

Profiles control

Flux diffusion dynamics Time constant Nonlinearity Inputs Experimental resu Control

MHD Control

- Unstable modes model Stability and delay Control and delay compensation Experiments
- Conclusions
- References

Principle of a fusion reactor

Performances:

- Energy confinement time
- Plasma energy
- Fraction of output power used to heat the plasma

▲ロト ▲冊 ト ▲ ヨ ト ▲ ヨ ト つ Q ()

E.Witrant and S. Brémond

Outline

Introduction to Fusion

An energy from the stars Fusion Principle

Tokamaks Why ITER?

Profiles control

Flux diffusion dynamics Time constant Nonlinearity Inputs Experimental resu

Control

MHD Control

Unstable modes model Stability and delays Control and delay compensation Experiments

Conclusions

References

Magnetic confinement: close the field lines to form a torus

E.Witrant and S. Brémond

Outline

Introduction to Fusion

An energy from the stars Fusion Principle

Tokamaks Why ITER?

Profiles control

Flux diffusion dynamics Time constant Nonlinearity Inputs Experimental results

Control

MHD Control

Unstable modes model Stability and delays Control and delay compensation Experiments

001101001010

References

Plasma dynamics: isoflux surfaces ... and turbulences!

E.Witrant and S. Brémond

Outline

Introduction to Fusion

- An energy from the stars Fusion Principle
- Tokamaks

Profiles control

- Flux diffusior dynamics Time constar
- Nonlinearit
- Inputs
- Experimental resul

MHD Control

- Unstable modes model Stability and delays Control and delay compensation Experiments
- Conclusions

References

Plasma Physics Issues:

- MHD Stability
- Heat Confinement
- Steady State Operation
- Control of Plasma Purity
- Exploration of the new physics with a dominant a-particles plasma self heating

▲ロト ▲冊 ト ▲ ヨ ト ▲ ヨ ト つ Q ()

E.Witrant and S. Brémond

Outline

Introduction to Fusion An energy from the stars Fusion Principle Tokamaks

Tokamaks Why ITER?

Profiles control

Flux diffusion dynamics Time constant Nonlinearity Inputs Experimental results Control

MHD Control

Unstable modes model Stability and delays Control and delay compensation Experiments

Conclusions

References

Tokamak automation

・ コット (雪) ・ (目) ・ (目)

E.Witrant and S. Brémond

Outline

- Introduction to Fusion
- An energy from the stars Fusion Principle
- Tokamaks

Profiles control

Flux diffusion dynamics Time constant Nonlinearity Inputs Experimental resul Control

MHD Control

- Unstable modes model Stability and delay Control and delay compensation
- Conclusions
- References

Radio frequency antennas (i.e. Tore Supra):

- Ion cyclotron radio heating (ICRH) 40-80 Mhz (2 antennas, 10 MW)
- Lower hybrid (LH) 3.7 GHz (2 antennas, 16 klystrons, 6.2 MW)
- Electron cyclotron current drive (ECCD) 118 Ghz (1 antenna, 2 gyrotrons, 0.8 MW)

Why ITER?

・ コ ト ・ 西 ト ・ 日 ト ・ 日 ト

э

"Control in fusion: towards ITER"

E.Witrant and S. Brémond

Why ITER?

Experimental results

E.Witrant and S. Brémond

An energy from the Why ITER?

Experimental results

V_{plasma} **P**_{fusion} T _{plasma}

Vplasma **P**_{fusion} ~30 s T_{plasma}

80 m³ ~16 MW

V_{plasma} **P**_{fusion} T_{plasma}

830 m³ ~500 MW ~400 s

Some numbers ...

・ロト ・ 母 ト ・ ヨ ト ・ ъ

E.Witrant and S. Brémond

Outline

- Introduction to Fusion
- An energy from the stars Fusion Principle Tokamaks
- Why ITER?

Profiles control

Flux diffusion dynamics Time constant Nonlinearity Inputs Experimental re

MHD Control

- Unstable modes model Stability and delays Control and delay compensation Experiments
- References

Programmatic:

 Demonstrate the scientific and technological feasibility of fusion energy for peaceful purposes.

Technical:

- Demonstrate extended burn of DT plasmas, with steady state as the ultimate goal.
- Integrate and test all essential fusion power reactor technologies and components.
- Demonstrate safety and environmental acceptability of fusion.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

E.Witrant and S. Brémond

Outline

Introduction to Fusion

An energy from the stars Fusion Principle Tokamaks Why ITER?

Profiles control

- Flux diffusion dynamics Time constant Nonlinearity
- Inputs
- Experimental res Control

MHD Control

- Unstable modes model Stability and delays Control and delay compensation
- Conclusions
- References

Profiles control: modeling and feedback in Tore Supra

- Advanced plasma confinement schemes ⇒ current density and temperature profiles control;
- Focus on the magnetic flux dynamics and use experimental measurements;
- Include bootstrap effect, poloidal, ECCD, ICRH, LH;
- ⇒ representative RT model of plasma physics for control synthesis on Tore Supra.

E.Witrant and S. Brémond

Outline

Introduction to Fusion An energy from the

stars Fusion Principle Tokamaks

Profiles control

Flux diffusion dynamics Time constant Nonlinearity Inputs Experimental resu Control

MHD Control

Unstable modes model Stability and delay: Control and delay compensation Experiments

Flux diffusion dynamics

Hypotheses:

- cylindrical coordinates (neglect GSS),
- neglect diamagnetic effect,

・ロト ・ 母 ト ・ ヨ ト ・

э

System dynamics [Blum'89, Brégeon & al'98]:

$$\frac{\partial \psi}{\partial t}(x,t) = \eta_{/\!/}(x,t) \left[\frac{1}{\mu_0 a^2} \frac{\partial^2 \psi}{\partial x^2} + \frac{1}{\mu_0 a^2 x} \frac{\partial \psi}{\partial x} + R_0 j_{bs}(x,t) + R_0 j_{ni}(x,t) \right]$$

$$j_{\phi}(x,t) = -\frac{1}{\mu_0 R_0 a^2 x} \frac{\partial}{\partial x} \left[x \frac{\partial \psi}{\partial x} \right]$$

with $\psi'(0, t) = 0$, $\psi'(1, t) = f(I_p)$ or $\dot{\psi}(1, t) = f(V_{loop})$ and IC.

E.Witrant and S. Brémond

Outline

Introduction to Fusion

- An energy from the stars Fusion Principle Tokamaks
- Why ITER?

Profiles control

- Flux diffusion dynamics
- Time constant
- Nonlinearity Inputs Experimenta
- Control

MHD Control

model Stability and delay Control and delay compensation

Conclusions

References

Resistivity, temperature and density profiles

• Resistivity [Hirshman'77]:

$$\eta_{/\!/}(x,t) = f(T_e, n_e, \bar{Z}) \propto T_e^{-3/2}(n_e, \bar{Z})$$

• Temperature:

- Profile shape determination → parameter dependant identification of nonlinear distributed systems:
 - · Grey-box modeling,
 - 3-hidden layers approach: spatial distribution, steady-state and transient behavior,

Time constant

- Stochastic descent method with direct differentiation.
- Predictive mode: identified shape parameters + amplitude/[ITER'99]
- Direct measurement
- Density average or interferometer:

 $n_e(x, t) = n_{e0}(t)(1 - x^{\gamma_n})$ and $n_{e0}(t) = \frac{\gamma_n + 1}{\gamma_n} \bar{n}_e(t)$.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへで

E.Witrant and S. Brémond

Outline

Introduction to Fusion An energy from the stars

Fusion Principle Tokamaks

Why ITER?

Profiles contro

Flux diffusion dynamics Time constant

Nonlinearity

Inputs Experimental result:

MHD Control

Unstable modes model Stability and delays Control and delay compensation Experiments

Conclusions

References

Nonlinear component

$$\frac{\partial \psi}{\partial t}(x,t) = \eta_{\parallel}(x,t) \left[\frac{1}{\mu_0 a^2} \frac{\partial^2 \psi}{\partial x^2} + \frac{1}{\mu_0 a^2 x} \frac{\partial \psi}{\partial x} + R_0 j_{bs}(x,t) + R_0 j_{ni}(x,t) \right]$$

Bootstrap effect:

- Self induced current,
- Nonlinear component [Hirshman'88]:

$$j_{bs}(x,t) = \frac{eR_0}{\partial \psi / \partial x} \left\{ (A_1 - A_2) n_e \frac{\partial T_e}{\partial x} + A_1 T_e \frac{\partial n_e}{\partial x} + A_1 (1 - \alpha_i) n_i \frac{\partial T_i}{\partial x} + A_1 T_i \frac{\partial n_i}{\partial x} \right\}$$

with
$$n_i(x,t) \approx \frac{7-\bar{Z}(t)}{6}n_e(x,t)$$
 and $T_i(x,t) \approx \alpha_{Ti}(t)T_e(x,t)$.

▲ロト ▲冊 ト ▲ ヨ ト ▲ ヨ ト つ Q ()

E.Witrant and S. Brémond

Outline

Introduction to Fusion

An energy from th stars Fusion Principle Tokamaks

Why ITER?

Profiles control

- Flux diffusion dynamics Time constant
- Nonlinearity

Inputs

Experimental results Control

MHD Control

Unstable modes model Stability and delays Control and delay compensation Experiments

Conclusions

References

Controlled inputs

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

BC input from the poloidal coil:

$$V_{c} = R_{c}I_{c} + L_{c}\dot{I}_{c} + M\dot{I}_{p}$$
$$V_{loop} = M\dot{I}_{c} - \frac{1}{I_{p}}\frac{\partial}{\partial t}\left[\frac{L_{p}I_{p}^{2}}{2}\right] = \dot{\psi}_{a}$$

Local control loop: set V_c according to $I_{p,ref}$ or $V_{loop,ref}$.

- Distributed current deposit from the antennas (LH, ECCD)
 - Engineering approach with gaussian approximation:

$$\dot{v}_{ni}(x,t) = \vartheta(t)e^{-(\mu(t)-x)^2/2\sigma(t)}$$

 Temperature profile modification (ICRH, LH) ⇒ Hybrid dynamics (scaling laws).

Experimental results

ITER" E.Witrant and S. Brémond

"Control in fusion: towards

Outline

Introduction to Fusion

- An energy from t stars
- Tokamaks
- Why ITER?

Profiles contro

- Flux diffusion
- dynamics
- Nonlinearity
- Inputs
- Experimental results
- Control

MHD Control

- Unstable modes model Stability and delay Control and delay compensation
- Experiments
- Conclusions
- References

Lower Hybrid effect: shot TS 35109 - variations in N_{\parallel} , constant I_{ρ} (0.6 MA) and power input (1.8 MW).

Figure: ψ_{sim} (—) vs. measurements (––) and CRONOS (– · –): loop voltage (top), $\beta_{\theta} + l_i/2$ (middle) and edge safety factor (bottom).

E.Witrant and S. Brémond

Outline

Introduction to Fusion

- An energy from th stars Fusion Principle Tokamaks
- Why ITER?

Profiles contro

- Flux diffusion dynamics Time constant Nonlinearity Inputs
- Experimental results

MHD Control

- Unstable modes model Stability and delay Control and delay compensation
- Experiments
- Conclusions
- References

Figure: ψ_{sim} (—) vs. CRONOS (- · -) at t = 7 s: safety factor (top) and current densities (effective j_{ϕ} , LH j_{lh} , ohmic j_{ω} and bootstrap j_{bs}) profiles (bottom).

E.Witrant and S. Brémond

Outline

Introduction to Fusion

- An energy from th stars Fusion Principle Tokamaks
- Why ITER?

Profiles control

- Flux diffusion dynamics Time constant Nonlinearity Inputs
- Experimental results

Control

MHD Control

- Unstable modes model Stability and delays Control and delay compensation Experiments
- Conclusions
- References

NL Model Predictive Control

$$\min_{LH, ECRF} J \doteq \int_0^1 \left(j_{ref} - (j_{bs} + j_{ohm} + j_{ecrf} + j_{lh}) \right)^2 dx$$

Figure: Error and current profiles with NLMPC

E.Witrant and S. Brémond

Outline

Introduction to Fusion

An energy from the stars Fusion Principle Tokamaks

Profiles control

Flux diffusion dynamics Time constant Nonlinearity

inputs

Control

MHD Control

Unstable modes model Stability and delays Control and delay compensation Experiments

References

Security factor profile tracking q^*

$$j_{lh} = -j_{bs} \left(\partial_x P_e, \frac{-c_q x}{q^*} \right) - c_j \frac{1}{x} \partial_x \left[x \partial_x \left[\frac{-c_q x}{q^*} \right] \right] + \frac{V}{R\eta}$$

Tracking control

 \Rightarrow Easy to implement ($P_e \& T_e$ as inputs), high sensibility to q^*

Summary

"Control in fusion: towards ITER"

E.Witrant and S. Brémond

Outline

Introduction to Fusion

An energy from the stars Fusion Principle Tokamaks

Profiles control

- Flux diffusion dynamics Time constar
- Nonlinearity
- Evenerimentel
- Control

MHD Control

- Unstable modes model Stability and delay Control and delay compensation
- Conclusions
- References

- Efficient model to represent the main control-relevant profiles: 3 coupled PDE + wave/particule interactions → 1 PDE + identified shapes;
- Specific care of the discretization scheme and numerical integration;
- Fast computation (≈ 1.7s for shot TS 33632 with 21 points and t_s = 10 ms), suitable for RT NLMPC;
- Variable step spatial discretization ⇒ reduce the number of points (i.e. dynamically);
- Robust wrt. measurement noises, discretization steps (spatial and temporal);
- Simplified model and first steps toward output feedback control.

Stability analysis and model-based control in EXTRAP-T2R with time-delay compensation (Alfvén-lab, KTH, Stockholm)

▲ロト ▲冊 ト ▲ ヨ ト ▲ ヨ ト つ Q ()

"Control in fusion: towards ITER"

E.Witrant and S. Brémond

Outline

Introduction to Fusion

An energy from the stars Fusion Principle Tokamaks Why ITER?

Profiles control

Flux diffusion dynamics Time constant Nonlinearity Inputs Experimental resu

MHD Control

Constable modes model Stability and delays Control and delay compensation Experiments

Conclusions

References

E.Witrant and S. Brémond

Outline

Introduction to Fusion

An energy from the stars Fusion Principle Tokamaks

Profiles control

Flux diffusion dynamics Time constant Nonlinearity Inputs Experimental re Control

MHD Control

- Unstable modes model Stability and delays Control and delay compensation Experiments Conclusions
- References

- Magnetohydrodynamic instabilities (non-symmetric electric currents) = crucial issue for fusion plasmas & ITER
- ⇒ Dedicated experiment: Reverse Field Pinch EXTRAP-T2R, with Intelligent-Shell feedback (4 × 32 actuator, 4 × 32 sensor saddle coils)
 - MHD control implies to consider
 - the aliasing of spatial harmonics
 - actuation dynamics and control latencies
- ⇒ New model with experimental constraints and model-based control

E.Witrant and S. Brémond

Outline

Introduction to Fusion

An energy from the stars Fusion Principle Tokamaks

Profiles control

- Flux diffusion dynamics Time constant Nonlinearity Inputs Experimental re
- Control

MHD Control

- Unstable modes model Stability and delays Control and delay compensation Experiments Conclusions
- References

EXTRAP T2R fusion plasma experiment

Machine parameters

- major radius *R*₀=1.24 m
- plasma minor radius a=18 cm
- shell time constant τ_{ver} =6 ms
- plasma current *l_p*=80 kA
- electron temp. T_e=250 eV
- pulse length τ_{pulse} < 60 ms

EXTRAP T2R vessel and shell during assembly

Pulse lengths $\tau_{pulse} >> \tau_{ver}$ allow studies of MHD instabilities of the resistive wall mode (RWM) type (growing on the time scale of the shell)

E.Witrant and S. Brémond

Outline

Introduction to Fusion

An energy from the stars Fusion Principle Tokamaks Why ITER?

Profiles control

Flux diffusion dynamics Time constan

loouto

-Experimental resu

Control

MHD Control

Unstable modes model

Stability and delay

Control and dela compensation

Experiments

Conclusions

References

Magnetohydrodynamic unstable modes model

Resistive-wall mode physics in RFP: from MHD to perturbed ODE

 Linear stability investigated by periodic spectral decomposition

$$\mathbf{b}(r,t) = \sum_{mn} \mathbf{b}_{mn}(r) e^{j(t\omega+m\theta+n\phi)}$$

Fourier eigenmodes $\mathbf{b}_{mn}(r)$ with growth-rate $\gamma_{mn} = j\omega_{mn}$,

• Ideal MHD modes:

 $\tau_{mn}\dot{b}_{mn}^{r}-\tau_{mn}\gamma_{mn}b_{mn}^{r}=b_{mn}^{r,ext}$

 b_{mn}^{r} : radial component of perturbed field, $b_{mn}^{r,ext}$: external active coil, τ_{mn} : penetration time.

Figure: Growth-rates $\tau_w \gamma_{mn}$. *: Integer-*n* non-resonant positions (RWMs) for m = 1.

E.Witrant and S. Brémond

Outline

Introduction to Fusion

An energy from the stars Fusion Principle Tokamaks Why ITER?

Profiles control

- Flux diffusior dynamics
- Time constar
- Nonlinearit
- Inputs
- Experimental results
- Control

MHD Control

Unstable modes model

- Stability and delay
- Control and delay compensation
- Experiments
- Conclusions
- References

MIMO plant modeling by geometric coupling of SISO dynamics

Standard state-space form

- Faraday and Biot-Savart laws + ideal integrator on the sensor coil output voltage (hyp.)
 - $\begin{cases} \dot{\mathbf{x}} &= A\mathbf{x} + B\mathbf{u} + N\mathbf{v}_1 \\ \mathbf{z} &= M\mathbf{x} \\ \mathbf{y} &= C\mathbf{x} + \mathbf{v}_2 \end{cases}$

MHD-modes vs. active coil cur. & exog. signal optional performance vector time-integrated sensor voltages & white noise

くしゃ 本語 アメヨア オヨア しゅう

with state matrix elements (instantiated for T2R geometry and routing)

 $\begin{array}{lcl} A_{mn,m'n'} & \sim & \gamma_{mn} \delta_{mn,m'n'} \\ B_{mn,ij} & \sim & \tau_{mn}^{-1} \int_{\Omega} e^{-\iota(m\theta+n\phi)} \bigg(\hat{\mathbf{r}} \cdot \oint_{l_{ij}} \frac{d\mathbf{l}_{ij} \times \big(\mathbf{r} - \mathbf{r}_{ij}\big)}{|\mathbf{r} - \mathbf{r}_{ij}|^3} \bigg) d\Omega \\ C_{pq,mn} & \sim & \int_{\Omega} e^{+\iota(m\theta+n\phi)} f_{pq} A_{pq} d\Omega \end{array}$

E.Witrant and S. Brémond

Outline

Introduction to Fusion

An energy from the stars Fusion Principle Tokamaks Why ITER?

Profiles control

Flux diffusion dynamics Time constant Nonlinearity Inputs Experimental resu Control

MHD Control

Unstable modes model

Stability and delay

compensation

Conclusions

References

Modes coupling and aliasing of spatial frequencies:

- sensors and actuators: single-mode to multiple-mode model affected by *aliasing*;
- the traditional *IS-regulator* (output convergence) does not counteract the disturbances influence on MHD-modes;
- ⇒ Precise mode-control to address the problem of internal state stability.

Actuators dynamics, latencies and PID control

Characteristic times (T2R) → actuation

$$\mathbf{u}_{sys}(t) pprox rac{1}{ au_c s + 1} rac{\kappa}{ au_a s + 1} \mathbf{u}_{DAC}(t - au_h)$$

• PID implementation with time-delay

$$\mathbf{u}_{DAC}(t) = \mathbf{K}_{p} \, \mathbf{e}(t) + \mathbf{K}_{i} \, \mathbf{q}(t) + \tau_{d}^{-1} \mathbf{K}_{d} \left(\mathbf{e}(t) - \mathbf{e}(t - \tau_{d})\right)$$

 \Rightarrow Closed-loop dynamics

 $\dot{\tilde{\mathbf{x}}}(t) = \mathcal{A}_0 \tilde{\mathbf{x}}(t) + \mathcal{A}_1(\theta) \tilde{\mathbf{x}}(t-\tau_h) + \mathcal{A}_2(\theta) \tilde{\mathbf{x}}(t-\tau_h-\tau_d) + \mathcal{E} \mathbf{v}_1(t)$

▲ロト ▲冊 ト ▲ ヨ ト ▲ ヨ ト つ Q ()

E.Witrant and S. Brémond

Outline

Introduction to Fusion

An energy from the stars Fusion Principle Tokamaks

Why ITER?

Profiles control

Flux diffusion dynamics
Time constant
Nonlinearity
Inputs
Experimental results
Control

MHD Control

Unstable modes model

Stability and delays

Control and delay

Experiments

Conclusions

References

Time constants and delays

Symbol	Value/order	Description/comment
$ au_{w,N}$	13.8 ms	Nominal resistive wall time
$ au_w$	$\approx 10\mathrm{ms}$	Experimental resistive wall time
$ au_{mn}$	$\leq \frac{1}{2}\tau_w$	Actual model mode time
$ au_{\sf MHD}$	$\sim \bar{1}\mu s$	Internal MHD activity/fluctuations
$ au_d$	100 <i>µ</i> s	Digital sampling time, controller cycle
$ au_h$	$\sim 100\mu s$	Control latency, dead time
$ au_{CPU}$	< 100 µs	Algorithm-dependent part of τ_h
$ au_a$	8 <i>µ</i> s	Active amplifier first-order time
$ au_c$	1 ms	Active coil L/R-time
$ au_{A\&D}$	$\sim 1 \mu s$	ADC/DAC settle, ns/µs respectively

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ○ ○ ○ ○

E.Witrant and S. Brémond

Outline

Introduction to Fusion

- An energy from the stars Fusion Principle Tokamaks
- Why ITER?

Profiles control

- Flux diffusion dynamics Time constant Nonlinearity
- Inputs
- Experimental result
- Control

MHD Control

Unstable modes model

- Stability and delay
- Control and delay compensation
- Experiments
- Conclusions
- References

Open-loop error estimation and parameter identification

- Actuators dynamics identification $\rho^{ij} \doteq \{\tau_c^{ij}, \tau_h^{ij}, \kappa^{ij}\}$ from (PRBS).
- Error-field estimation and filtering

$$\begin{cases} \ddot{\mathbf{x}} = \begin{pmatrix} A & N \\ 0 & -\tau_s^{-1}I \end{pmatrix} \tilde{\mathbf{x}} + \begin{pmatrix} B \\ 0 \end{pmatrix} \mathbf{u} + \mathbf{v}_1' \\ \mathbf{y} = \begin{pmatrix} C & 0 \end{pmatrix} \tilde{\mathbf{x}} + \mathbf{v}_2 \end{cases}$$

 $\tilde{\mathbf{x}}(t) \doteq (\mathbf{x}(t)^T \mathbf{x}_s(t)^T)^T$ estimated by Kalman filter, $\mathbf{x}_s(t)$ is *inter alia* RWM-instabilities

Model summary

E.Witrant and S. Brémond

Outline

- Introduction to Fusion An energy from the
- stars Fusion Principle
- lokamaks
- Profiles control
- Flux diffusion dynamics Time constant
- Nonlinearit
- Inputs
- Experimental results
- Control

MHD Control

Unstable modes model

Stability and delays

- Control and delay compensation
- Experiments
- Conclusions
- References

Stability analysis and delay effects

Infinite spectrum of the Delay Differential Equation

$$\det \Delta(s) = \det \left(sI - \mathcal{A}_0 - \sum_{i=1}^n \mathcal{A}_i e^{-s\tau_i} \right) = 0$$

 Mode-control and perfect decoupling: SISO dynamics (fixed gains)

$$G_{mn}(s) = \frac{1}{\tau_{mn}s - \tau_{mn}\gamma_{mn}} \frac{1}{\tau_c s + 1} \frac{1}{\tau_a s + 1} e^{-s\tau_h}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ◆ ○ ◆

 $\rightarrow\,$ fictitious but usefull for disturbance rejection and resonant-field amplification analysis

E.Witrant and S. Brémond

Outline

Duch

Flux diffusion
dynamics
Time constant
Nonlinearity
Inputs
Experimental result
Control

MHD Control

Unstable modes model

Stability and delays

Control and delay compensation

Conclusions

References

Spectrum dependence on *τ_h*: MIMO (rightmost roots) and SISO cases

SISO-set stability in (τ_h, τ_d) -space and MIMO-plant stability w.r.t. τ_h .

・ コ ト ・ 西 ト ・ 日 ト ・ 日 ト

\Rightarrow Infinite spectrum model with key periferal (automation) dynamics.

E.Witrant and S. Brémond

Outline

- Introduction to Fusion
- An energy from the stars Fusion Principle Tokamaks

Profiles control

- Flux diffusion dynamics Time constant Nonlinearity Inputs
- Experimental result
- Control

MHD Control

Unstable modes model

Control and delay compensation

Experiments

Conclusions

References

Model-based control and delay compensation

- Objective: ensure MHD stability and minimize closed-loop spectral abscissa under PI-TD structure constraints
- Advantages of TD approach:
 - varying computational complexity implies varying τ_h
 - free τ_h = fitting parameter to mimic experimental instability onset

Direct Eigenvalue Optimization

- direct MIMO approach generally nonconvex and nonsmooth
- ⇒ hybrid SISO/MIMO method: minimize the maximum spectral abscissas of the SISO set
 - gradient-sampling method: robustified steepest-descent method suitable for nonsmooth optimization

▲ロト ▲冊 ト ▲ ヨ ト ▲ ヨ ト つ Q ()

E.Witrant and S. Brémond

Outline

- Introduction to Fusion
- An energy from the stars Fusion Principle Tokamaks
- Why ITER?

Profiles control

- Flux diffusion dynamics Time constant Nonlinearity Inputs Experimental r
- Control

MHD Control

Unstable modes model

Control and delay

compensation

Experiments

Conclusions

References

Optimization results

- Two different parameterizations, implicitly assigning the closed-loop performance and control-input norm:
 - a) varying k_p and searching for the optimal $\tilde{\theta}^* = (k_i^*, k_d^*)$ for a nominal $\tau_h \rightarrow \text{Max CL spectrum in}(k_i, k_d)$ -space,
 - b) varying τ_h and determining the full optimal PID $\tilde{\theta}^* = (k_p^*, k_i^*, k_d^*)$
- Robust on the given problems: convergence within 10 – 30 iterations

・ コ ト ・ 雪 ト ・ ヨ ト ・ ヨ ト ・ ヨ ・

E.Witrant and S. Brémond

Outline

Introduction to Fusion

An energy from the stars Fusion Principle Tokamaks Why ITER?

Profiles contro

- Flux diffusio dynamics
- Nonlinearity
- Inputs
- Experimental results
- Control

MHD Control

Unstable modes model

Control and delay

Experiments

Conclusions

References

Setup

- New T2R experiments: #20743 #20755 and $\#20824 \#20838 I_p \approx 85 \text{ kA}$, shot length $\tau_p = \sim 50 70 \text{ ms}$ and *reversal* and *pinch* $(F, \Theta) \approx (-0.27, 1.72)$.
- Experiment vs. simulation model: global shape is conserved = suitable for control
- Initial horizontal motion compensated by an external system stronger than IS controller and needs $\sim 10\,{\rm ms}$ to become stationary
- Transient or steady-state generic performance index

$$J_{\nu}(\theta) \equiv \frac{1}{t_1 - t_0} \int_{t_0}^{t_1} \sigma_{\tau} \nu^{T}(\tau, \theta) \nu(\tau, \theta)$$

▲ロト ▲冊 ト ▲ ヨ ト ▲ ヨ ト つ Q ()

Experimental results

E.Witrant and S. Brémond

Outline

Introduction to
Fusion
An energy from the stars
Fusion Principle

Tokamaks

Profiles control

Flux diffusion dynamics Time constant Nonlinearity Inputs Experimental resu Control

MHD Control

Unstable modes model Stability and delay

Control and delay compensation

Experiments

Conclusions

References

Performance improvements

Shot#	K_p	Ki	K _d	J_y	J_u	Comment
20743	150	16000	0.05	0.464	1.66	old setting 1
20744	160	16000	0.04	0.509	1.80	old setting 2
20746	106	37500	0.061	0.259	2.12	series a)
20747	126	47500	0.073	0.304	1.94	a)
20827	150	16000	0.05	0.501	1.60	old setting 1
20833	119.6	46800	0.065	0.304	1.77	b)
20835	106.8	39860	0.058	0.288	1.64	b)

 \Rightarrow Optimized controllers = 44% reduction of average field energy at the sensors during steady-state period, at the expense of higher input power (+28%).

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Summary

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

fusion: towards ITER" E.Witrant and S. Brémond

"Control in

Introduction to Fusion

An energy from the stars Fusion Principle Tokamaks

Profiles control

- Flux diffusion dynamics Time constant Nonlinearity Inputs
- Experimental resul

MHD Control

- Unstable modes model Stability and dela
- Control and delay compensation

Experiments

Conclusions

References

- New model for MHD instabilities in T2R, explicitly including important geometrical and engineering aspects
- Direct closed-loop PID gain optimization for the corresponding DDE model
- ⇒ experimental intelligent-shell feedback in a RFP fusion research device
 - · Applicability of the model to real experimental conditions
 - Strongly encourage future work, theoretically and experimentally, in both physical modeling and multivariable control for MHD.

E.Witrant and S. Brémond

Outline

Introduction to Fusion

- An energy from the stars Fusion Principle Tokamaks
- Profiles control
- Flux diffusion dynamics Time constan
- Nonlinearity
- Inputs
- Experimental results
- MHD Contro
- Unstable modes model Stability and delays Control and delay compensation

Conclusions

References

General conclusions

▲ロト ▲冊 ト ▲ ヨ ト ▲ ヨ ト つ Q ()

- Thermonuclear fusion motivates key advances in many fields of research.
- Advanced control methodologies definitely make a difference.
- Most problems are associated with transport phenomena and the system complexity.
- Need to "cross the bridge" between physicists and control engineers.
- Controlled fusion aims to become a national field of expertise with ITER.

E.Witrant and S. Brémond

Outline

Introduction to Fusion

- An energy from the
- Fusion Principle
- Tokamaks
- Why ITER?

Profiles control

- Flux diffusion
- Timo constar
- Nonlinearity
- Inputs
- Experimental results
- Control

MHD Control

- Unstable modes model
- Stability and delays
- Control and delay compensation
- Experiments
- Conclusions
- References

Main references

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQで

- ITER website: http://www.iter.org
- JET-EFDA website: http://www.jet.efda.org
- P. Moreau, O. Barana, S. Brémond, J. Bucalossi, E. Chatelier, E. Joffrin, D. Mazon, F. Saint-Laurent, E. Witrant, E. Schuster, M. Ariola, "Towards Control of Steady State Plasma on Tore Supra", Proc. of IEEE Conference on Decision and Control, San Diego, CA, USA, Dec. 2006, invited session.
- E. Witrant, E. Joffrin, S. Brémond, G. Giruzzi, D. Mazon, O. Barana, P. Moreau, "A control-oriented model of the current profile in Tokamak plasma", *Plasma Phys. Control. Fusion*, 49 (2007) 1075-1105.
- M. Rouanet, "Contrôle des profiles de densité de courant des plasmas de Tokamak", M.S. thesis, CEA/DRFC, Cadarache, June 2007.
- F. Delebecque, J.-P. Quadrat, S. Brémond, E. Witrant, J.-F. Artaud, "Simple Modeling and Control of Plasma Current Profile", 8th Portuguese Conference on Automatic Control - CONTROLO'2008, Vila Real, Portugal, July 21-23, 2008.
- E. Witrant, "Parameter Dependant Identification of Nonlinear Distributed Systems : Application to Tokamak Plasmas", under revision process, 2009.
- P. R. Brunsell, K. E. J. Olofsson, L. Frassinetti, and J. R. Drake. "Resistive wall mode feedback control in EXTRAP T2R with improved steady-state error and transient response". *Physics of Plasmas*, 14(10):102505, 2007.
- E. Olofsson, E. Witrant, C. Briat, S.-I. Niculescu, and P. Brunsell, "Stability analysis and model-based control in EXTRAP-T2R with time-delay compensation", submitted to IEEE Conf. on Decision and Control, 2008.
- E. Witrant, E. Olofsson and S.-I. Niculescu, "A time-delay approach for the modeling and control of plasma instabilities in thermonuclear fusion", e-delay Letter, 2009.
- E. Witrant, M. Goniche and Tore Supra team, "A QSS approach for particle source identification in Tore Supra tokamak", under revision process, 2009.