
Hindawi Publishing Corporation
EURASIP Journal on Image and Video Processing
Volume 2007, Article ID 45641, 14 pages
doi:10.1155/2007/45641

Review Article
Image and Video for Hearing Impaired People
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We present a global overview of image- and video-processing-based methods to help the communication of hearing impaired
people. Two directions of communication have to be considered: from a hearing person to a hearing impaired person and vice
versa. In this paper, firstly, we describe sign language (SL) and the cued speech (CS) language which are two different languages
used by the deaf community. Secondly, we present existing tools which employ SL and CS video processing and recognition
for the automatic communication between deaf people and hearing people. Thirdly, we present the existing tools for reverse
communication, from hearing people to deaf people that involve SL and CS video synthesis.
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1. DEAF PEOPLE LANGUAGES

This section gives a short description of the two possible
communication languages used by hard of hearing people.

Sign languages are the primary means of communication
of deaf people all over the world. They emerge spontaneously,
and evolve naturally within deaf communities. Wherever
deaf communities exist, sign languages develop, without
necessarily having a connection with the spoken language of
the region. Although their history is at least as old as spoken
languages, the written evidences showing sign language
usage date back to the 16th century, and the earliest record
of sign language education dates to the 18th century: in
Paris, Abbé de l’Épée founded a school to teach Old French
Sign Language and graduated Laurent Clerc who later
founded the “Gallaudet College” in U.S. with T. H. Gallaudet.
Gallaudet College later became Gallaudet University which is
the only liberal art university for deaf people in the world.

The main difference between spoken and sign languages
is the way the communicative units are produced and
perceived [1]. In spoken languages, the words are produced
through the vocal tract and they are perceived as sounds;
whereas in sign languages, the signs are produced alone
or simultaneously, by use of hand shapes, hand motion,
hand location, facial expression, head motion, and body
posture, and they are perceived visually. Sign languages have

both sequential and parallel nature: signs come one after
the other showing a sequential behaviour; however, each
sign may contain parallel actions of hands, face, head, or
body. Apart from differences in production and perception,
sign languages contain phonology, morphology, semantics,
syntax, and pragmatics like spoken languages [2]. Figure 1
shows example signs from American Sign Language.

More recently, the Cued Speech language (CS) has been
introduced to enrich spoken language by Cornett [3]. The
aim of CS is to overcome the problems of lip-reading and
to enable deaf people to understand full spoken languages.
CS brings the oral language accessible to the hearing
impaired, by replacing invisible articulators that participate
to the production of sound (vocal cords, tongue, and jaw)
by hand gestures, while keeping visible articulators (lips).
Basically, it complements the lip-reading by various manual
gestures, so that phonemes which have similar lip shapes
can be differentiated. Then, considering both lip-shapes
and gestures, each phoneme has a specific visual aspect. In
CS, information is shared between two modalities: the lip
modality (related to lip shape and motion) and the hand
modality (related to hand configuration and hand position
with respect to the face).

Figures 2 and 3 present the eight different hand shapes
which code the consonants and the five hand positions
which code the vowels for French CS. CS is different from
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Figure 1: American SL examples: from left to right, “sad,” “baby,”
“father,” “you.”

Figure 2: 8 hand shapes or configurations [FrenchLPCsite].

SL because among others things, CS addresses speech.
CS has the same grammar and syntax as current spoken
languages (English, French, etc.). For that reason, a deaf
person learning English CS learns English at the same time.
In contrast, SL of a group of deaf people has no relation
to the hearing community of the region apart from cultural
similarities.

Figure 4 presents a coding example of the French word
“bondir” (to jump).

SL and CS are totally independent and are different lan-
guages. Nevertheless, in terms of image and video processing,
one can identify some similarities:

(i) both languages involve hand-gesture processing;
(ii) both languages involve face processing;

(iii) both languages are multimodal and need fusion of
different modalities.

2. FROM DEAF PEOPLE TO HEARING PEOPLE

CS and SL are two languages based on visual information.
Hearing peoples’ language is based on speech information
(cf., Figure 5). In order to make communication from a deaf
person to a hearing person possible, it is necessary to trans-
form the visual information into speech information. Three
main steps are necessary for SL or CS automatic translation:
SL/CS analysis and recognition, SL/CS to text translation,
and speech synthesis. In this review, we concentrate on the
first part.

2.1. Sign language analysis and recognition

The problem of sign language analysis and recognition (SLR)
can be defined as the analysis of all components that form the
language and the comprehension of a single sign or a whole
sequence of sign language communication. The ultimate
aim in SLR is to reach a large-vocabulary sign-to-text
translation system which would ease the communication of
the hearing and hearing impaired people. The components
of a sign, as mentioned above, contain manual signals (MS)
such as hand shape, position, and movement, which form
the basic components of sign languages, and nonmanual
signals (NMS), such as facial expressions, head motion, and

Figure 3: 5 hand positions [FrenchLPCsite]: from left to right,
“mouth,” “side,” “throat,” “chin,” “cheek bone.”
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Figure 4: Cued speech coding of the French word “bondir”
[FrenchLPCsite].

body posture. A sign-to-text system requires the following
components:

(i) hand and body parts (face, shoulders, arms, etc.)
detection, segmentation, and tracking;

(ii) analysis of manual signals;
(iii) analysis of nonmanual signals;
(iv) classification of isolated and continuous signs;
(v) natural-language processing to convert classified signs

to the text of a spoken language.

Implementing these components provides a system that
takes a sign language video and outputs the transcribed
text of spoken language sentences. SLR systems can be
used in many application areas such as human-computer
interaction on personal computers, public interfaces such
as kiosks, or translation and dialog systems for human-to-
human communication. SLR systems, in connection with
sign synthesis, can be used in transferring sign data where
the sign is captured at one end and the output of the SLR
system can be sent to the other end where it is synthesized
and displayed by an avatar. This would require a very low
bandwidth when compared to sending the original sign video
[4–6]. SLR systems or sign-synthesis systems can also assist
sign language education [7–11]. In this review, our focus is
on SL analysis and recognition.

2.1.1. Hand and body parts detection, segmentation,
and tracking

Research on sign language analysis and recognition started
with instrumented gloves with several sensors and track-
ers which provide accurate data for hand position and
finger configuration. These systems require users to wear
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Table 1: Cues for hand detection and segmentation.

Type of information Problems Assumptions/Restrictions

Colour cue

Existence of other skin coloured
regions

Long-sleeved clothing

Contact of two hands Excluding the face

Identifying the left and right hands Only single hand usage

Motion cue Motion of objects other than the hands Stationary background

Fast and highly variable motion of the
hand

Hand moves with constant velocity

Shape cue High degree of freedom of the hand Restricting the hand shapes

Cued speech Sign language

Communication
direction

Hard of hearing people
Visual information

Hearing people
Speech information

Figure 5: Communication: deaf people to hearing people, from
video to speech.

cumbersome devices on their hands. Beginning from the
mid 90’s, improvements in camera and computer hardware
have made vision-based hand gesture analysis a possibility
[12]. Although these systems provide a natural environment
for users, they also introduce several challenges, such as
detection and segmentation of hand and finger configu-
ration, or handling occlusion. To overcome some of these
challenges, several markers are used in vision-based systems
such as different coloured gloves on each hand or coloured
markers on each finger. For a brief overview of sign language
capturing techniques, interested readers may refer to [13].

Vision-based robust hand detection and segmentation
without any markers is still an unsolved problem. Signing
takes place in 3D and around the upper body region; thus,
the camera field of view must contain the entire region
of interest. In a stereo camera setting, both cameras must
contain the upper body. An alternative configuration can
be using two cameras, one in front, and the other on the
right/left side of the signer. More cameras can be used to
focus on the face to capture NMS in high resolution.

Colour, motion, and shape information can be used to
detect hands in images. However, each source of information
has its shortcomings and restrictions (see Table 1). Systems
that combine several cues for hand segmentation have
fewer restrictions and are more robust to changes in the
environment [14–16]. Colour information is used with the
strong assumption that hands are the only skin regions
in the camera view. Thus, users have to wear long-sleeved
clothing to cover other skin regions such as arms [15, 17].
Face detection can be applied to exclude the face from the
image sequence, leaving the hands as the only skin regions.
However, this approach ignores the situations where the
hand is in front of the face: a common and possible situation

Figure 6: ASL sign “door”: markerless hand tracking is challenging
since the hands are in front of the face.

in sign languages (see Figure 6). When there are two skin
regions resulting from the two hands of the signer, the
two biggest skin-coloured regions can be selected as the
two hands. This approach will fail when the two hands are
in contact, forming a single skin-coloured region. Another
problem is to decide which of these two regions corresponds
to the right and left hands and vice versa. In some studies,
it is assumed that users always use or at least start with their
left hand on the left and right hand on the right. Starting
with this assumption, an appropriate tracking algorithm can
be used to track each region. However, when the tracking
algorithm fails, the users need to reinitialize the system.
Some of these problems can be solved by using motion
and shape information. Motion information can be highly
informative when the hand is the only moving object in
the image sequence [18]. This assumption can be relaxed by
combining the motion cue with the colour cue and assuming
that the hand is the only moving object among the skin-
coloured regions. The main disadvantage of using the shape
information alone comes from the fact that the hand is a
nonrigid object with a very high degree of freedom. Thus, to
achieve high classification accuracy of the hand shape, either
the training set must contain all configurations that the hand
may have in a sign language video, or the features must be
invariant to rotation, translation, scale, and deformation in
3D [19].

Kalman-filter-and particle-filter-based methods are
state-of-the-art methods used for tracking the signers’
hands. Kalman filters are linear systems with Gaussian noise
assumption and the motion of each hand is approximated
by a constant velocity or a constant acceleration motion
model. Variants of the Kalman filter are proposed to handle
nonlinear systems. Two examples are the extended Kalman
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Table 2: Feature extraction for Manual signals in vision-based systems.

Hand shape Hand motion Hand position w.r.t body

(i) Segmented hand
(ii) Binary hand

(a) Width, height, area, angle [9, 24]
(b) Log polar histograms [19]
(c) Image moments [25]

(iii) Hand contour

(a) Curvature scale space [26]
(b) Active contours [15]

(iv) 3D hand models

(i) Center-of-mass (CoM) coordi-
nates & velocity hands [9]

(ii) Pixel motion trajectory [27]
(iii) Discrete definitions of hand

motion and relative motion of
two hands [19]

(i) Distance to face [9]
(ii) Distance to body parts [27]

(iii) Discrete body region features
[19, 28]

filter and the unscented Kalman filter. Particle filtering, an
implementation of which is known as the condensation
algorithm (Isard and Blake 1998), is an alternative that
works better under nonlinear and non-Gaussian conditions.
However, both of these methods need a dynamic model for
the hand motion which is not easy to estimate. Apart from
these methods, several dynamic programming approaches
are also proposed [20].

Hand segmentation and tracking are the most chal-
lenging tasks in sign language analysis and recognition. To
obtain high recognition rates, an accurate segmentation and
tracking is needed. This is possible through the development
of methods that are robust to occlusion (hand-hand, hand-
face), which frequently occurs in signing.

Besides the hands, several body parts such as the face,
shoulders, and arms should be detected [14, 21] to extract
the relative position of the hands with respect to the body.
This position information is utilized in the analysis of
MS. Moreover, the position and motion of the face, facial
features, and the whole body is important for the analysis of
NMS.

2.1.2. Analysis of manual signals

Manual signals are the basic components that form sign
language. These include hand shapes, hand motion, and
hand position with respect to body parts (see Table 2).
Manual sign language communication can be considered
as a subset of gestural communication where the former is
highly structured and restricted. Thus, analysis of manual
signs is highly connected to hand-gesture analysis [22,
23] but needs customized methods to solve several issues
such as analysis of a large-vocabulary system and corre-
lation analysis of signals, and to deal with its structured
nature.

For the analysis of hand shapes, a vast majority of
the studies in the literature use appearance-based methods.
These methods extract features of a hand shape by analyzing
a 2D hand image. These features include silhouettes, con-
tours, edges, and image moments, such as Hu or Zernike
moments. 2D deformation templates or active contours can
be used to find the hand contour. When the position and
angles of all the joints in the hand are needed with high

precision, 3D hand models should be preferred. However,
computational complexity of these methods currently pre-
vents their use in SLR systems.

Some of the studies in SLR literature concentrate only
on recognizing static hand shapes. These hand shapes are
generally selected from the finger alphabet or from static
signs of the language [22, 29, 30]. However, a majority
of the signs in many sign languages contain significant
amount of hand motion and a recognition system that
focuses only on the static aspects of the signs has a limited
vocabulary. Hence, for recognizing hand gestures and signs,
one must use methods that are successful on modelling
the inherent temporal aspect of the data. This temporal
aspect can be analyzed as low-level dynamics and high-
level dynamics. Modelling low-level dynamics is needed
for hand tracking. For this purpose, Kalman-filters- and
particle-filter-based methods can be used to estimate the
position, velocity, or acceleration of the hand in the next
frame given the current frame [9]. High-level dynamics is
used to model the global motion of the hand. Sequence-
based methods such as hidden Markov models (HMM)
[31], Bayesian-network- (BN-) based methods [32], neural-
network- (NN-) based methods [27], and temporal tem-
plates [33] are used to model the high-level dynamics of
the hand. Among these methods, HMMs are used the most
extensively and have proven successful in several kinds of SLR
systems.

In HMM-based isolated sign recognition approaches,
the temporal information of each sign is modelled by a
different HMM. For a test sign, the model that gives the
highest likelihood is selected as the best model and the
test sign is classified as the sign of that model. One of the
main challenges is the integration of the two hands and the
different features for each hand (shape, motion, position,
and orientation) into the HMM model. Different approaches
in the literature are summarized in Section 2.1.4.

Grammatical structures in the language are often
expressed as systematic variations of the base manual signs.
These variations can be in the form of speed, tension, and
rate [34, 35]. Most of the SLR systems in the literature
ignore these variations. However, special care must be paid
to variations especially for continuous signing and in sign-
to-text systems.
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Table 3: SLR systems using a specialized capture device.

Work Sign dataset Capture device Classification
method

Accuracy %∗

[42] 5113 CSL signs 750 sentences Sensored glove & magnetic tracker
Transition
movement models
(TMM)

91.9

[43] 102 CSL Sensored glove & magnetic tracker Boosted HMMs 92.7

[44] 5113 ASL Sensored glove & magnetic tracker

Fuzzy decision
tree, selforganizing
Feature Maps,
HMM

91.6 SD, 83.7 SI

∗SD: signer dependent, SI: signer independent.

Table 4: Vision-based SLR systems.

Who Sign dataset
Capture
restrictions

Hand shape
features

Hand motion
features

Hand position
features

Classification
method

Accuracy %

[9] 19 ASL, with
NMS

colored gloves
2D app.
based

Position,
velocity

Distance to face HMM
99 MS 85 MS +
NMS

[15] 21 AusSL, 490
sentences

Dark & static
bg., dark
long-sleeved
clothes

2D geometry
based

Movement
direction

Geometric
features w.r.t
face

HMM
99 sign-level 97
sentence-level

[45]
50 ASL, with
pronunciation
differences

Static
background

2D appearance-based features of whole image HMM with
tangent distance

78.5

[24] 439 CSL coloured gloves
2D
appearance-
based

Distances of
hands to body
regions & each
other

HMM,
Auto-regressive
HMM

96.6

[46] 50 ArbSL coloured gloves
2D binary
hand

Hand coords.
w.r.t face

HMM 98

[25] 43 BrSL coloured gloves
Classified
hand shape

Movement
type

Positions of
hands w.r.t body
regions & each
other

Markov Chains,
ICA

97.67

[26] 20 TwSL, single
handed

Dark & static
bg., dark
long-sleeved
clothes

2D Curvature
scale space

— — HMM 98,6 SD

∗SD: signer dependent, SI: signer independent.

2.1.3. Analysis of nonmanual signals

The nonmanual signals are used in sign language either to
strengthen or weaken or sometimes to completely change the
meaning of the manual sign. For example, by using the same
MS but different NMS, the ASL sign HERE may mean NOT
HERE, HERE (affirmative) or IS HERE. The nonmanual
signs can also be used by themselves, especially for negation
[36, 37]. As opposed to studies that try to improve SLR
performance by adding lip reading to the system [38] analysis
of NMS is a must for building a complete SLR system:
two signs with exactly the same manual component can
have completely different meanings. Some limited studies
on nonmanual signs attempt to recognize only the NMS
without MS. In [39, 40], head movements and in [41], facial
expressions in ASL are analyzed. In SLR literature, there are

only a few studies that integrate manual and nonmanual
signs [9].

2.1.4. Classification of isolated & continuous signs

Initial studies on vision-based SLR focused on limited
vocabulary systems. These systems can be classified into
two groups: those that use vision-based capture methods
and those that use device-based capture methods. For a
list of SLR systems in the literature, users may refer to the
excellent survey in [36]. In Tables 3 and 4, we list several
selected SLR systems proposed in the past years that are
not covered in [36]. The tables show that almost all of
the systems use HMMs or HMM variants for classification.
Although the recognition rates of device or vision-based
systems are comparable, the shortcoming of vision-based
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systems is that they make a lot of assumptions and introduce
several restrictions on the capturing environment.

As the vocabulary size increases, computational complex-
ity and scalability problems arise. One of the solutions to
this problem is to identify phonemes/subunits of the signs
like the phonemes of speech. The advantage of identifying
phonemes is to decrease the number of units that should
be trained. The number of subunits is expected to be much
lower than the number of signs. Then, there will be a smaller
group of subunits that can be used to form all the words in
the vocabulary. However, the phonemes of sign language are
not clearly defined. Some studies use the number of different
hand shapes, motion types, orientation, or body location as
the phonemes [47, 48]. Others try to automatically define the
phonemes by using clustering techniques [49] (see Table 3).

Recognizing unconstrained continuous sign sentences is
another challenging problem in SLR. During continuous
signing, signs can be affected by the preceding or suc-
ceeding signs. This effect is similar to the coarticulation
in speech. Additional movements or shapes may occur
during transition between signs. These movements are
called movement epenthesis [50]. These effects complicate
the explicit or implicit segmentation of the signs during
continuous signing. To solve this problem, the movements
during transitions can be modelled explicitly and used as a
transition model between the sign models [15, 42, 48].

2.1.5. Discussion

Isolated SLR achieved much attention in the past decade
and systems were proposed that have high accuracies
in the reported databases of a wide range of sign lang-
uages from all over the world. However these datasets
contain different range and number of signs that
may be recorded with strong restrictions (slow speed,
nonnative signers, unnatural signing, etc.). There are
no benchmark sign datasets that researchers can test
and compare between their systems. Although there
are some publicly available datasets [9, 25, 51, 52],
these datasets have not yet become benchmark datasets of
SLR researchers.

Current challenges of SLR can be summarized as
continuous signing, large vocabulary recognition, analysis
and integration of nonmanual signals, and grammatical
processes in manual signing. Although these aspects are
mentioned by several researchers of the field [36, 53], the
amount of research in these areas is still limited. Significant
progress can be made by close interaction of SLR researchers
with SL linguists.

2.2. Cued Speech analysis and recognition

The problem of Cued Speech recognition involves three main
steps: manual-gesture recognition (hand configuration and
hand position with respect to the face), lip reading, and
hand and lip information fusion in relation with higher-level
models to obtain a complete lexical phonetic chain.

Though the number of different hand configurations is
less important for CS than for SL and though only a single

Figure 7: Viola and Jones face detector (from [54]).

hand is involved, the problem of hand configuration recog-
nition is a problem which is quite similar to the problem of
manual gesture recognition of SL (see Section 2.1.2). As a
consequence, we are focusing on hand-position recognition,
lip reading, and hand and lip data flow fusion.

2.2.1. Hand-position recognition and face processing

Once the hand configuration (for consonant coding) has
been recognized, the second information carried by the
coding hand is the position which is pointed by the hand
with respect to the face (for vowel coding). In French CS, five
positions are considered (“mouth,” “side,” “throat,” “chin,”
and “cheekbone”). In order to detect the corresponding
position, the coder’s face and some of his/her facial features
have to be detected.

Face localization and facial feature extraction have been
extensively studied. Some specific conferences on that topic
such as the IEEE International Conference on Automatic Face
and Gesture Recognition have been created 15 years ago. As
stated in [27], the general definition of face detection is
the following: “given an arbitrary image, the goal of face
detection is to determine whether or not there are any faces
in the image and, if present, to return the image location and
extent of each face.”

The most popular face detector is those developed by
Viola and Jones [54] because of its efficiency and because
of the accessibility of a downloadable version of the corre-
sponding code [MPT]. This face detector involves an efficient
and fast classifier based on Adaboost learning algorithm
in order to choose the most discriminating visual features
among an important set of potential features. Visual features
are based on Haar basis functions. As a result, a bounding
box around the detected face is given (see Figure 7).

The reader could refer to the two following survey papers
about face detection [55–57]. More recently, some new
algorithms have been proposed [58–62].

In the context of CS framework, the task of face detection
is a little bit simpler since it is assumed that the processed
image contains a face and more precisely a frontal-view
face. As a consequence, it is not necessary for the used face
detector to be robust to different face orientations or to face
occlusions.

Most of the face detectors give as output not only the
face localization but also the positions of eyes, mouth,
and nose. This information is welcome for detecting the
position pointing by the coding hand. From morphological
and geometrical considerations, it is possible to define 5
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Table 5: SLR systems with subunit-based approaches.

Who Dataset Phonemes/
Subunits

Capture method
Subunit
determination
method

Classification method Accuracy %

[47] 5100 CSL 2439 etymons Device-based Manual HMM 96 sign-based 93
etymon-based

[49] 5113 CSL 238 subunits Device-based
Automatic,
temporal
clustering

HMM 90.5

[48] 22 ASL signs 499 sentences

Based on
Movement-
Hold
model

Device-based Manual Parallel HMM
95.5 sign-level
87.9
sentence-level

(a) (b)

Figure 8: Different coding for the “throat” hand position.

pointed areas, with respect to these features. However the
main difficulty is that for each theoretical position of the
CS language, the corresponding pointed area depends on
the coder habits. Figure 8 presents an illustration of the
differences between two coders for the “throat” position. On
the contrary, the pointing area for “mouth” hand position is
easier to define once the mouth has been detected.

2.2.2. Lip reading

The main difference between SL and CS is that CS message
is partly based on lip reading; it is as difficult to read the lip
without any CS hand gesture than to understand the hand
gestures without any vision of the mouth.

The oral message is mainly encoded in the shape and
the motion of the lips. So it is necessary to first extract
the contours of the lips and then to characterize the lip
shape with an efficient set of parameters. It has been
proved that vowels could be characterized with the four
parameters presented on Figure 9, the interlabial surface and
the mouth’s opening surface. These parameters are also used
for consonants recognition, but additional information such
as teeth or tongue appearing is used. Front views of the lips
are phonetically characterized with lip width, lip aperture,
and lip area.

The problem of lip reading has historically been studied
in the context of audio-visual speech recognition. Indeed,
human speech perception is bimodal: we combine audio
and visual information. The reader can refer to [63] for

B
′ B

A
′

A

Figure 9: Lip reading parameters.

a complete overview about audio-visual automatic speech
recognition.

In CS, lip reading is associated with CS codes of the
hand in a nonsynchronous manner. Indeed, in the case of
vowels, the hand often attains the target position before the
corresponding one at the lips (see [64], for an extensive study
on CS Speech production). As a consequence, the correct
identification of the vowel necessitates the processing of the
hand flow and the lip flow at two different instants. Thus
automatic CS recognition systems have to take into account
this delay, and that is why the lip-reading process has to be
considered jointly with the hand [65].

The first step is lip contours extraction. Many researches
have been carried out to accurately obtain outer lip contour.
The most popular approaches rely on the following.

(i) Snakes [66]—because of their ability to take smooth-
ing and elasticity constraints into account [67, 68].

(ii) Active shape models and appearance shape models.
Reference [69] presents statistical active model for
both shape (AMS) and appearance (AAM). Shape and
grey-level appearance of an object are learned from
a training set of annotated images. Then, a principal
component analysis (PCA) is performed to obtain
the main modes of variation. Models are iteratively
matched to reduce the difference between the model
and the real contour by using a cost function.
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(a) (b) (c) (d) (e)

Figure 10: Lip segmentation results.

In [70], a parametric model associated with a “jumping
snake” for the initialization phase is proposed. For lip reading
applications, the accuracy of the lip segmentation is of great
importance since labial parameters are then extracted from
the segmentation for the purpose of phonems recognition.
The model proposed in [70] is the one which is the most
adapted to such constraint of accuracy. Figure 10 presents
some segmentation results with Eveno’s model for the
external lip contours.

Relatively few studies deal with the problem of inner lip
segmentation. The main reason is that artifact-free inner
contour extraction from frontal views of the lips is much
more difficult than outer contour extraction. Indeed, one
can encounter very distinct mouth shapes and nonlinear
appearance variations during a conversation. Especially,
inside the mouth, there are different areas such as the
gums and the tounge, which have similar color, texture,
or luminance than the lips. We can see very bright zones
(teeth) as well as very dark zones (the oral cavity). Every
area could continuously appear and disappear when people
are talking. Among the few existing approaches for inner lip
contour extraction, lip shape is represented by a parametric
deformable model composed of a set of curves. In [71],
Zhang uses deformable templates for outer and inner lips
segmentation. The chosen templates are three or four
parabolas, depending on whether the mouth is closed or
open. The first step is the estimation of candidates for
the parabolas by analyzing luminance information. Next,
the right model is chosen according to the number of
candidates. Finally, luminance and color information is used
to match the template. This method gives results which are
not accurate enough for lip reading applications, due to
the simplicity and the assumed symmetry of the model.
In [72], Beaumesnil et al. use internal and external active
contours for lip segmentation. In [73], an AMS is built, and
in [74], an AMS and an AAM are built to achieve inner and
outer lips detection. The success of these models is that the
segmentation gives realistic results, but the training data have
to contain many instances of possible mouth shapes.

On the contrary, the parametric model described in [75]
and made of four cubics is the most accurate lip model for the
purpose of lip-reading. According to some optimal informa-
tion of luminance and chrominance gradient, the parameters
of the model are estimated. Figure 10 presents some internal
lip contour extraction with Stillittano’s algorithm.

2.2.3. Hand and lip merging models

The CS recognition needs to merge both manual and lip
flows. The classical models of audio-visual integration and
merging in speech (see [63, 76]) have to be considered in the

Cued speech Sign language

Visual information
Speech information

Figure 11: Communication: hearing people to deaf people, from
speech to video.

adaptation to the CS. The direct identification model (DI) is
based on the classification of a vector of components. This
model is not appropriate to mix qualitative and continuous
components, as it is particularly the case in CS with
hand position, hand shapes, and lip parameters. Even if a
transformation of the CS hand in quantitative components
is possible, scaling problems arise when components of
different nature are combined to form a vector. In the RMD
model (recoding in the dominant modality), the auditory
modality is the dominant one in speech. The visual modality
predicts the spectral structure of the dominant modality. In
CS, hand and lip flows are complementary, and thus none of
these two modalities can be prioritized. Finally, the separated
identification model (the SI fusion of decisions model) seems
to be more convenient. In this model, a decision can be
made from each flow, independently from the other one.
The recognition is the result of the combination of the two
decisions. This model has been adapted to the case of CS, for
vowel recognition [65, 77]. In the process, the lip parameters
at the instant of vowel lip target were used in a Gaussian
classification for each of the five CS hand positions. This
resulted in a set of five vowels, each one associated to a
specific hand position. On the other hand, the hand position
is obtained as the result of a classification at the instant of
CS hand target [78]. The merging result is obtained as the
combination of the decision on the hand position with the
set of the five vowels for the (CS hand target instant, lip
target instant) couple of instants. As the first result on vowel
recognition, an accuracy less than 80% is obtained in the case
the two nearest CS hand target and lip target instants are
considered under the condition that the CS hand target is
ahead of the lips.

3. FROM HEARING PEOPLE TO DEAF PEOPLE

For communication from a hearing person to a deaf person,
it is necessary to transform the speech signal into a visual
signal; it is necessary to synthesize an avatar producing the
associated manual gestures of SL or CS (see Figure 11).

The main step for this communication is the synthesis of
the gestural languages.

3.1. General scheme

A synthesis system consists mainly in three components:
(1) a trajectory formation system that computes a gestural
score given linguistic or paralinguistic information to be
transmitted, (2) a shape model that computes the 2D or 3D
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Trajectory
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Gestural score

Gestural score
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Linguistic & paralinguistic structure
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Appearances

Figure 12: Synopsis of a synthesis system; left: main modules; right: detailed components of the trajectory formation system.

geometry of organs to be moved given the gestural score, and
(3) an appearance model that computes pixels to be displayed
given this varying geometry.

3.2. Trajectory formation systems

The trajectory formation system is responsible for comput-
ing gestural parameters from linguistic and paralinguistic
information. This symbolic information consists essentially
of basic elements (visemes or kinemes for CS or SL)
organized in complex phonological structures that orga-
nize the basic left-to-right sequence of these elements in
meaningful units such as syllables, words, phrases, sentences,
or discourse. These units are typically enriched by unit-
specific linguistic information such as accents for the words,
dependency relations between phrases, modality for the
sentence, and unit-specific paralinguistic information such
as emphasis for syllables (narrow focus) or words (broad
focus), emotional content for discourse units. The literature
often distinguishes between segmental and suprasegmental
(often terms as prosodic) units to distinguish between
the different scopes. The way suprasegmental information
influences segmental gestures is under debate: quantitative
models range from simple superpositional models to more
complex data-driven functional models. Proceedings of
series of conferences on speech prosody (Aix-en-Provence
2001, Nara, Japan, 2004 and Campinas, Brazil, forthcoming
in 2008) may provide more detailed insight on these issues.

3.2.1. From gestural units to gestural scores

A trajectory formation system consists thus in three
main components (see Figure 12 right): a unit selection/
concatenation module, a prosodic model, and a smoothing/
coarticulation model. The unit selection/concatenation
module selects gestural units according to segmental content.
These gestural units can be subsegmental (e.g., gestural
strokes) or instances of larger units (triphones or dikeys for
CS or complete gestures for SL). Multirepresented units can
then be selected using the input suprasegmental information
or gestural specification computed by a prosodic model (e.g.,
computing gesture durations or body and head movements
according to wording and phrasing). Note that recently,
speech synthesis systems without a prosodic model but using
a very large number of gestural units of different sizes have
been proposed [79].

Gestural trajectories stored in the segment dictionary
are basically parameterized in three different ways: (a)
due to memory limitations, earliest systems characterized
trajectories by key points (position and velocities at tongue
targets in [80], hand targets in [81]), and an organ-
specific coarticulation model was used to take into account
contextual variations and interpolate between targets; (b) the
availability of large video and motion capture resources now
give rise to pure concatenative synthesis approaches (e.g.,
lip motion in [82], or cued speech gestures in [83]) where
complete gestural trajectories are warped and smoothed after
raw concatenation; (c) more sophisticated statistical models
have been recently proposed (such as hidden Markov models
in [84]) that capture gestural kinematics and generate
directly gestural scores without further processing.

3.2.2. Segmentation and intergestural coordination

Gestural languages encode linguistic and paralinguistic ele-
ments and structures via coordinated gestures of several
organs: torso, head, arm, and hand gestures, as well as oro-
facial movements. The trajectory formation system has thus
to ensure that these gestures are properly coordinated in
order to produce necessary geometric patterns (e.g., signs
in SL or mouth shapes and hand/face contacts in CS) at a
comfortable cadence for the interlocutor. Reference [64] have
thus shown that hand gestures are typically well ahead of lip
movements encoding the same syllable.

The unit dictionary is fed by the segmentation of
complete discourse units into gestural units, and the choice
of gestural landmarks that cue these boundaries is crucial.
When considering large gestural units, rest or hold posi-
tions can be used as landmarks and intergestural phasing
is intrinsically captured within each gestural unit. When
smaller units are considered, gestural landmarks (such as
targets or maximum velocities) chunking the movements of
each organ are not necessarily synchronized and a specific
intergestural coordination module should be proposed to
generate the appropriate phasing between the different
landmarks. Reference [85] have recently proposed a joint
estimation of such organ-specific coordination modules and
HMM-based trajectory formation systems.

3.3. Shape and appearance models

For nearly 30 years, the conventional approach to syn-
thesize a face has been to model it as a 3D object. In these
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Table 6: CS synthesis systems.

Who Input Trajectory formation Shape model

[97] Speech recognition Key frames, rule based 2D

[64] Text Context-sensitive key frames, rule based 2D

[83] Text Concatenation of multimodal gestural units 3D

model-based approaches, control parameters are identified,
whick deform the 3D structure using geometric, articulatory,
or muscular models. The 3D structure is then rendered using
texture patching and blending. Nowadays, such compre-
hensive approaches are challenged by image-based systems
where segments of videos of a speaker are retrieved and
minimally processed before concatenation. The difference is
actually subtle since both approaches underlie at some level
the computation of 2D or 3D geometry of organs.

There are mainly three types of image-based systems: (a)
systems that select appropriate subimages of a large database
and patch selected regions of the face on a background
image (see [86, 87]), (b) systems that consider facial or head
movements as displacements of pixels (see [88, 89]), and
(c) systems that also compute the movement and change
of the appearance of each pixel according to articulatory
movements [90].

3.4. Text to-gesture systems

Numerous audiovisual text-to-speech systems are still post-
synchronizing an animated face with a text-to-speech system
that has been developed with separate multimodal resources,
often with different speakers [91, 92]. Only recently, sys-
tems based on synchronous multimodal data have been
developed [93, 94]. When substituting sound with gestures,
the difficulty of gathering reliable multimodal data is even
more challenging. Contrary to facial gestures where a linear
decomposition of shape and appearance can lead to very
convincing animations [95], arm and hand movements both
in CS and SL require more sophisticated nonlinear models
of shape, appearance, and motion [96]. Moreover, acquiring
motion capture data or performing video segmentation and
resynthesis of articulated organs occluding each other is quite
challenging.

The only text-to-CS systems developed so far are pre-
sented in Table 6.

3.5. Alternative specifications.
Speech-to-gesture systems

The trajectory formation systems sketched above compute
movements from symbolic information. This symbolic
information can first be enriched with timing information
such as delivered as a by-product of unimodal or multimodal
speech or gesture recognition. The task of the trajectory for-
mation system is then simplified since prosodic information
is part of the system’s input. This digital information on the
desired gestures can of course include some more precise
information on the desired movement such as placement or
even more precise geometric specification.

Synthesis systems are also often used in augmented
reality systems that superpose gestures of virtual hands or
the animation of a virtual signer to videos of a normal
hearing interlocutor so that deaf viewers can understand
mediated face-to-face conversation. In this case, gestures
should be estimated from speech signals and/or video inputs.
Reference [98], for example, patented an SL synthesis system
that consists in superimposing series of virtual signs, on the
original image of the subject to create a synthesized image in
which the subject appears to be signing. Duchnowski et al.
[81] superimpose an animated virtual hand to the original
video of the interlocutor of a speech cuer. The gestures of the
virtual hand are computed combining a speech recognizer
and a CS synthesizer. The estimation of the phonetic content
of the message is however difficult and depends on how
much linguistic information—via language models—can be
injected into the decoding process. More direct speech-
to-gesture mapping has been proposed using conversion
techniques. Earliest attempts by [99] demonstrate that a large
part of intergestural correlations present in goal-directed
movements can be captured by simple linear models. More
recently, [100] proposed to use Gaussian mixture models
to estimate articulatory motion of orofacial organs from
acoustics. The coupling of such mapping tools with state
models such as HMMs [101] is worth considering in the
future.

3.6. Evaluation

Up to now, there has been no large-scale comparative
evaluation campaigns similar to those recently set up for
speech synthesis [102, 103]. The multiple dimensions of
subjective evaluation (intelligibility, comprehension, natu-
ralness agreement, etc.) together with additional parameters
affecting performance (learnability, fatigue, cognitive load)
are very difficult to sort out. Despite the fact that Ezzat’s
talking head Mary [95] passed a first Turing test successfully
(do you face a natural or synthetic video?), the visual
benefit in segmental intelligibility provided by the data-
driven talking face was worse than those provided by the
original videos.

A more systematic evaluation was performed at ATT
[104] on 190 subjects to show that subjects can compensate
for lower intelligibility by increasing cognitive effort and
allocate more mental resources to the multimodal decoding.

Recently, Gibert et al. evaluated the segmental and
suprasegmental intelligibility of their text-to-CS system with
eight deaf cuers [105]. The benefit of cued speech regarding
decoding performance of the subjects in a modified Diag-
nostic Rhyme Test [106] involving pairs of labial sosies in
valid French words is impressive. The comprehension of
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entire paragraphs is, however, still deceiving; the prosodic
cues helping the interlocutor to chunk the stream of gestural
patterns in meaningful units are essential to comprehension.
Reference [107] has notably shown that early signers are
more intelligible than interpreters or late signers and that
part of this difference is due to the larger use of body
movements.

4. CONCLUSION

Over the last decade, active researches have produced novel
algorithms first for improving the communication with deaf
people and second to make new technologies accessible to
deaf people (TELMA phone terminal, e.g.). These researches
are strongly related with the development of new dedicated
systems for human computer interaction.

Image processing is used in order to automatically
analyze the specific communication languages of deaf people.
While the automatic translation of Cued Speech language
is now feasible, sign language analysis is still an open issue
because of the huge number of different signs and because of
the dynamic and 3D aspects of this language, which makes
an automatic analysis very difficult.
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