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The aim of craniofacial reconstruction is to estimate the
shape of a face from the shape of the skull. Few works
in computerized assisted facial reconstruction have been
provided in the past, probably due to technical (poor
machine performances and data availability) and
theoretical (complexity) reasons. Therefore, the main
published works consist in manual reconstructions. In
this paper, an original approach proposes first to build a
3D statistical model of the set skull/face from 3D CT
scans. Then, a reconstruction method is introduced in
order to estimate, from this statistical model, the 3D
facial shape of one subject from known skull data.
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1. Introduction

Craniofacial reconstruction can be considered, when
confronted with an unrecognizable corpse and when no
other identification evidence is available. In such cases
the skeletal remains are all that is available to try to
create a picture of that person. The aim of craniofacial
reconstruction is then to produce a likeness of the face
using the skeletalized remains. This reconstruction may
hopefully provide a route to a positive identification.

Several 3D manual methods for facial reconstruction
have been developed and are currently used in practice.
They consist of modeling a face on the remaining skull
by use of clay and plasticine. However, manual
reconstruction methods have several fundamental
shortcomings, such as being highly subjective, time-
consuming and requiring artistic talent. Computer-based
methods were developed trying to complement or even
provide an answer to these shortcomings.

Some current computerized techniques either fit a
template skin surface to a set of interactively placed
virtual dowels on a 3D digitized model of the remaining
skull [1] — [5]. Other ones propose to deform a
reference skull in order to match the remaining skull,

thanks to crest lines (lines of maximal local curvature)
[6], control data sets [7] or feature points [8]. Then they
apply an extrapolation of the calculated skull
deformation to the template skin surface associated to
the reference skull. For both techniques, the template
skin or reference skull can either be a generic surface or
a specific best look-alike according to the skull.
However, the facial reconstruction is biased by the
choice of the reference skull and the template skin.
Moreover, the model of deformations between skull
landmarks and between the reference skull and the
template skin is usually quite simple. Recent works
using multiple reference skull [9], or a combined
statistical deformable model of facial surfaces and tissue
thickness [10] addressed the facial reconstruction
problem and discussed these bias.

In this paper, a method to build a 3D statistical model of
the skull and face is presented. This model is then used
to reconstruct a face from available skull data. The idea
is similar to [6-8] but uses a statistical shape model of
the skull and the face for the reconstruction task, instead
of an extrapolation of the deformation field. A 3D-to-
3D matching procedure delivers meshes of the skull and
face with the same number of vertices via template skull
and face. The deformation of the template skull is then
used to register the “remaining” skull in our model
referential, delivering a “remaining” skull mesh with the
same number of vertices as the template mesh. Indeed,
all the matched vertices should refer to identical — in
structural terms - facial and bony landmarks. Applied to
several individuals, a statistical model of the variability
of the skull and the face is therefore build. The
reconstruction of the face is then resolved using the
direct statistical relationship between skin and skull
surface shapes given by the statistical model and can be
seeing as a missing data problem.

This paper describes our approach for facial
reconstruction. Section 2 describes the elaboration of
the normalized skull and face geometries, obtained
using a 3D-to-3D matching procedure. Section 3
presents the statistical model built upon the normalized



3D Semi-landmarks based statistical face reconstruction

faces and skulls. Finally, section 4 introduces the facial
reconstruction method and presents results and sketches
some guideline for further improvements.

2. Skull and Face Database

An entry (i.e. a sample) in our database consists of a
skull surface coupled with a skin surface. For facial
reconstruction, only the skull surface is known. This
surface is represented by a 3D mesh (vertices and
triangles). In order to construct the statistical model,
each skull or skin shape should share the same mesh
structure with the same number of vertices. Then, each
mesh needs to be registrated in a subject-shared
reference system (Figure 1, 3D subject-specific mesh 1).
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Figure 1. Building a 3D statistical model from 3D CT
Scans. A 3D-to-3D matching procedure delivers meshes
with the same number of vertices. The matched vertices
should refer to identical — in structural terms - facial and

bony landmarks..
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In this method, the triangles for a region of the skull or
the face are supposed to be the same for all samples,
while the variability of the position of the vertices will
reflect the anatomical characteristics of each sample.
The vertex of these shared meshes can be considered as
semi-landmarks, i.e. as points that do not have names
but that correspond across all the samples of a data set
under a reasonable model of deformation from their
common mean [11]. The shared meshes are obtained by
matching reference meshes of the skull and the skin (see
Figure 1 and Figure 2) to several individual meshes
using a 3D-to-3D matching algorithm.

2.1. Acquisition and Segmentation

Coronal CT slices (see Figure 2.a) were collected for the
partial skulls and faces of 15 subjects (helical scan with
a 1-mm pitch and slices reconstructed every 0.31 mm or
0.48 mm). The Marching Cubes algorithm [12] has been
implemented to reconstruct the skulls and the faces from
CT slices on isosurfaces (see Figure 2.b). Subject-
specific meshes for the skull, jaw and face have around
180000, 30000 and 22000 vertices. The respective
generic meshes from the Visible Woman Project [13]
(for the skull and mandible) and from [14] (for the face)
have 3473, 1100 (see Figure2.c) and 5828 vertices. The

3D-to-3D matching algorithm described below is used
normalized

to obtain meshes of these

(a)

(b) (€

organs.

Figure 2. (a) 3D raw scan data (only coronal slices were
collected; midsagital and axial have been reconstructed
here by image processing), (b) shape reconstructed
using the marching cube algorithm [12]; (c¢) generic
mesh obtained from the Visible Woman Project® [13].

Segmentation

Bones and skin volumes are first separated using
intensity threshold and morphological operators. Faces
volumes are then filled up, with metal artefacts removed
manually. The mandible and the skull are separated
during the segmentation process because the subjects
have different mandible apertures. Skull and mandible
are separated semi-automatically using seed growing
regions. At the end of the segmentation process, three
binary volumes are obtained. The patient meshes are
reconstructed for each volume (face, skull, mandible)
using a standard Marching Cube algorithm.

Figure 3. Segmented slides (skin and bone volumes).
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Subject-specific meshes

A “symmetric matching” is used to obtain the subject-
specific mandible meshes (see section 2.2). Maximal
matching errors between the subject-specific meshes
and the patient meshes reconstructed from the scans are
located on the teeth and on the coronoid process. The
mean distances can be considered as the registration
noise, due partly to the difference of density (see Table
1.). Teeth will not be part of our model, due to the
frequent metal artefacts in CT scans.

Another procedure is used to obtain the subject-specific
skulls meshes. Since these data were collected during
regular medical exams and excitation of the brain
volume is avoided if not necessary, nearly all the skull
are partially scanned, and only 2 complete skull and
face volume data were available (see an example in
Figure 4). Therefore a partial mesh of each skull is first
registered on the corresponding part of the 3D generic
mesh. “Symmetric matching” (see Section 2.2) insures
better registration, as the partial mesh and the original
data have equivalent shapes. The rest of the subject
skull mesh is obtained by transforming the whole
reference skull mesh by this matching process. During
this step, the cranial vault is (most of the time) inferred
from the border of the skull, using the continuity of the
transformation. As this is not so accurate, only the
minimal fitting volumes will be used to build the
statistical model. The maximal matching errors in the
resulting subject-specific skull meshes are located in the
spikes beneath the skull, where the individual variability
and the surface noise are large, due to segmentation
eITOrS.

Finally, face meshes are obtained using the same
procedure. In this case, the maximal matching errors
between subject-specific and patient meshes are located
around the eyes, that are part of the original data, but
not part of the generic mesh (see Figure 5 for a distance
map between a subject-specific mesh and a patient
mesh). ). Figure 7 shows 6 of the 15 faces of the
database. The template similarity is most seen in the
inferred parts of the subject-specific meshes (cranial
vaults and necks). Again, only the minimal fitting
volumes will be used to build the statistical model.

Table 1. Distance between the patient (subject CT data

reconstructed through Marching Cub) and the subject-

specific (obtained through registration of the reference
meshes) meshes.

Distances (mm) mean Max
Mandible 2 8
Skull 4 36
Face 1 5
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Figure 5. Distance map of a subject-specific face mesh
to a patient mesh.

2.2. 3D-to-3D matching

The basic principle of the 3D-to-3D matching procedure
[14] consists of the deformation of the initial 3D space
by a series of trilinear transformations 7; applied to all
vertices ¢g; of elementary cubes (see Figure 6) of the
generic mesh (source) towards the patient mesh (target):

2

(b)

Figure 6. Applying a trilinear transformation to a cube.
(a) 2D simplification of a subdivision into 4 elementary
volumes of the original space and new transformations
vectors; (b) elementary 3D transformation within a
cube.
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The parameters p of each trilinear transformation 7; are
computed iteratively using the minimization of a cost
function (see Eq.l below). The elementary cubes are
determined by iteratively subdividing the input space
(see Figure 3) in order to minimize the distance between
the 3D surfaces given by :

(Eq- 1)

Yld(r(. p).s)F +Plp)

card(S.

min "5 s e

p | i=liOPaired Sg,S;) KkOPairedSs,Sy)
where S is the source surface to be adjusted to the set of
points {#;} of the target surface Sy, p are the parameters
of the transformations 7 (6 parameters of the initial
rototranslation of the reference coordinate system and
3x8 parameters for each embedded trilinear
transformation) applied to the set of points {s;} of Si.
P(p) is a regularization function that guaranties the
continuity of the transformations at the limits of each
subdivision of the 3D space. It allows larger
deformations for smaller subdivisions.

In Eq.1, the first term deals with the distance between
the points of the source mesh and the surface of the
target mesh, considering the projection of each point
onto the deformed surface.

-
pwd

The second term weighted by R,, deals with point-to-
point distance: a set of 3D feature points {#} of the
target surface Sr are identified and paired with {s;}
vertices of the source surface Ss. R,, decreases with the
number of iterations when the source and the target
becomes close.

The minimization is performed using the Levenberg-
Marquardt algorithm [13].

The problem of matching symmetry [14,15] is
encountered, due to the difference of density between
the source and target meshes (number of vertices
respectively 30 and 70 times larger in the source meshes
than in the target meshes). Therefore, the minimization
function is symmetrized by adding a term that computes
also the distance of the target mesh to the transformed
source mesh with the pseudo-inverse transform T~ in
the following way:

[a(7(t.p).5)] +Rw 3 [a(r(s.p).s,) +P(p)

KlPaired (Sy.S7)

card(Sy)
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This new distance function solves this matching
problem on real skull and face meshes.

Figure 7. 6 of the 15 faces from the database. The template similarity is most seen in the non-deformed part of the
generic mesh (cranial vaults and necks)
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3. Statistical Model

3.1. Building the statistical model

Wi
I

1

Figure 8. Each vertex of the subject-specific meshes is
considered as the same location reflecting thus the inter-
individual variations of shape.

Each vertex of the subject-specific mesh is supposed to
be a semi-landmark [11] of the 3D surfaces — see Figure
8 for facial fleshpoints — reflecting thus the inter-
individual variations of shape. The statistical model is
based on this supposition. It is computed on the
common part of the original data (see Figure 9). 15
matched skulls and faces are fitted on mean
configuration of the skull wusing Procrustes
normalization [16]. 7 degrees of freedom due to initial
location and scale are retrieved by this fit (three due to
translation along three axes, three due to rotations about
three axes, one for scale adjustment). As the fitting is
based on mean skull configuration of the skull, the
relationships between each face and skull are conserved.

A statistical model of the (partial) skull and the face is
then built using Principal Component Analysis (PCA).
The result of the PCA is a geometrically averaged facial
template, which is computed together with a correlation-
ranked set of modes of principal variations based on
inter-subjects variations. Principal Component Analysis
is an orthogonal basis transformation, where the new
basis is found by diagonalising the covariance matrix of
a dataset.

Figure 9. Minimum fitting volumes face vertices (high)
and minimum fitting meshes (low).

Let X, = (xil,yil,zil,...,xin,yin,zin)D R be the
locations of n vertices of the normalized meshes. Using
PCA, we can write 7 =T +®b, where T is the mean
mesh of the skull and face, ®=(g]|..|@)
(n+m)x(n+m) with  the
eigenvectors of the covariance matrix S of the centered

is a

matrix  composed

data and b is a vector of # dimension : b = ®'(7 - T).

The dimension ¢ of the vector b is the number of
eigenvectors with the largest eigenvalues. In classical
use of PCA, such as de-noising, ¢ is chosen by

> 22095y 4. The vector b is then a good

approximation for the original dataset and any of n+m

points can represented or retrieved with the ¢_  values

+

of the vector bby T =T + b

3.2. Results

Every entry in the database is parameterised as a
function of the statistical model. Instead of using a
vector description of densely sampled points and skull
landmarks, the entry is modelled as well as the sum of
the geometrically averaged entry and a weighted linear
combination of the modes of principal variation by

T+®b with a fewer number of parameters. By altering
the parameters b, new synthetic but plausible skulls and
faces, lying within the statistical boundaries of the
mode,l are generated.

In our case, with 15 subjects, a total of 13 variations can
be computed, since a leave-one-out approach is used to
test the generalization of the modeling procedure. Only
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the first eight modes of variations (see Table 2) are
significant in terms of represented variance.

Table 2. Percentage of cumulative variance explained.

Table 3. Percentage of cumulative variance explained
for each part of the model (face, skull) for the first 6

Mode 1 2 3 14|5(6|7] 8
number
Cumulative | 36 | 51 | 64 |73 |79 |84 |88 | 91
variance

The accuracy of this model is tested by reconstruction :
for a given mesh, variation modes or parameter vector b
are computed by minimization of the distance between
the true real mesh 7 and reconstructed mesh from b :

T+®b . The mean reconstruction errors (figure 10) for
the last three modes are below the millimeter for
samples of the learning database. So the reconstruction
is quite accurate with sample in the learning database.
Reconstruction error for a test sample i.e. a sample
which is not in the learning database, is around 3.85 mm
for the skull and 3.25 mm for the face for the last four
modes. The skull reconstruction is mostly determined
by the first variation as the reconstruction error is then
around 4.2 mm.

These two results demonstrate that this method seems
promising but that the number of samples in the
learning database is too small.

RECONSTRUCTION ERRORS

———face databse
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""""" face test sample
== skull test sample
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Figure 10. Mean reconstruction errors of the skull and
face using an increasing number of mode

Except for the first variation mode, the principal
variations of the shape explained by the model are a
little more descriptive of the variation of the face shape
than those of the skull shape. It can be linked to the
greater number of vertices belonging to the face (3780)
than to the skull (2900) (Table 3).

modes.
Mode number / 1 21314156
Cumulative variance
face 36 |50 |64 |75|82|86
skull 39 |48 (59|66 |72 |79

Figure 11 and 12 present the variations of the skull and
face shape according to the first modes for parameters
varying between +3 and —3 times the standard deviation.
The first parameter influences variations of the face and
skull width, while the second parameter models the face
and skull height. The third parameter influences the
shape of the nose as well as the ratio between the upper
and the lower parts of the face. Parameters four
influences the shape of the nose and parameter five is
linked to the shape of the jaw. The first five modes of
variations represent 73 percents of the cumulated (Table
2). As the mandible position is different for each
subject, each mode of variations models the jaw
aperture (Figure 12).

R oy

Figure 11. Variations of the face shape according to the
first 5 modes for parameters varying between +3 and —3
times the standard deviation.
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Figure 12. Variations of the skull shape according to the
first 3 modes for parameters varying between +3 and —3
times the standard deviation.

4. Statistical Reconstruction

4.1. Missing Data Extension

The linear PCA model defined here can be extended in
an elegant way in order to take into account spatial
relations between landmarks and to estimate an
unknown part of a partially visible or occulted model
[17].

Under this hypothesis, if some points (says #=n points)
are known, the remaining unknown points are
determined using PCA. Without any approximations,
we can write:

C\ a bl
-_ ®I\ (D"“
C ‘ ' b
= +
XV XV b 1
® W1 ¢u+m.
lx | | x ] b

This is a linear system with n+m equations and
unknowns that can not be resolved. Since PCA can
represent the dataset with <n+m values, suppose ¢=n,

(b,....b, X ,....X )
following system. Notice, that if we choose t<n, the

system becomes overdetermined and a least square
method can be used to resolve the system :

the unknown vector in the

_ _ 2
o @ ® 0 0| _
C! _Cl b\
_ ® ) 0 0
C C b
n "
—| @ ® 10 0
- n+l Xn
0
_ 0
T LX em
Lo . o o - o -]

In this framework, a linear approximation of spatial
relations between known and unknown points is
explicitly determined from the eigenvectors of the
covariance matrix.

4.2. Statistical Facial Reconstruction

Using the extension of the linear PCA defined above,
the face of a subject can be reconstructed from his skull
and from the statistical model defined previously. The
known part (Ci) contains the skull vertices while the
unknown part (Xi) contains the face vertices.

A leave-one-out approach is used to test the accuracy of
the facial reconstruction. The learning database is
composed of all subjects minus one, which is the test
sample. Every subject becomes the test sample in turn.
Figure 13 gives the mean reconstruction error of the test
sample which is not part of the learning base. It also
gives the reconstruction error for the samples of the
learning database.

In all cases, the global reconstruction is correct. The
face and skull are reconstructed with an accuracy of 0.5
mm for the samples in the learning database. Test face
sample is reconstructed with a mean accuracy of 6 mm.
Clearly, these results show that the method is promising
but suffers from the size of the learning database. The
first parameter offers a better approximation of the
reconstructed face with a mean reconstruction error of
5.2 mm. As the skull provides essentially the first mode
of variation (see figure 10) and the other modes are
mostly related to variations of the face for our test
sample, only the result for the first parameter can be
considered. For each variation mode after the first one,
the prediction can not be considered as it infers
variations of the face from variations not taken into
account for the skull, the values of the variations modes
being not accurate. As these parameters don’t
correspond to variation modes with null eigenvalues, a
large error in their prediction results in a large error in
reconstruction.
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Figure 13. Mean Facial Reconstruction errors using an
increasing number of modes.

The repartition of the missing data errors on the face is
shown figure 14. Large errors are located on the cheeks,
on the neck and on the sides of the nose. It is important
to note that the cheeks are not attached to the skull and
that the database provides different mandible positions.
So, it is very difficult to predict correctly the position of
the vertexes of the cheeks. Moreover, the density of
vertexes for the cheeks region is quite low, which
enables a sliding of those points. The neck is
unconnected to the skull, so large errors are inescapable.
Last, to predict the shape of the nose knowing the shape
of the skull is very difficult [18, 19]. The links between
the two organs are complex. These errors located on the
sides of the nose are probably due to this situation. The
good reconstruction of the tip of the nose can be
conversely associated to the template used during the
creation of the database.

By using a smaller bounding box that excludes the tip of
the nose and the neck, we are able to gain half a
millimeter in the accuracy of the prediction (to 4.6 mm).
The maximal error is reduced from 3 mm as seen in
figure 15.

Two limitations of the current database are its small
size, the non homogeneity of the face mesh (the regions
of the nose and the lips are much more dense than the
rest of the mesh) and the coarseness of the skull mesh.
The following parts present two ways of compensating
for these limitations. One way is to create a synthesis
database using the matching algorithm to simulate
virtual shape variations on the meshes. The other way is
to use a decimated mesh of the face (with a more
homogenous distribution of the vertices) which will
indirectly give more weight to the skull vertexes in the
statistical model.

<1imm >1mmto <3 mm >3mmto < 5mm > 5mm
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Figure 14 : Distance maps and histograms of the facial
reconstruction error for 3 reconstructed faces.

> 5smm

&

Histagram of the missing data error (12)

Histogramm of the missing data errar (12)

1400

1200

s

£ 1000

800

Number of p

00

ano)

200 5|

Figure 15. Distance maps and histograms of the facial

reconstruction error for a reconstructed face using the

enclosed model (no neck or tip of the nose) (left) and
the original model (right).
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4.3. Decimated Facial Reconstruction

4
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Figure 16. Original and decimated face meshes.

A decimated face mesh (929 vertices) is extracted from
the original mesh (3780 vertices). As the decimated
mesh is a subpart of the original mesh, every entry of
the database can be expressed with only the vertices
belonging to the decimated mesh. Each vertex of the
decimated mesh represents a larger area of the face. The
skull vertices now represents 75% of the vertices of the
model.
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Figure 17. Mean reconstruction errors of the skull and
face using an increasing number of mode for the
decimated model.

The accuracy of this decimated model is first tested by
global reconstruction. The mean reconstruction errors
(figure 17) for the last three modes are below the
millimeter for samples of the learning database as with
the original mesh. The reconstruction is quite accurate
with sample in the learning database. Reconstruction
error for a test sample is around 3.6 mm for the last four
modes. These results are similar to those of the non-
decimated mesh. The reconstruction of the skull test
sampled is now determined essentially by the first three
modes of variations. These modes see the cumulative
explained variance be more descriptive of the skull
shape variations than the face shape variations (Table
4).
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Figure 18. Mean Facial Reconstruction errors using an
increasing number of modes for the decimated model

Table 4. Percentage of cumulative variance explained for
each part of the model (face, skull) for the first 6 parameters.

Mode number / 1 213141516
Cumulative variance

Face + skull 38 | 5565|7278 |83

face 31 |40 |50 |63 |71 |76

skull 41 |59|68 72|78 |83

Here again, the reconstruction of the

face using the

missing data extension of the PCA is promising (figure
18). The face is reconstructed with an accuracy of 0.6
mm for the samples in the learning database. Test
samples are reconstructed with a mean accuracy of 6.0
mm. As with the original model, the first variation mode
offers a better approximation of the reconstructed face
with an error of 5.1 mm. As there are more skull
vertexes than face vertexes in the decimated model, the
first two parameters give now an adequate information
for the prediction of the face. The distribution on the
face of the facial reconstruction error is similar to the
original model (see figure 19).

In conclusion, the “decimated” model gives similar
results to the “global” model (the gain is 0.1 mm for the
facial reconstruction with 2 valid modes). However
these results show that the more accurately the skull will
be parameterised by the model (i.e. the greater the
number of valid wvariation parameters), the more
accurately the face will be predicted, as the error on
these parameters determining the skull will not interfere
on the prediction of the face.

One other mean of increasing the number of valid
variation modes is to increase the size of the database.
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Figure 19. Distance maps and histograms of the facial
reconstruction error for 3 reconstructed decimated faces.

4.4. Synthetic Facial Reconstruction

A synthetic skull and face database is built using one of
the original individual and a set of elastic
transformations defined as an octree. Random
transformations of the cube enclosing the two meshes
were provided, thus transforming the two meshes. The
transformations used are defined by the variations of the
position of the nodes of the octree. The transformation
so defined is relatively smooth as only one level of
subdivision is used. Figures 20 respectively illustrate the
five parameters that are used to deform the meshes:
three scaling parameters, and variations of the center of
the X face and of the central axis of the cube (Z
direction). Of course, these variations can't simulate the
reality of the skulls and faces variability. However, it is
a way to artificially verify the missing data formulation
and the semi-landmark hypothesis.

/

‘g

i I
Figure 20. transformation zones and meshes for the 5
deformation parameters.

g\
o

One hundred set of meshes are generated using these
random transformations. To further increase the
variability on the face, a Gaussian noise is added to each
point. The level of this noise is chosen so that we still
remain in the semi-landmark paradigm. Indeed, a large
level of noise could change the relative positions of the
vertexes of the mesh, thus making the concept of semi-
landmark not valid anymore.

A 2mm value was chosen for the level of noise.
Erreur ! Source du renvoi introuvable. and Erreur !
Source du renvoi introuvable. plot the reconstruction
results.. Test samples are reconstructed with a mean
accuracy of 1 mm. The missing data error is in the same
range. It is important to note that the missing data error
converges to the reconstruction error for the known part
of the test sample (the skull) as well as for the unknown
part (the face). If the level of noise is increased, the
accuracy of both the reconstruction and the missing data
errors augment. Results equivalent to the previous
models are encountered for a 5 mm added Gaussian
noise. At this level of noise, the semi-landmark
paradigm is not valid anymore.

If the subject-specific meshes are used as test samples
on the synthesis database, bad reconstructions are
obtained for each individual as the variations of the
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shapes used are too simple. However, if each subject-
specific mesh is deformed wusing this set of
transformations, we guess that it would be possible to
obtain a better face and skull model, because of the
higher number of degrees of freedom introduced by the
synthesis.
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Figure 21. Mean reconstruction errors of the skull and
face using an increasing number of mode for the
synthesis database model.
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Figure 22. Mean Facial Reconstruction errors using an
increasing number of modes for the synthesis database model.

5. Conclusion

In this paper, a face and skull statistical model is
proposed for 3D computerised facial reconstruction. To
build this statistical model, a 3D-to-3D matching
procedure delivers subject-specific meshes of the skull
and face with the same number of vertices. A shared
normalized space for the faces and skulls is therefore
built. The direct statistical relationships between the
face and the skull included in the statistical model are
used to reconstruct the missing data of the face when the
skull is the only available information. For this, a
missing data extension of the Principal Component
Analysis is used.

Results are visually correct and mean measured errors
show that the method is promising as it will be probably
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more efficient for larger learning database. Two ways of
increasing the efficiency of the model are presented.
The first one consists in decimating the face mesh in
order to adjust its density to the skull mesh density, thus
giving a higher weight to the known part of the
problem, i.e. skull data. The corresponding results are
similar to the ones provided by the original model (at
least in term of facial reconstruction), but a slightly
more efficient modeling of the skull was observed. The
other method to improve the efficiency of the model
consists in creating smooth elastic transformation to
artificially increase the side of the database. As this
database is synthetic, with up to now very simple non-
linear transformations, the first results are quite
coherent. Further works should provide more
complicated elastic transformations applied to a larger
database
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