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Abstract 
In recent years, advances in wireless communication technology have led to the widespread 
use of cellular phones. Because of noisy environmental conditions and competing surrounding 
conversations, users tend to speak loudly. As a consequence, private policies and public 
legislation tend to restrain the use of cellular phone in public places. Silent speech which can 
only be heard by a limited set of listeners close to the speaker is an attractive solution to this 
problem if it can effectively be used for quiet and private communication. The motivation of 
this research thesis was to investigate ways of improving the naturalness and the intelligibility 
of synthetic speech obtained from the conversion of silent or whispered speech. A Non-
audible murmur (NAM) condenser microphone, together with signal-based Gaussian Mixture 
Model (GMM) mapping, were chosen because promising results were already obtained with 
this sensor and this approach, and because the size of the NAM sensor is well adapted to 
mobile communication technology. Several improvements to the speech conversion obtained 
with this sensor were considered. 

A first set of improvement concerns characteristics of the voiced source. One of the features 
missing in whispered or silent speech with respect to loud or modal speech is F0, which is 
crucial in conveying linguistic (question vs. statement, syntactic grouping, etc.) as well as 
paralinguistic (attitudes, emotions) information. The proposed estimation of voicing and F0 
for converted speech by separate predictors improves both predictions. The naturalness of the 
converted speech was then further improved by extending the context window of the input 
feature from phoneme size to syllable size and using a Linear Discriminant Analysis (LDA) 
instead of a Principal Component Analysis (PCA) for the dimension reduction of input feature 
vector. The objective positive influence of this new approach of the quality of the output 
converted speech was confirmed by perceptual tests. 

Another approach investigated in this thesis consisted in integrating visual information as a 
complement to the acoustic information in both input and output data. Lip movements which 
significantly contribute to the intelligibility of visual speech in face-to-face human interaction 
were explored by using an accurate lip motion capture system from 3D positions of coloured 
beads glued on the speaker’s face. The visual parameters are represented by 5 components 
related to the rotation of the jaw, to lip rounding, upper and lower lip vertical movements and 
movements of the throat which is associated with the underlying movements of the larynx and 
hyoid bone. Including these visual features in the input data significantly improved the quality 
of the output converted speech, in terms of F0 and spectral features. In addition, the audio 
output was replaced by an audio-visual output. Subjective perceptual tests confirmed that the 
investigation of the visual modality in either the input or output data or both, improves the 
intelligibility of the whispered speech conversion. 

Both of these improvements are confirmed by subjective tests. 
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Finally, we investigated the technique using a phonetic pivot by combining Hidden Markov 
Model (HMM)-based speech recognition and HMM-based speech synthesis techniques to 
convert whispered speech data to audible one in order to compare the performance of the two 
state-of-the-art approaches. Audiovisual features were used in the input data and audiovisual 
speech was produced as an output. The objective performance of the HMM-based system was 
inferior to the direct signal-to-signal system based on a GMM. A few interpretations of this 
result were proposed together with future lines of research. 



 

Résumé 
Les avancées des technologies de communication sans fil ces dernières années ont mené à 
l’utilisation répandue des téléphones portables pour la communication privée. En raison des 
conditions environnementales bruyantes et des conversations environnantes concurrentes, les 
utilisateurs tendent à parler fort. Par conséquent, la législation publique tend à limiter 
l'utilisation du téléphone mobile dans les lieux publics. La voix silencieuse qui peut seulement 
être entendue par un ensemble limité d'auditeurs entourant le locuteur est une solution 
attrayante à ce problème si elle peut effectivement être employée pour la communication 
privée, confidentielle. La motivation de cette thèse était d'étudier différentes façons 
d'améliorer le naturel et l'intelligibilité de la parole synthétique obtenus à partir de la 
conversion de la voix silencieuse ou chuchotée. Un microphone à condensateur NAM, 
utilisant le mapping direct signal-vers-signal basé sur un modèle GMM (Gaussian Mixture 
Model), a été choisi parce que des résultats prometteurs ont été déjà obtenus avec ce capteur 
et cette approche, et parce que la taille du capteur NAM est bien adaptée à la technologie de 
communication mobile. Différentes améliorations de la conversion de parole obtenue avec ce 
capteur ont été envisagées. 

Un premier ensemble d'amélioration concerne les caractéristiques de la source voisée. Un des 
traits manquant dans la voix chuchotée ou silencieuse en ce qui concerne la parole modale est 
F0, qui est crucial pour l'information linguistique (question ou affirmation, regroupement 
syntactique, etc.) aussi bien que l'information paralinguistique (attitudes, émotions). 
L'évaluation proposée du voisement et du F0 pour la parole convertie en séparant les modules 
améliore les deux prédictions. Le naturel de la parole convertie a été alors encore amélioré en 
allongeant la fenêtre de contexte d'entrée, de la taille du phonème à la taille de la syllabe, et en 
employant une analyse LDA (Linear Discriminant Analysis) au lieu d'une PCA (Principal 
Component Analysis) pour la réduction de la dimension du vecteur d'entrée. 

Une autre approche étudiée dans cette thèse a consisté à intégrer l'information visuelle comme 
complément à l'information acoustique dans les modalités d'entrée et de sortie. Les 
mouvements des lèvres qui contribuent de manière significative à l'intelligibilité de la parole 
visuelle dans l'interaction humaine face-à-face ont été intégrés en employant un système de 
capture précis des mouvements des lèvres à l’aide des positions 3D de billes collées sur le 
visage du locuteur. Les paramètres visuels ont été représentés par 5 composants liés à la 
rotation de la mâchoire, à l’arrondissement des lèvres, aux mouvements verticaux des lèvres 
supérieure et inférieure et aux mouvements de la gorge qui sont associés aux mouvements 
fondamentaux du larynx et de l'os hyoïde. L’inclusion de ces paramètres visuels dans les 
données d’entrée du système a amélioré de façon significative la qualité de la parole convertie 
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en sortie, en termes de F0 et de spectre. De plus, la sortie audio a été remplacée par une sortie 
audio-visuelle. 

Des tests perceptifs subjectifs ont confirmé que l’intégration de la modalité visuelle soit dans 
les données d’entrée, soit dans celles de sortie, soit dans les deux, améliore significativement 
l’intelligibilité de la conversion de parole chuchotée. 

Toutes ces améliorations sont confirmées par les tests subjectifs. 

Enfin, nous avons étudié la technique utilisant un pivot phonétique en combinant la 
reconnaissance de la parole et la synthèse de la parole basée sur un modèle de Markov caché 
(HMM) pour convertir les données chuchotées en parole claire afin de comparer la 
performance de ces deux approches « état de l’art ». Des paramètres audio-visuels ont été 
utilisés dans les données d’entrée et un signal de parole audiovisuel a été produit en sortie. 

La performance objective de ce système à base de HMM était inférieure à celle du système 
d’appariement signal-vers-signal fondé sur un GMM. Plusieurs interprétations de ce résultat 
ont été proposées ainsi que des perspectives de recherche dans ce domaine. 
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Introduction 
Motivation of research 
Silent speech is the kind of speech defined as the articulated production of sound with little 
vibration of the vocal cords in the case of whisper or no vibration at all in the case of murmur, 
produced by the motions and interactions of speech organs such as tongue, palate, lips, etc., to 
avoid being overheard. This kind of speech is commonly used for private and confidential 
communication, especially useful in military environments, or can be used by laryngeal 
handicapped people who cannot speak normally. 

Unfortunately, it is difficult to directly use silent speech as a medium for face-to-face 
communication as well as over mobile telephones because the linguistic content and 
paralinguistic information in the uttered message is degraded when the speaker murmurs or 
whispers. A recent direction of research considered by researchers and telecommunication 
industries is how to convert silent speech to modal voice in order to have a more intelligible 
and more familiar speech. If it could be done, potential outcomes such as “silent speech 
telephone” as well as robust “speaking-aid” applications for laryngeal handicaps would 
become feasible. My work in this thesis therefore concentrates on this direction. 

Scope of thesis 
Several silent speech devices have been explored in the literature including surface 
electromyography (sEMG) (Jorgensen et al., 2003; Jorgensen and Binsted 2005; Jou, Schultz 
et al., 2006, 2008; Walliczek et al., 2006; Toth et al., 2009), non-audible murmur (NAM) 
microphone (Nakajima, 2003,2006; Heracleous et al., 2005, 2009; Toda and Shikano 2005), 
ultrasound and optical imagery (Denby and Stone, 2004; Denby et al., 2006; Hueber et al., 
2007, 2008ab, 2009; Denby et al., in press), Electromagnetic Articulography (EMA) (Fagan 
et al., 2008) and Electro-encephalographic (EEG) (Suppes et al.,1997; Wester and Schultz 
2006; Porbadnigk et al., 2009). Among them, one that seems particularly interesting is the 
NAM microphone developed by researchers at Shikano Laboratory, NAIST, Japan because of 
its usability and its suitable size for mobile communication technology. Nakajima et al., 2003 
proposed that it might be more efficient, in noisy environment, to analyze the original 
vibrations uttered as speech from inside the body, through the surface of the skin, instead of 
analyzing the sounds in the air, after being discharged through the mouth. They introduced a 
new communication interface which can capture acoustic vibration in the vocal tract from a 
stethoscopic sensor placed on the neck, below the ear. By using this microphone, Toda and 
Shikano (2005) proposed a NAM-to-Speech conversion system based on a GMM model in 
order to convert “non-audible” speech to audible voice. Although the segmental intelligibility 
of synthetic signals computed by this statistical feature mapping is quite acceptable, listeners 
have difficulty in chunking the speech continuum into meaningful words. This is mainly due 
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to impoverished synthetic intonation estimated from unvoiced speech like NAM. The main 
contribution of our work in this thesis is to improve the performance of such a system. 

The following is a summary of our contributions: 

Signal-to-signal mapping 

– Pitch. A first improvement proposed in this thesis is to better estimate the voice 
source for the converted speech. Several approaches are explored, including training 
on voiced segments only, separating the voicing and F0 estimation in the synthesis 
process, optimizing the context window size of the input feature and using LDA 
(Linear Discriminant Analysis) instead of PCA (Principal Component Analysis) to 
reduce the input vector dimension. 

– Audiovisual input/output. Another solution explored in this thesis to improve the 
performance of the system is to integrate visual information as a complement to the 
acoustic information in both input and output data. Facial movements are estimated 
using an accurate motion capture device. The extracted facial parameters are then used 
to drive a the talking head system, a technique developed at the Speech and Cognition 
Department of GIPSA-lab. 

HMM-based recognition-synthesis 

Another approach to map silent speech to audible voice is combining speech recognition and 
synthesis techniques as proposed in (Hueber et al., 2007, 2008ab, 2009). By introducing 
linguistic levels, both in recognition and synthesis, such a system can potentially compensate 
for the impoverished input by including linguistic knowledge into the recognition process. We 
compared this approach with the previous direct signal-to-signal mapping, to explore a further 
solution to improve the quality of the whisper-to-modal speech conversion system. 

Organization of thesis 
The thesis is organized as follows. 

Chapter 1 starts with the definition of different types of silent speech, followed by the 
presentation of several new communication interfaces and techniques that have been used 
recently to capture silent speech. These interfaces, as mentioned above, include 
Electromagnetic Articulography (EMA), surface Electromyography (sEMG), Non-Audible 
Murmur microphone (NAM), Encephalography (EEG), Ultrasound (US) and optical imagery 
of the tongue and lips. Finally, some techniques used to map silent speech to audible speech 
are presented. The first technique is direct signal-to-signal mapping using aligned corpora. 
This technique is derived from voice conversion, a technique frequently used in speech 
synthesis to generate different output voices with limited resources. The second method 
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incorporates linguistic knowledge by chaining speech recognition and speech synthesis. Both 
approaches are experimented in this thesis. 

Chapter 2 provides background information on whispered speech production and perception 
from previous research of different view points. This chapter starts with the physiological 
characteristics of whispered speech, then describes the acoustic differences between 
whispered speech and phonated speech. Next, this chapter discusses how listeners can identify 
“pitch” during whispered speech production even if there is no vibration of the vocal folds. 
Finally, visual cues are described as a complementary information which improves speech 
perception, especially in the case of silent speech or in conditions of lip-reading, where there 
is no acoustic information. 

Chapter 3 focuses on the design and the acquisition of our data for different languages: 
French and Japanese. The chapter presents the construction of the French corpus which only 
includes audio data as well as the construction of a Japanese corpus with simultaneous audio 
and video modalities. The pre-processing of the video data is then explained. A guided PCA 
is applied to the video data in order to extract the main facial movement parameters related to 
speech articulation. 

Chapter 4 describes my contribution to improve the intelligibility and the naturalness of the 
synthetic speech generated by a direct signal-to-signal mapping technique. Different solutions 
are presented in this chapter. They include the improvement of the precision of voicing 
decision and F0 estimation, by the extension of the context window of the input feature from 
the phoneme size to the syllable size and by the use of LDA instead of PCA to reduce the 
input feature dimension. Finally the use of visual parameters in both input and output of the 
conversion system is investigated. The positive influence of these solutions is assessed by 
objective tests and confirmed by subjective perceptual tests. 

Chapter 5 on the other hand concentrates on the phonetic pivot HMM-based recognition-
synthesis chain. After studying the impact of facial movement information on the 
performance of both recognition and synthesis, the objective performance of the two systems, 
i.e. the direct signal-to-signal mapping described in the previous chapter and the HMM-based 
conversion system, are compared. 

Finally, the conclusion summarizes the contributions of this thesis and offers suggestions for 
future work. 
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Figure 1. Silent speech interfaces developed in the CASSIS project. 

 

Related project 
The work presented in this thesis contributes to the CASSIS (Computer-Assisted 
communication and Silent Speech InterfaceS) project (figure 1) which involves the 
collaboration of GIPSA-Lab, ENST-Paris, ESPCI-Paris and NAIST. The aim of the CASSIS 
project is to enable confidential human-human or human-computer communication as well as 
to compensate for phonation loss in silent speech. The basic challenge is to convert 
multimodal signals (brain or muscular activities, orofacial movements, contact sounds, etc) 
gathered during silent or quasi-silent articulation into an audible signal or a phonological 
representation of what has been said. The CASSIS project provides a scientific framework to 
share technologies, develop new interfaces and settle common data recordings and evaluation 
campaigns. Multilingual evaluation is crucial in this respect since performance is highly 
dependent on the phonological structure of the language (sound structure, syllable 
complexity, accentual structure, etc) and since language-specific knowledge is often injected 
implicitly or explicitly in the mapping process. Comparative assessment of such speech 
technologies will be performed on Japanese, English and French multimodal resources. The 
ultimate challenge of this project is also to consider real-time implementations of the 
proposed solutions so that usability studies can be conducted at the end of the project. 





 

 

Chapter 1.  Silent speech interfaces and 
silent-to-audible speech conversion 

1.1 Introduction 
Due to the limitations of traditional speech interfaces – i.e. limited robustness in the presence 
of ambient noise, lack of secure transmission of private and confidential information and 
interference of bystanders in concurrent environments – a novel approach is necessary to 
capture articulatory or cerebral causes rather than their acoustic consequences, i.e. silent 
speech. By acquiring multimodal data from the articulators, brain or muscular activities, 
orofacial movements, etc. gathered during silent articulation, a Silent Speech Interface (SSI) 
produces a representation of speech which can be synthesized directly and can provide an 
audible signal. (Denby et al., in press). 

Potential applications for SSIs can be found more and more. First of all, SSIs are intuitively 
used to provide privacy for conversations over cellular phones. An SSI, if non-invasive and 
small enough to be incorporated into a cell phone, could allow users to communicate more 
silently, privately and confidentially. Based on their natural non-air-borne speech cues, SSIs 
are robust against environmental background noise and therefore are also adapted to speech 
processing in noisy environments (Denby et al., in press). Moreover, SSIs are gradually used 
to replace current speech pathology aids, such as the electrolarynx for the laryngectomy 
handicaps, thanks to their potentially natural sounding. 

This chapter presents the definition of silent speech in section 1.2. A panorama of 
technologies used to capture silent speech signatures follows in section 1.3. Section 1.4 
concentrates on two main conversion techniques to synthesize audible voice from silent 
speech: direct mapping signal-to-signal and coupling a speech synthesis system and a non-
audible speech recognizer. Finally, section 1.5 presents some conclusions for this chapter. 

1.2 Silent speech 
Silent speech is a common, natural way that speakers use to reduce speech perceptibility. For 
example when they are asked to speak softly so as not to disturb others in a school library, in 
a conference ..., when they are too weak to speak normally or when they tell private, 
confidential information. It seems that silent speech is the most effective and efficient vocal 
communication when only a few people around the speaker (or only him/herself when s/he is 
speaking on the phone) should hear the message. 

Depending on the level of “silence” or audibility, we can define 5 categories: 

1. Inner speech: It is also called imagined speech, covert speech or verbal thought. It 
refers to the silent production of words in one’s mind. Inner speech can be considered 
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as mental simulation of speech. Some researchers suggest that inner speech is the 
same as overt speech, except that execution is blocked, i.e. overt speech equals inner 
speech plus a motor execution process. This ‘continuity hypothesis’ predicts that 
physiological correlates of inner speech (such as duration, muscular activity, heart 
rate, respiration rate and neuronal activity) should bear resemblance to those of overt 
speech. This hypothesis implies that speech motor activities may exist during inner 
speech, resulting from motor planning, but that these activities do not result in 
effective muscular recruitment. The hypothesis is given credit by orofacial 
electromyographic (EMG) recording during inner speech. EMG activity has been 
detected in the speech musculature during verbal mental imagery and covert rehearsal 
(Jacobson, 1931; Sokolov, 1972). McGuigan and Dollins (1989) conducted EMG 
recording showing that the lips are active when silently reading the letter "P", but not 
when reading "T". Reciprocally, the tongue was active only for silently reading “T”. 
Livesay et al. (1996) observed lip EMG activity in an inner speech recitation task, but 
not in a visualization task. Fadiga et al. (2002) have shown, using Transcranial 
Magnetic Stimulation (TMS), that during listening of words which involve tongue 
movements, there is an increase of motor-evoked potentials recorded from the 
listeners' tongue muscles. 

2. Subvocal invisible speech: This speech mode is articulated very softly so that it 
cannot be heard, but the speech articulators (tongue, lips, perhaps jaw) may slightly 
move. It corresponds to articulation without phonation and with very little air 
emission. Subvocal speech is usually hypo-articulated, such as when a person 
silently reads or recites to him/herself. The articulatory movements are so small that 
they may not be noticed by surrounding viewers. This kind of speech is what is 
studied by researchers from a group at NASA Ames Research Center, who are 
working on the decoding of facial EMG signals arising from subvocal speech (Bett 
and Jorgensen 2005; Jorgensen and Binsted 2005). By sticking EMG sensors under a 
person’s chin and on either side of the Adam’s apple, this group claim they can 
recover EMG activities from laryngeal, mandibular and lingual muscles and translate 
them into words. 

3. Subvocal visible speech: This speech mode corresponds to silent speech mouthing. 
Speech is normally articulated but without air emission. The articulators move, as if 
one wanted to be seen but not heard. Lip, jaw, cheek and chin motions can thus be 
tracked to decipher speech. This speech mode is used by Tanja Schultz, Alex Waibel 
and colleagues (at Carnagie Mellon University, CMU and at the Interactive Systems 
Laboratories of Universität Karlsruhe) to derive audible speech from facial EMG 
recordings (e.g. Jou et al., 2007). Another research group, involved in the Ouisper1 
project, also try to synthesize audible speech from the ultrasound motion of the tongue 

                                                 
1 http://www.neurones.espci.fr/ouisper/ 
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movement during the production of this speech mode (Denby and Stone, 2004; Denby 
et al., 2006; Hueber et al., 2007, 2008ab, 2009). 

4. Non-audible murmur (NAM): This speech mode is softly whispered so that a nearby 
person would not be able to hear it. It is defined as the articulated production of 
respiratory sound without recourse to vocal-fold vibration, produced by the motions 
and interactions of speech organs such as the tongue, palate, lips etc. (Nakajima et al., 
2003ab). It can be viewed as subvocal invisible speech with air emission. 

5. Whispered speech: although it is difficult to define precisely the acoustic differences 
between "whisper" and "NAM", the term "whisper" implies that limited nearby 
listeners can hear the content of the speech, and that it can be recorded by an external 
microphone through transmission in the air (Nakajima et al., 2003ab). 

The following sections will present some current technological attempts in the literature, 
designed to capture silent speech as well as several approaches to silent speech-to-audible 
speech conversion, aiming at obtaining a more natural and intelligible voice. 

1.1 Silent speech interfaces (SSI) 
The speech production process can be regarded as producing a set of coherent multimodal 
signals, such as the electrical cerebral signals, the myoelectrical signals observable from the 
muscles, the movements of the orofacial articulators that are visible or not, or acoustic signals 
(figure 1.1). The aim of this section is to overview the spectrum of available technologies that 
can be used to record useful signals characterizing articulation and phonation of silent speech. 

 

Figure 1.1. Multimodal signals during the speech production process 

1.1.1 Electro-encephalographic (EEG) sensors 

It is well known that several brain areas are activated in the production of speech. Broca's 
area has been shown to be involved in the planning and decision process during speech 
production while Wernicke's area has been shown to be active during speech comprehension 
(Callies, 2006; Wester and Schultz, 2006). 



20 Silent speech interfaces and silent-to-audible speech conversion 
 

 

To exploit the electromagnetic waves created by these cerebral activities, non-invasive 
electroencephalography or EEG devices are frequently used as a brain-to-computer interface 
(BCI) (Wolpaw et al., 2002). 

By using this type of sensor for silent speech, Suppes et al. (1997) have shown that isolated 
words can be recognized based on ElectroEcephaloGraphy (EEG) and 
MagnetoEncephaloGraphy (MEG) recordings. In one of their experimental conditions called 
internal speech, the subjects were shown one out of 12 words on a screen and asked to utter 
this word ’silently’ without using any articulatory muscles (this corresponds to what we 
defined as “inner speech” above). Recognition rates, based on a least-squares criterion, varied 
widely, but were significantly different from chance. The two best scores were above 90%. 
These results show that brain waves carry substantial information about the word being 
processed under experimental conditions of conscious awareness. 

 

Figure 1.2. EEG-based recognition system for unspoken speech (Wester and Schultz, 2006) 

Another work by Wester and Schultz (2006) investigated a similar approach which directly 
recognizes “unspoken speech” in brain activity measured by EEG signals (figure 1.2). 
“Unspoken speech” here refers to what we defined as “inner speech” above. In this study, the 
authors used 16 channel EEG data recorded using the International 10-20 system (Jasper, 
1958) in five different modalities: normal speech, whispered speech, silent speech, mumbled 
speech and unspoken or inner speech. They concluded that speech recognition on EEG brain 
waves is possible with a word accuracy four to five times higher than chance for vocabularies 
of up to ten words. The same results were found for the other modalities. Unspoken speech 
was slightly worse than the other modalities (Wester and Schultz, 2006). Their experiments 
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also showed that the important EEG recording regions for unspoken speech recognition seem 
to be the motor cortex, Broca’s area and Wernicke’s area as shown in figure 1.3. 

 

Figure 1.3. The motor cortex, Broca’s area and Wernicke’s area seem to be recruited for 
inner speech (Wester and Schultz, 2006) 

However, subsequent investigations lead to the hypothesis that the good recognition 
performance might in fact have resulted from temporal correlated artifacts in the brain waves 
since the words were presented in blocks. Due to these artifacts, the recognition results 
reported in (Wester and Schultz, 2006) might be overestimated. A recent study by Porbadnigk 
et al. (2009) tried to prove this hypothesis. In their experiments, each of the first five words of 
the international radio-telephony spelling alphabet (alpha, bravo, charlie, delta, echo) was 
repeated 20 times by 21 subjects. Each session had the same word list (length 100) but the 
word order was varied: blockwise, sequential mode or random mode (see Porbadnigk et al. 
2009 for more details). The interested signals, 16 EEG channels using a 128 cap montage, 
were recognized by a HMM-based classifier. The authors discovered that the average 
recognition rate of 45.5% in block mode drops to chance level for all other modes. This 
means that temporally correlated brain activities tend to superimpose the signal of interest. 
The authors also found that cross-session training (within subjects) yields recognition rates 
only at chance level. 

Dasalla and colleagues (Dasalla et al., 2009) proposed another scheme for a silent speech BCI 
using neural activities associated with vowel speech imagery. EEG was recorded in three 
healthy subjects for three tasks, imaginary speech of the English vowels /a/ and /u/, and a no-
action state as control. 50 trials were performed for each task, with each trial containing two 
seconds of task-specific activity. Trial averages revealed readiness potentials at 200 ms after 
stimulus and speech related potentials peaking after 350 ms. The authors then designed spatial 
filters using the common spatial patterns (CSP) method, which, when applied to the EEG 
data, produce new time series with variances that are maximally discriminative. After 
spatially filtering the EEG data, the authors trained a nonlinear support vector machine 
(SVM) for the classification task. Overall classification accuracies ranged from 68% to 78%. 
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Results indicate significant potential for the use of the proposed system for EEG-based silent 
speech interfaces. 

1.1.2 Surface Electromyography (sEMG) 

The surface Electromyography (sEMG) method measures muscular electric potential with a 
set of electrodes attached to the skin where the articulatory muscles underlie (Jou and Schultz, 
2008). In the speech production chain (as presented in the figure 1.1), neural signals generated 
from the brain drive articulatory muscles. The articulatory muscles then contract and relax 
accordingly to shape the geometry of the vocal tract and produce appropriate sounds. The 
muscle activity alters the small electrical currents through the body tissue whose resistance 
creates potential differences, and the sEMG method can pick up this kind of potential change 
for further signal processing, e.g., speech recognition or speech synthesis. Figure 1.4 shows 
the surface muscles involved in speech production that can be used for an EMG-based system 
(Maier-Hein L., 2005). The motivation here is that the sEMG method is inherently robust to 
ambient noise because the sEMG electrodes are directly in contact with the human tissue 
without the air-transmission channel. Therefore the sEMG method makes it possible to 
recognize completely silent speech, which means mouthing words without making any sound 
(Jou and Schultz, 2008). 

 

Figure 1.4. Some of the surface muscles involved in speech production (Maier-Hein L., 2005) 

EMG was earlier used to develop a speech prosthesis that functions using the myo-electric 
signal as its only input (Morse and O'brien, 1986; Susie and Tsunoda, 1985). In (Morse and 
O’Brien, 1986), time domain recognition of speech from myoelectric signals using maximum 
likelihood pattern recognition was first studied. The authors investigated the EMG signals 
from three muscles of the neck, near the vocal tract and one on the left temple. Recognition 
accuracy as high as 97% was attained on a two-word vocabulary. However, for larger 
vocabularies, the recognition accuracy deteriorated, falling below 70% accuracy for ten-word 
vocabularies and 35% for 17-word vocabularies in the following studies of theses authors 
(Morse et al., 1989, 1990, 1991). In another work by Susie and Tsunoda (1985), the target 
muscles were three muscles around the mouth: the digastricus, the zygomaticus major and the 
orbicularis (as can be seen in the figure 1.4). The words were classified using a finite 
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automation. An average recognition accuracy of 64% was attained in discriminating the five 
Japanese vowels. This speech recognition accuracy using EMG signals would be considered 
poor by today's conventional speech recognition standards; however, the accuracy of these 
systems is above the random guessing which promises the presence of speech information 
within the myoelectric signals from the muscles of articulation. 

 

Figure 1.5. (a) Pilot oxygen mask with electrodes embedded in rubber lining: (b) anatomical 
diagram indicating location of target muscles (Chan et al., 2002). 

The research of Chan and colleagues (2002) continued in this direction by experimenting 
automatic speech recognition using sEMG. They proposed to supplement voiced speech with 
EMG in the context of noisy aircraft pilot communication. In their work, they studied the 
feasibility of augmenting auditory speech information with EMG signals recorded from 
primary facial muscles using sensors embedded in a pilot oxygen mask. They used five 
surface signal sites (using Ag-AgCl button electrodes), from five facial muscles: the levator 
anguli oris (LAI), the zygomaticus major (ZYG), the platysma (PLT), the depressor anguli 
oris (DAO) and the anterior belly of the digastric (ABD) (Figure 1.5). They recorded the 
EMG activity of these muscles during the vocalized pronunciation of the digits zero to nine, 
in parallel with an additional acoustic channel to segment the signals. A Linear Discriminant 
Analysis (LDA) classifier utilized on a set of wavelet transform features (reduced by Principle 
Component Analysis (PCA) yielded a word accuracy of 93%. The authors also claimed that 
the performance was very sensitive to the pre-triggering value for sEMG signals. This 
phenomenon occurs because the onset of muscle activity precedes the acoustic voice signal. 
Since the temporal position of articulation signal relative to the acoustic signal varies with the 
speaking rate, the authors proposed to use a Hidden Markov Model (HMM) (Chan et al., 
2002). Even though the HMM classifier yielded worse maximum recognition rates (86%) 
than the LDA classifier for the same data, it was much less susceptible to temporal 
misalignment, that is, there was no dramatic decrease in performance when the pre-trigger 
value used for the training set was slightly different from the one used in the test set. 
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Figure 1.6. (a) the subvocal EMG system proposed by Jorgensen et al. (reference). (b) the 
subvocal EMG system proposed by DoCOMO Research center. (c) electrode positioning by 
the CMU group. 

For silent speech recognition with EMG, Manabe et al. (2003), in the DOCOMO project 
(Figure 1.6b), showed that it is possible to recognize five Japanese vowels using surface EMG 
signals recorded with electrodes pressed on the facial skin. The electrodes were placed under 
the chin, on the cheek, and on the lips, corresponding to the digastrics muscle, the 
zygomaticus major, and the orbicularis oris (Manabe et al., 2003). Using an artificial neural 
network (ANN), the recognition accuracy was over 90%. In their later work on ten Japanese 
digits recognition (Manabe and Zhang, 2004), experiments on speaker-dependent recognition 
on 10 isolated Japanese digits with a multi-stream HMM indicated that it is effective to give 
different weights to different sEMG channels so that the corresponding muscles can 
contribute to a different extent to the classification. The authors reported a maximum 
recognition rate of 65% using delta filterbank coefficients and spectral subtraction. 

Chuck Jorgensen and colleagues (Jorgensen et al., 2003; Jorgensen and Binsted 2005) from 
the NASA Ames Resarch Center proposed an EMG system that captures subvocal speech. 
Note that this speech mode is articulated very softly so that it cannot be heard, but the speech 
articulators may slightly move. Their aim is to track hypoarticulated subvocal speech, with 
very limited articulatory movement and no phonation, nor air emission. Their idea is to 
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intercept nervous control signals sent to speech muscles using surface EMG electrodes placed 
on the larynx and sublingual areas below the jaw (Figure 1.6b). The authors reported 
recognition rates of 92% on a set of six control words using a neural network classifier 
(Jorgensen et al., 2003). They examined various feature extraction methods, including STFT 
coefficients, wavelets, and Linear Predictive Coding (LPC) coefficients and reported a 
maximum word accuracy for dual tree wavelets (92%) followed by Fourier coefficients 
(91%). In 2005, the authors extended the original six word vocabulary to the ten English 
digits and achieved a word accuracy of 73% (Jorgensen and Binsted, 2005). 

Several important issues in sEMG based non-audible speech recognition concern 
repositioning electrodes between recording sessions, environmental temperature changes, and 
skin tissue properties of the speaker. In order to reduce the impact of these factors, Maier-
Hein, Schultz, Waibel and colleagues have investigated a variety of signal normalization and 
model adaptation methods (Maier-Hein et al., 2005). By experimenting on a vocabulary 
consisting of the ten English digits “zero” to “nine”, the authors noted that sharing training 
data across sessions and applying methods based on Variance Normalization and Maximum 
Likelihood adaptation improve across-sessions performance. They achieved an average word 
accuracy of 97.3% for within-session testing using seven EMG channels as presented in 
figure 1.6c. Across-sessions testing without any adaptation yielded an average of 76.2%. By 
applying the normalization and adaptation methods they were able to bring recognition rates 
back up to 87.1%. 

A recent work by Lee (2008) proposed a method to use global control variables to model 
correlations among the EMG channels. The system treats each EMG as a speech signal and 
thus uses Mel-scale spectral coefficients (MFCC) as main features, with delta and delta-delta 
for dynamics modeling. EMG channels are obtained from three articulatory muscles of the 
face: the levator anguli oris, the zygomaticus major, and the depressor anguli oris. The 
sequence of EMG signals for each word is modelled by a HMM framework. Their aim is 
building a model for state observation density when multi-channel observation sequences are 
given. The proposed model reflects the dependencies between each of the EMG signals, 
which are described by introducing a global control variable. In their preliminary study, 60 
Korean isolated words were used as recognition variables. The findings indicated that such a 
system may achieve an accuracy of up to 87%, which is superior to the independent 
probabilistic model. 

However, these pioneering studies are limited to small vocabulary sizes ranging from five to 
around forty isolated words. The main reason of this limitation is that the classification unit is 
set to a whole utterance, instead of a restrained to a phone, a smaller and more flexible unit 
that is frequently used in large vocabulary continuous speech recognition. Such a phone-based 
continuous speech recognition system has first proposed by Jou et al. (2006). It attained the 
accuracy of 70% for a 100-word corpus pronounced by a single speaker. 
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The EMG method is interesting not only in speech recognition but also in speech synthesis. In 
(Lam et al., 2005), the authors showed that EMG features extracted from 2 channels captured 
from the cheek and the chin can be converted into speech signals in a frame-by-frame basis. 
The conversion is done via a two-layer feed-forward backpropagation neural network. The 
network was trained to map the short-time Fourier transformation parameters of the sEMG 
signals to one of six possible speech codebook indices. These indices are further decoded as 
Linear Predictive Coding (LPC) coefficients, pitch, and energy information to reconstruct the 
speech signals. The authors noted that the classification rate of the network is similar for 
different sEMG frame sizes on silence vectors, ranging from 83.7% to 86.4%. Classification 
rates of phonemes /æ/, /i/, /�/ become higher when the sEMG frame size increases. For /æ/, 
they range from 84.4% to 96.0%, for /i/, from 87.4% to 93.7%, and from 72.5% to 90.1% for 
/�/. The average classification rate is also higher for larger sEMG frame sizes and reaches 
90.5% when this size is 112.5 ms. Because the conversion was performed at the phoneme 
level, the proposed methodology had the potential to synthesize an unlimited vocabulary size, 
in continuous speech. Another conversion method based on a Gaussian Mixture Model 
(GMM) on the sentences pronounced by a Taiwanese was recently studied in (Toth et al., 
2009) with the same positions of EMG channels proposed in (Maier-Hein et al., 2005). In 
their framework, the converted speech from EMG signals was then decoded by a speech 
recognizer. The best result, using an optimal EMG recognizer based on bundled phonetic 
features, was 18.0% Word Error Rate. The authors also claimed that there are still a number 
of difficulties that need to be overcome. The biggest barriers to a silent speech interface with 
sEMG appear to be the production of an adequate excitation signal and the different 
characteristics of EMG signals produced during audible and silent speech. 

1.1.3 Tongue displays 

Several devices are able to provide information on the movements of inner speech organs. 
Apart from very sophisticated medical imaging techniques such as cineradiography or real-
time MRI that provide complete tongue displays, several other techniques such as 
ElectroMagnetic Articulography (EMA) or ultrasound (US) imaging provide partial 
information of the inner organs in motion: EMA provides 2D or 3D movements of a few coils 
glued on the tongue and possibly the velum with high precision, ultrasound imaging provides 
partial 2D or 3D surface of the tongue. When these data are regularized with deformable 
shape models acquired on the same subject using medical imaging techniques or adapted from 
a generic tongue model, very convincing tongue articulation, and possibly sound, can be 
estimated. 
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Figure 1.7. Ultrasound-based SSI (schematic) (Denby et al., 2009) 

1.1.3.1 Ultrasound 

In the SSI developed in the Ouisper project (Denby and Stone, 2004; Denby et al., 2006, 
Denby et al., in press; Hueber et al., 2007, 2008ab, 2009), an ultrasound imaging system of 
the tongue is coupled with a standard video camera placed in front of the speaker’s lips. Non-
acoustic features, derived exclusively from spatial configurations of these two articulators, are 
used to drive a speech synthesizer, as illustrated in figure 1.7 (Denby et al., in press). 

A first version of a “visuo-acoustic” mapping task was proposed in (Denby and Stone, 2004; 
Denby et al. 2006) by using a multilayer perceptrons network. By using this network, the 
tongue contours and lip profiles extracted from a 2 minutes long ultrasound dataset were 
mapped either onto GSM codec parameters (the 13 kbit/sec codec transforms blocks of 160, 
13-bit speech samples (20 ms at 8000 samples/second) into 260 bits of coded information as 
described in (Denby et al., 2004) or onto Line Spectral Frequencies (LSF). LSF are used to 
represent Linear Prediction Coefficients (LPC) for transmission over a channel. LSF have 
several properties, e.g. smaller sensitivity to quantization noise that makes them superior to 
direct quantization of LPC. In a later version, extraction and parameterization of the tongue 
contour were replaced by EigenTongues decomposition which projects each ultrasound image 
into a representative space of “standard vocal tract configurations” (Hueber et al., 2007). All 
these approaches, however, only predict spectral features, and thus only permit LPC-based 
speech synthesis, without any prescription on the excitation signal (Denby et al., in press). 
Hueber et al (Hueber et al. 2007; Hueber, Chollet et al. 2008ab) then proposed a new 
framework in which a “visuo-phonetic decoding stage” was developed and combined with a 
subsequent concatenative synthesis procedure to produce speech. In this framework, a large 
audio-visual unit dictionary is constructed, which associates a visual realization with an 
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acoustic one for each diphone. In the training stage, visual feature sequences are modeled for 
each phonetic class by a context-independent continuous Hidden Markov Model (HMM). In 
the test stage, the given sequence of visual features is decoded as a set of phonetic targets. 
However, the speech quality of this approach strongly depends of the phone recognition 
performance. The visuo-phonetic decoder is currently able to correctly predict about 60% of 
the phonetic target sequences and therefore the system is not able to systematically provide an 
intelligible output speech. Thus, improvement of the visuo-phonetic decoding stage remains a 
critical issue. (Hueber et al., 2008b) recorded a larger audio-visual speech database with a 
new acquisition system which is able to record two video streams (front and profile), along 
with the acoustic signal, at more than 60 frames per second (fps) instead of 30 fps for the 
earlier baseline acquisition system. Also, in (Hueber et al., 2009), the modelling of tongue 
and lips feature sequences using context-dependent multi-stream HMMs has been proposed in 
order to improve the visuo-phonetic decoding stage. Moreover, they mention that as any 
speech recognition system, performance can be further improved by using a language model 
that can constrain the phonological lattice. The results showed that the performance 
improvement is about 8% higher than that of the system proposed in (Hueber et al., 2008ab). 

1.2.1.1 Electromagnetic Articulography (EMA) 

Another method to get information on the movements of the inner organs during speech 
production is using electromagnetic articulography (EMA). EMA is a motion tracking method 
that tracks the Cartesian coordinates of sensor coils which can be fixed on specific places of 
the lips, the teeth, the jaw, and the velum of the subject. Usually, there are two trajectories for 
each coil, one for the movement in the front-back direction of the head, and one for the top-
bottom direction (Toutios and Margaritis, 2005). 

Fagan et al. (2008) proposed a silent speech recognition system based on an EMA, This 
system consisting of permanent magnets attached at a set of points in the vocal apparatus, 
coupling with magnetic sensors positioned around the user’s head provides a greater 
flexibility in terms of placement and use. The magnets were glued to the user’s tongue, lips 
and teeth, and six dual axis magnetic sensors were mounted on a pair of glasses (figure 1.8). 
The aim of this work was to assess the potential of indirect measurement of movement of the 
vocal apparatus as a means to determine the intended speech of a subject, rather than to 
develop a complete speech recognition system. As such the results show considerable 
promise. Based on a simple template matching algorithm, Dynamic Time Warping (DTW), it 
has been shown that it is possible to classify a subset of phonemes and a small number of 
words with degree of accuracy which is similar to that achieved for speech recognition based 
on acoustic information – albeit with a significantly smaller vocabulary data set. The subject 
was asked to repeat a set of 9 words and 13 phonemes to provide training data while 10 
repetitions of each word/phone were compared to the training set template. With this 
condition, the recognition accuracy attained 97% for words and 94% for phonemes. The 
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authors also noted that the processing is still able to correctly identify the best fit where the 
discrimination is less clear, for instance between labial phonemes (/b/-/m/-/p/-/f/) and velars 
(/g/-/k/), even where the difference is between voiced and unvoiced versions of the same 
phoneme (e.g. /g/-/k/ and /b/-/p/). With these preliminary results, further development of the 
sensing and processing systems may be possible to achieve acceptable recognition for larger 
vocabularies. 

 

Figure 1.8. Placement of magnets and magnetic sensors for an EMA-based SSI (Fagan et al., 
2008) 

 

Figure 1.9. EMA positions in MOCHA-TIMIT2 database 

The EMA method has been used also in speech synthesis, especially for articulatory 
movements-to-speech spectrum conversion or inversion. Toda and colleagues (Toda, Black 
and Tokuda, 2008) proposed a signal-to-signal mapping technique inspired by voice 
conversion systems (Stylianou et al., 1998, Kain and Macon, 1998abc) which does not 
compute any intermediate phonetic representation of the spoken message. The authors used 
articulatory movement data extracted from MOCHA-TIMIT database captured by EMA 
sensors attached on seven articulators: upper lip, lower lip, lower incisor, tongue tip, tongue 
body, tongue dorsum, and velum) and two reference points (the bridge of the nose and the 
upper incisor). The data were sampled in the midsagittal plane at 500 Hz. Each articulatory 
location is represented by x- and y-coordinates as shown in figure 1.9. The training corpus 
contains 414 sentences while 46 sentences were used for the test corpus. The authors used a 
                                                 
2 http://www.cstr.ed.ac.uk/research/projects/artic/mocha.html 
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GMM to model the joint probability density of an articulatory parameter and an acoustic 
parameter. The parameters of this model are determined thanks to the training corpus by a 
Maximum Likelihood Estimation (MLE) within dynamic features instead of a Minimum 
Mean-Square Error (MMSE). They demonstrated that the converted speech by MMSE 
reached only 44% preference score while 47.8% was obtained for MLE without dynamic 
features and 58.3% for MLE with dynamic features. 

1.1.4 Non-Audible Murmur (NAM) microphone 

In (Nakajima et al, 2003ab), the author proposed that “speech is one of the actions that 
originate inside the human body. One of the best methods of examining what is happening in 
the human body is to touch it, as medical doctors have always to do first. It might be more 
efficient to analyze the original vibrations uttered as human speech from inside the body, 
through the surface of the skin, instead of analyzing the sounds in the air, after being 
discharged through the mouth.” If this is possible, then we can put non-audible murmur into 
use as a new speech communication interface. 

 

 

 

Figure 1.10. Anatomy of NAM microphone (Toda et al., 2009; Shimizu et al., 2009) 
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1.1.4.1 Anatomy of the tissue-conductive microphone 

The NAM microphone was developed at Nara Institute of Science and Technology (NAIST), 
Japan. A NAM microphone is an electret condenser microphone (ECM) covered with a soft 
polymer material, which provides a better impedance matching with the soft tissue of the neck 
(figure 1.10). As presented in (Shimizu et al., 2009), there are 2 types of NAM microphone 
depending what type of soft polymer material is used: soft silicone (SS) or urethane-elastomer 
(UE). In the soft silicone (SS) manufactured by Mitsumi Electric Co., Ltd, an ECM whose 
diaphragm is exposed is covered with soft silicone and placed in a rigid cylindrical case of 
30mm diameter x 20mm height. The distance between the surface and the ECM diaphragm is 
about 1 mm. Another type, urethane elastomer (UE) made by Nakajima and colleagues has an 
ECM whose diaphragm is exposed and covered with urethane elastomer and placed in a rigid 
cylindrical case of 20mm diameter x 10mm height. The urethane elastomer is adhesive, which 
facilitates the attachment of the NAM microphone to the skin. 

 

Figure 1.11. Whispered speech captured by NAM sensor for the utterance: 

“Armstrong tombe et s'envole” 

1.1.4.2 Acoustic characteristics 

The NAM microphone can be placed on the skin, below the ear to capture acoustic vibrations 
in the vocal tract as shown in figure 1.11. This position allows a high quality recording of 
various types of body transmitted speech such as normal speech, whisper and NAM. Body 
tissue and lack of lip radiation act as a low-pass filter and the high frequency components are 
attenuated. However, the non-audible murmur spectral components still provide sufficient 
information to distinguish and recognize sound accurately (Heracleous et al., 2005). 
Currently, the SS-type NAM microphone can record sound with frequency components up to 
3 kHz.This frequency has recently been extended to 6kHz for the UE-type (Shimizu et al., 
2009). Although this microphone is intrinsically not sensitive to ambient noise, when using 
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simulated noise, its performance decreases in real noise environment because of the modified 
articulatory strategies due to the Lombard reflex effect (Heracleous et al., 2005). Figure 1.11 
shows an example of an utterance captured by this microphone. Note that the signal delivered 
by the NAM microphone is highly sensitive to the contacts between organs such as seen in 
occlusions. 

The NAM signals were first exploited by the speech group at NAIST for NAM recognition 
(Nakajima et al., 2003; Heracleous, Nakajima et al. 2005). The authors showed that this 
microphone could be used as a noise-robust sensor and could achieve the same performance 
as conventional speech recognition without noise. In their experiments, they achieved 93.8 % 
word accuracy in clean environment, and 93.1 % word accuracy in noisy environment. 
Moreover, by using maximum likelihood linear regression adaptation (MLLR) technique to 
create acoustic models for non-audible murmur, the NAM recognition system reached a very 
promising performance (92.1 %). 

Another interesting line of research using a NAM microphone is voice generation from silent 
speech. In (Toda and Shikano 2005), the authors proposed to use a signal-to-signal mapping 
technique to convert NAM to phonated speech. It was shown that this system effectively 
works but its performance is still insufficient, especially in the naturalness of the converted 
speech. This is partly due to the poor F0 estimation from unvoiced speech. The authors 
claimed that a good F0 estimate is necessary to improve the performance of NAM-to-Speech 
systems. (Nakagiri et al., 2006) therefore proposed another system which converts NAM to 
whisper. F0 values do not need to be estimated for converted whispered speech because 
whisper is another type of unvoiced speech, just like NAM, but more intelligible. (Nakamura 
et al., 2006) also used this trick in order to get a more natural and more intelligible speech to 
realize a speaking-aid system for total laryngectomees. 

1.3 Conversion of silent speech to audible speech 
When the speaker murmurs or whispers, the acoustic characteristics of the signal are modified 
(the details will be presented in chapter 2), and thus the linguistic contents of the message can 
be strongly degraded, as well as the paralinguistic parameters (i.e. speaker emotions, attitudes 
and his/her identity). A crucial issue then is developing methods to capture, characterize and 
convert silent speech to audible voice, to generate a more understandable sound. This section 
presents two state-of-the-art approaches: direct signal-to-signal mapping and HMM-based 
recognition-synthesis. 

1.1.5 Direct signal-to-signal mapping 

The speech waveform carries a variety of information: segmental, supra-segmental, para-
linguistic, etc. Among them, the linguistic content of the message being uttered is of greatest 
interest to most leading speech technologies today. However, non-linguistic information such 
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as the speaker’s mood, individuality, emotion or position with respect to what he/she says also 
plays a crucial part in oral communication (Moulines and Sagisaka, 1995). Voice 
individuality, in particular, is important not only because it helps us identify the person to 
whom we are talking, but also because it enriches our daily life with variety (Kuwabara and 
Sagisaka, 1995). This information is, of course, related to the physiological and the behavioral 
characteristics of the speaker. These characteristics exist both in the short-term spectral 
envelope (vocal tract characteristics) and in the supra-segmental features of speech (voice 
source characteristics). 

Voice conversion is a generic term for the techniques that, from speech signal uttered by a 
source speaker, aim at transforming the characteristics of the speech signal in such a way that 
a human naturally perceives the characteristics of another target speaker in the transformed 
speech (Moulines and Sagisaka, 1995). 

The potential applications of such techniques are numerous. First of all, voice conversion will 
be an essential component in text-to-speech systems based on the selection and concatenation 
of acoustical units. The synthesis database for such systems contains an organised collection 
of carefully recorded speech, and the speaker identity of the synthesis output bears 
resemblance to the original speaker identity of the database speaker. The creation of a 
synthesis database for a new synthesis voice requires a significant recording and labelling 
effort and a significant amount of computational resources. Voice conversion would be 
therefore a simple and efficient way to have the desired variety to the spoken messages while 
avoiding the extensive recording of hours of speech by different speakers. Only a few minutes 
of speech are normally sufficient for the conversion. Another application concerns 
interpreting telephony, which would make the communication between foreigners easier by 
first recognizing the speech sentences uttered by each speaker, and then translating and 
synthesizing them in a different language. In recent years, voice conversion has been also 
used in the context of speaking aids for the speech handicaps (Nakamura et al., 2006) and 
future “silent speech communication” in order to use silent speech as a communication 
medium (Toda et Shikano, 2005). 

This section will review some studies carried out on voice conversion using different 
statistical frameworks in the last two decades, such as Vector Quantization (Able et al., 1988), 
Linear Multivariate Regression (LMR) (Valbret et al., 1992), Dynamic Frequency Warping 
(DFW) (Valbret et al., 1992), speaker interpolation approach (Iwahashi and Sagisaka, 1994, 
1995), continuous transformations based on Gaussian Mixture Model (GMM) (Stylianou et 
al., 1998; Kain et al., 1998abc, Toda et al., 2003) as well as Artificial Neural Networks 
(ANN) and Radial Basis Function (RBF) (Narendranath et al., 1995; Watanabe et al., 2002). 

1.1.5.1 General framework of voice conversion system 

Voice conversion systems all share three main components: 
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– Feature extraction: the features represent the speaker specific characteristics in the 
speech waveforms such as spectral envelope, intensity, F0 and aperiodic components 
which are used at each instant t, to represent both vocal tract and source excitation 
characteristics. For silent speech, i.e NAM or whisper, source excitation information is 
not included because it is uttered without the vibration of the vocal folds, but multi-
frame representations of spectral envelope and intensity can be used to characterize 
silent speech signal to take into account context variation. 

– Transformation: (a) In the training phase, the system uses aligned samples of source 
and target features to estimate a transformation function. (b) In the transformation 
phase, the estimated function is used to map the source acoustical characteristic to the 
target one. This can be seen as a quantization or optimization process that estimates 
the most probable speech signal given the source signals and an a priori joint model of 
the source and target features. 

– Speech synthesis: i.e. a speech vocoder which converts acoustical characteristics 
obtained by the mapping function to speech samples. 

Figure 1.12 shows a general framework for voice conversion with basic building blocks. 

 

Figure 1.12. Voice conversion framework. 

1.1.5.2 Vector quantization based voice conversion 

One of the first voice conversion system based on mapping codebooks or vector quantization 
(VQ) was proposed by Abe et al. (1988). In this approach, the codevectors of a source 
codebook (speaker A) is mapped to the correspondent codevectors of a target codebook 
(speaker B). The mapping of the codebooks is constructed by first vector-quantifying frame 
by frame the source and target features from a learning word set. A Dynamic Time Warping 
(DTW) algorithm is then used to determine the correspondence between vectors of the same 
words for the two speakers. Finally, these vector correspondences are accumulated as 
histograms. The mapping codebook is defined as the linear combination of the target 
codevectors, using the histogram as a weighting function. 



Silent speech interfaces and silent-to-audible speech conversion 35 
 

 

By using this approach with LPC parameters as the spectral characteristics and by using a 
LPC vocoder, Abe et al. (1988) showed that the distortion between the converted vector and 
the target vector decreased by 23% compared to non conversion for a female-to-female 
conversion task, by 45% for a male-to-male and by 64% for a male-to-female conversion. 
However, a basic problem with this approach lies in the discontinuities in the speech signal 
because the parameter space of the converted spectral envelope is discretized. Several 
solutions were investigated to overcome this shortcoming of the VQ-based approach, for 
example fuzzy VQ (Kuwabara and Sagisaka, 1995; Arslan, 1999). In this variation, the input 
vector is represented as a combination of several neighbouring codevectors instead of being 
only the nearest one. Thanks to this representation, the discontinuities in the feature space 
reduce and therefore the quality of the synthesized speech improves. 

1.1.5.3 Voice conversion using Linear Multivariate Regression 

Another approach to derive spectral transformations, borrowed from the speech recognition 
domain, is Linear Multivariate Regression (LMR), first proposed by (Valbret et al., 1992). 
The basic idea of this method is that an optimal transformation should depend on the 
acoustical characteristics of the sound to be converted. In this method, first, the extracted 
spectral envelopes, i.e. cepstral coefficients, from the source and target signals are first time-
aligned by Dynamic Time Warping (DTW) technique. The next step is to partition the 
acoustic space of the source speaker into non-overlapping classes by means of a standard 
vector quantization in order to decrease the mapping complexity. The overall mapping is 
approximated by a finite set of elementary transforms, each of them being associated with a 
class. The LMR consists therefore in finding the optimal linear transformation, that is, for 
each class q, the matrix Pq which minimizes a “mean square” error between the set of source 
vectors and the set of target vectors. 
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total number of vectors in the qth class, xn,q and yn,q with n = 1, …, Mq are the set of source 
and target vectors belonging to the qth class. For any source vector xn,q belonging to the class 
q, the transformed vector is given by: 
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This technique tries to move the formants from their initial positions towards their positions in 
the target space, but their amplitudes and their band-width are not well preserved. Moreover, 
the “hard” classification in this method introduces undesired discontinuities in the converted 
spectra. 
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1.1.5.4 Voice conversion using Dynamic Frequency Warping 

The same transformation method as LMR is Dynamic Frequency Warping, proposed in the 
same study by Valbret et al. (1992). While LMR operates on the vector of cepstral 
coefficients, on the other hand, DFW directly operates on the spectral envelope. The aim of 
this method is to obtain an optimal non-linear warping function of the frequency axis to 
simulate changes of speaker characteristics. The DFW is therefore closely related to the 
acoustic theory of speech production, in the sense that changes in vocal-tract length produce a 
non-linear transformation of formant frequencies (Valbret et al., 1992). Each pair of source 
and target log-magnitude spectra is first computed. Their spectral tilts are estimated to 
eliminate the glottal effects by fitting the envelope with a linear function of frequency, using a 
least-square regression line. Then, a dynamic frequency warping algorithm is applied between 
each source and target residuals, the log-magnitude spectrum minus the spectral tilt. The 
number of warping functions is equal to the number of pairs of source-target spectral vectors 
within the class. In (Valbret et al., 1992), the authors showed that the warping functions 
obtained for vectors belonging to the same class look rather similar and very few paths 
deviate from the main “beam”. To avoid artifacts, they worked out a median warping 
function. The experimental results showed that LMR performs slightly better than DFW. The 
spectral envelope transformed by LMR is much closer to the target envelope than the one 
transformed by DFW. In particular, DFW can only move formant position without modifying 
their amplitudes, whereas LMR is able to cope with both formant frequencies and amplitudes. 
Also, the LMR converted speech is most often judged closer to the target speaker than the 
DFW converted speech (Valbret et al., 1992). 

1.1.5.5 Voice conversion by speaker interpolation 

Iwahashi and Sagisaka (1994, 1995) stated that suitable constraints on speech spectrum 
consistency were not used in voice conversion based on spectral mapping techniques, such as 
VQ codebook mapping (Abe et al., 1988), linear multivariate regression and dynamic 
frequency warping (Valbret et al., 1992). Moreover, a large amount of spectrum data from the 
target speaker is needed. In the case when it is not possible to extract such large amounts of 
data, these methods do not work well. They proposed another technique for spectrum 
transformation by using speaker adaptation method which only needs a small amount of 
spectrum data to model the target speaker’s spectral characteristics. The spectrum data of 
utterances spoken by a moderate number of speakers is pre-stored. In this system, after the 
spectrum sequences of the same utterance by multiple speakers are time-aligned by DTW, the 
interpolation is carried out between these time-aligned spectrum sequences by the following 
transformation: 
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under the constraint 
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Here, xkij represents the jth spectral parameter of the ith frame in a DTWed utterance of the 
kth speaker. M is the number of pre-stored speakers, the wk is the interpolation ratio for kth 
speaker. Yij represents the jth spectral parameter of the ith frame of the generated spectrum. 
The optimal interpolation coefficients w1, w2, …, wM between pre-stored speakers are 
determined by minimization of the function: 
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where yi represents the spectral vector of the ith frame of the spectrum of the target speaker. N 
is the number of the training samples. This minimization is done by solving normal equations. 

Their experiment was carried out by using this adaptation method. The number of pre-stored 
speakers was 4 (2 females and 2 males). The interpolation ratio was determined by only one 
Japanese word, spoken by the 16 target speakers (8 females and 8 males). The distance 
between the spectrum of the target speaker and the one generated by the interpolation was 
calculated for 64 words. The authors reported that the distortion between the interpolated 
spectrum and the target one is reduced by about 35% compared with the distance between the 
spectrum of the target speaker and the spectrum of the pre-stored speaker closest to the target. 
Moreover, to obtain more precise adaptation by using a larger amount of training data, the 
transformation was represented by multiple interpolating functions in their later work 
(Iwahashi and Sagisaka, 1995). The multiple functions’ outputs are weighted-summed, using 
weighting values given by a Radial Basis Function network (RBF). Using 10 training words, 
the reduction rate increased to 48% by this multi-functional transformation. 

A derived method of the speaker interpolation, called Eigenvoices Conversion (EVC), was 
recently proposed for loosening the parallel training data constraint in conventional voice 
conversion system (Toda et al.,2006, 2007; Ohtani et al., 2009). EVC may be used to convert 
a source speaker’s voice to arbitrary target speakers’ voices. A canonical eigenvoice GMM is 
first trained by using multiple parallel data sets consisting of utterance pairs of the source and 
multiple pre-stored target speakers. Then the speaker individuality of the converted speech 
can be flexibly controlled thanks to this conversion model by manually setting weight 
parameters. The optimum weight set for a specific target speaker is estimated using only 
speech data of the target speaker without any linguistic restrictions. In their experiments 
(Toda et al., 2006), the authors found that EVC outperforms the conventional GMM-based 
system trained by parallel data when using a small amount of training utterances because 
EVC effectively uses the information extracted from a lot of pre-stored speakers as a prior 
knowledge. However, the performance of EVC is not significantly changed when the number 
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of training utterances increases due to the constant model complexity. Consequently, the 
performance of the conventional GMM-based VC is better than the one of the EVC when 
using dozens of target utterances. 

1.1.5.6 GMM-based voice conversion 

Gaussian mixture model 

As explained in (Stylianou et al., 1995), a Gaussian mixture density is a weighted sum of Q 
components densities modelled by normal distribution (Gaussian), and given by the equation 
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The conditional probability of a GMM class q given x is derived by direct application of 
Bayes’s rule 
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The Gaussian mixture model (GMM) is a classic parametric model used in many pattern-
recognition techniques (Duda et al., 2000) and other speech application such as speaker 
recognition (Reynolds and Rose, 1995) or source separation (Zhang et al., 2005). In the GMM 
context, a speaker’s voice is characterized by Q acoustic classes representing some broad 
phonetic events, such as vowels, nasal or fricatives. The probabilistic modelling of an acoustic 
class is important since there is variability in features coming from the same class due to 
variations in pronunciation and co-articulation. Thus, the mean vector qμ  represents the 

average features for the acoustic class qw , and the covariance matrix qΣ  models the 

variability of features within the acoustic class (Stylianou et al., 1998). 

The GMM parameters { }, ,α μ Σ  are estimated by Expectation Maximization (EM) algorithm 

(Dempster et al., 1977). EM is an iterative method for parameters estimation by maximizing 
the likelihood function. In the case of Gaussian mixture densities, each iteration implies two 
successive stages: 
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Expectation: 
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Calculate the conditional probability that each observation xt is generated by class q. 

Maximization: 

The prior probabilities ˆqα  are re-estimated in each iteration by the mean of the posterior 

probabilities Pr( | )tq x : 
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The means and the covariance matrices are respectively re-estimated by the means and the 
covariance matrices of the observations balanced by the posterior probabilities. 
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In these equations, N indicates the number of observations in the training data. 

The widespread use of the EM algorithm stems from the facts that it guarantees a non-
decreasing likelihood function after each iteration and that it provides a general yet powerful 
framework capable of dealing with many complicated estimation problems (Redner and 
Walker, 1984). However, the EM algorithm may converge towards one local optimum. In 
practice, the initialization of the EM algorithm is particularly important and vector 
quantization is usually chosen for this task. The coefficients iα  are proportionally initialized 

with the number of vectors in each class while iμ  and iΣ  are initialized by the means and the 

empirical variances of the vectors in each class. 

Using Gaussian mixture model for conversion 
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Voice conversion is considered as a regression process between two voices. Regression 
analysis is a statistical tool for the investigation of relationships between variables. Usually, 
the investigator seeks to ascertain the causal effect of one variable upon another. To explore 
such issues, the investigator assembles data on the underlying variables of interest and 
employs regression to estimate the quantitative effect of the causal variables upon the variable 
that they influence. 

The goal in conversion is to estimate a mapping function which makes it possible to establish 
the relation between source and target feature vectors. In (Stylianou et al., 1995), the source 
feature space was “softly” classified by a GMM distribution. Then, parameters of this model 
were estimated by solving normal equations for a least-squares problem based on the 
correspondence between source and target features. By using cepstral distortion between the 
converted speech and target speech as a objective criterion, the authors demonstrated that a 
GMM is more efficient and robust than a VQ-based technique. In their later study (Baudoin 
and Stylianou, 1996), the authors concluded that a GMM is as good as or better than other 
approaches, such as ANN, VQ and Linear Multivariate Regression (LMR). 

Kain and Macon then proposed to improve the GMM method by studying the use of GMMs 
for regression (Kain and Macon, 1998a,b,c). The authors stated that modeling the joint 
density rather than only the source density can lead to a more judicious allocation of mixture 
components and avoids certain numerical problems when inverting large and possibly poorly 
conditioned matrices (Kain, 2001). 

Although the performance of GMM-based method dominates other approaches, Toda et al. 
(2005) stated that there are two important issues must be further considered. The first issue, 
related to the spectral discontinuities, was alleviated by considering the correlation between 
frames by applying a parameter generation algorithm with dynamic features. This generation 
algorithm was first proposed by Tokuda et al. (2000) for the HMM system and could be 
easily adapted to the GMM-based mapping (Toda et al., 2005). The second issue is the over-
smoothing of converted spectra, which is inevitable in the conventional ML-based parameter 
estimation. The authors stated that removed variance features are regarded as a noise in 
modelling acoustic probability density. This smoothing causes error reduction of the spectral 
conversion but also causes the degradation of the converted speech quality because those 
removed features are still necessary for synthesizing high-quality speech. This problem was 
addressed by taking into account of the global variance of the converted spectra in each 
utterance during the training by a normal distribution (Toda et al., 2005). 

1.1.5.7 Voice conversion by neural networks 

Vocal tract shape between two speakers is non linear and hence, non-linear Artificial Neural 
Networks (ANN) based method could be used for this mapping. Narendranath et al. (1995) 
proposed a system where transformation function of formants is modeled by a neural network 
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with one input layer (3 nodes), two hidden layers (8 nodes) and an output layer (3 nodes). 
Five pairs of speakers are considered in their experiment, each pair consisted of a male and a 
female speaker. Only speech data of 5 vowels /i/, /e/, /a/, /o/, /u/ in isolated utterances from 
each of 5 pairs of speakers is collected. The first three formants were then extracted using a 
method based on minimum phase group delay functions (Murthy and Yegnanarayana, 1991). 
For training, 50 sentences with nearly 500 pairs of formants were used. The formant values 
(F1-F3) corresponding to the source speaker (male) were given as the input of this network. 
The desired output was the formants extracted from the corresponding frame of speech of the 
target speaker (female). The weights were adjusted using the backpropagation algorithm until 
the weights converge. The results showed that the reduction rate of the distortion between 
generated formants and target formants depends on the vowel. A reduction rate of 67% was 
found for the first formant for vowel /i/ and /a/ whereas only 35% for the vowel /o/. The 
reduction rate for the second formant was 68% for the vowel /e/ and 25% for the vowel /o/ 
and /a/. A reduction rate for the third formant was also achieved 76% for vowel /u/ and 55% 
for /a/. 

In another work of Watanabe et al. (2002), the authors proposed to use a Radial Basis 
Function networks to map the spectral envelope from one speaker to another. 16 LPC 
coefficients of a phoneme uttered by the source and target speaker are chosen as the input 
vector and target vector for training their system. In the conversion phase, the source speech 
signal is analyzed into both the LPC spectral envelopes and the LPC residual signals. The 
transformed LPC spectral envelopes by the trained RBF is combined with residual signals. 
The converted speech, matched the average of F0 to that of target’s F0 using TD-PSOLA 
technique (Moulines and Laroche, 1995) is finally produced. The experiment results of the 
five Japanese vowels (/a/, /i/, /u/, /e/, and /o/) showed that the proposed system reduces by 
around 87% average cepstrum distances between the converted speech and the target speech 
comparing with the one between source and target speech. The listeners in their subjective 
test also considered the converted speech closer to the target speaker than to the source 
speaker around 78% times for male-to-male and 76% times for female-to-female conversion 
respectively. 

In the recent work of Desai et al. (2009), the authors stated that the techniques proposed by 
Narendranath et al. (1995) and Watanabe et al. (2002) needed to used a tedious task of 
carefully preparing training data which involved manual selection of vowels or syllable 
regions from both the source and target speaker. In their proposed system, the spectral 
envelopes of the source and target are characterized by 25 mel-cepstral coefficients. These 
two parameters are automatically time-aligned by a DTW. Various ANN architectures are 
experimented to find an optimal one. They concluded that the one with 25 nodes for input and 
output and two hidden layers (50 nodes for each one) revealed the best results. Moreover, 
both objective test and subjective test showed their system is better than broadly-used GMM-
based system. 
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1.1.6 Combination of speech recognition and speech synthesis 

The combination consists in plugging a speech synthesis system to a speech recognizer. The 
generation is quite straight forward: the recognizer segments the speech flow into phonemic 
units using both signal-dependent information and a more or less sophisticated language 
model. A standard speech synthesis system then converts this phonetic string into a synthetic 
voice either using the pre-recorded modal voice of the speaker or built-in available resources. 
The performance of such a system is mainly dependent on the recognition performance: 
correct recognition will result in a perfect reconstructed speech while recognition failures or 
inadequate language models result in drastic degradations (Denby et al., 2009). 

In this framework, concatenative synthesis or HMM-based speech synthesis can be used to 
generate speech sound (Hueber et al., 2008, 2009). But in our work, HMM-based speech 
synthesis as described in (Tokuda et al., 2000) is chosen because this system allows the voice 
characteristics, speaking styles, emotions can be easily, parametrically controlled and could 
bring a more intimate coupling between speech recognition and synthesis components than 
the diphone-based concatenative system. We concentrate here on some studies of such 
synthesis system after a brief introduction of HMM. 

1.1.6.1 Hidden Markov Models 

As described in (Rabiner, 1993), a Hidden Markov Model (HMM) is a stochastic technique 
for the study of the complete-incomplete data problems associated with time series. It is well 
suited to the incorporation of temporal information. The HMM based system is supposed to 
be a Markov process with unknown parameters. The challenge is thus to determine these 
parameters starting from other observable parameters. Then, the extracted parameters can be 
employed for pattern recognition. Historically, the Hidden Markov Models were introduced in 
1960-70 by Baum and collaborators. They were then used in speech recognition systems as 
from the 80s and were applied afterwards in other fields such as the bio-informatics, artificial 
intelligence, gesture recognition … 

Definition of a Hidden Markov Model 

As described in (Huang X.D. et al., 1990), a HMM model is defined as a set of states, each 
one of them associated with a probability distribution. The transitions between the states are 
controlled by a set of probabilities called transition probabilities. In a particular state, 
observations can be generated/observed in accordance with the associated probability 
distribution. In opposition to a regular Markov model where the state is directly visible by an 
external observer, in a HMM model, the state is not directly visible, but state-dependent 
observations are visible. The state sequence through which the model passes is thus hidden. 

An HMM can be defined by the following elements: 
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– T = length of the observation sequence, O1, O2, …, OT 

– N = number of states in the model. 

– L = number of observation symbols. In the case where the observations are 
continuous, L is infinite. In this notation, v = {v1, v2, …, vL} is a discrete set of symbol 
observations. Ot belongs to one such observation symbol. 

– S = {s}, a set of states (A state can be considered to possess some measurable, 
distinctive properties of events). For simplicity, state i at time t may be denoted by st = 
i when ambiguity does not exist. 

– { }1
1

| Pr( | ) , 0 , , 1
N

ij ij t t ij ij
j

A a a s j s i a i j a i+
=

= = = = ≥ ∀ = ∀∑ , state transi-tion 

probability distribution, where aij denotes the transition probability from state i to state 
j. 

– { }( ) | ( ) Pr( | )j t j t t tB b O b O O s j= = = , For each state, there is a correspond-ding output 

probability; and all of these output probabilities represent random variables or 
stochastic processes to be modelled. 

– { }1| Pr( )i i s iπ π π= = = , initial state distribution. 

An HMM thus can be represented by using the compact notation ( , , )A Bλ π= . Specification 
of an HMM involves the choice of the number of states, N, the number of discrete symbols L, 
and specification of three probability densities with matrix form A, B and π . 

In the HMM theory, three assumptions are made for a simple mathematical model: 

– Markov chain hypothesis: concerning the definition of the transition matrix A, the 
probability dependence is truncated to just the preceding state. 

– Stationary hypothesis: the state-transition probabilities is independent of time, that is 

1 1 2 21 1 1 2Pr( | ) Pr( | ) ,t t t ts j s i s j s i t t+ += = = = = ∀                    (1.13) 

– Independence hypothesis of output observations: the current observation is statistically 
independent of the preceding observations. Mathematically, this assumption can be 
formulated for a HMM λ  by: 

1 2
1

Pr( | , ,..., , ) Pr( | , )
T

T t t
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=

=∏                           (1.14) 

Basic algorithms for HMMs 
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Given the definition of HMMs, there are three key problems (Rabiner, 1989).  

– Problem 1: Compute the probability Pr( | )O λ  that the observed sequence 

1 2, ,..., TO O O O=  was produced by the model ( , , )A Bλ π= . 

– Problem 2: given the observation sequence O and the model ( , , )A Bλ π= , determine 
what is the most likely state sequence 1 2, ,..., TS s s s=  according to some optimality 

criterion. This problem can be solved by Viterbi algorithm. 

– Problem 3: given the observation sequence O, how do we adjust the model parameters 
( , , )A Bλ π= to maximize Pr( | )O λ . 

Problem 1 is the evaluation problem. Given a model and a sequence of observations, how do 
we compute the probability that the observed sequence was produced by the model or we can 
also view the problem as one of scoring how well a given model matches a given observation 
sequence. This problem can be solved by Forward-backward algorithm. 

Problem 2 is the decoding problem in which we attempt to uncover the hidden part of the 
model, i.e., to find the as “correct” as possible state sequence. The choice of criterion for this 
problem is a strong function of the intended use for the uncovered state sequence. The 
decoding problem is solved by the Viterbi algorithm (see annex) 

Problem 3 is the estimation problem in which we attempt to optimize the model parameters so 
as to best describe how a given observation sequence comes about. The observation sequence 
used to adjust the model parameters is called a training sequence. The training problem is the 
crucial one for most applications of HMMs, since it allows us to optimally adapt model 
parameters to observed training data – i.e., to create best models for real phenomena. This 
problem is solved by the Baum-Welch method or equivalently by the EM method (Dempster 
et al., 1977). 

1.1.6.2 HMM-based speech synthesis 

Speech synthesis research aims to tackle both the two characteristics: naturalness and 
intelligibility of the generated speech. Naturalness describes how closely the output sounds 
like human speech while intelligibility is the ease to understand of the output signal. Building 
such a system has evolved in the last two decades from a knowledge-based (or rules-based) 
approach to a data-driven one (Zen, Tokuda and Black, 2009). High-quality synthetic voices 
may be built from sufficiently single speaker databases of natural speech rather than using 
each phonetic unit and its applicable contexts. Such system first proposed by Moulines and 
Charpentier, (1990), called diphone system. The diphone synthesis uses a minimal speech 
database containing all the diphones (one example for each diphone) occurring in a language 
and the number of diphones depends on the phonotactics of each language. Then, more 
general, but more resource consuming, techniques of unit-selection synthesis where 
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appropriate sub-word units (individual phones, diphones, syllables, words, phrases and 
sentences) are automatically selected from large databases of natural speech were proposed. 
Although these techniques have evolved to become the dominant approach, provide the 
greatest naturalness because they perform only minimal digital signal processing, there are 
still some limitations. When a required sentence needs phonetic and prosodic contexts that are 
under-represented in a database, the quality of the synthesizer can be severely degraded. 
These events occur frequently and a single bad join in an utterance can destroy the listeners’ 
flow. Maximum naturalness typically require unit-selection speech databases to be very large, 
ranging into the gigabytes of recorded data, representing dozens of hours of speech (Kominek 
and Black, 2003). Moreover, as there is usually very few modifications to the selected pieces 
of natural speech, the output speech has the same style as the original recordings. With the 
need for more control over speech variations, larger databases containing examples of 
different styles are required. Unfortunately, this task is very difficult and costly (Black, 2003). 

 

Figure 1.13. HMM-based speech synthesis system (HTS) 

In contrast to the unit-selection synthesis which tries to preserve the natural speech units from 
a pre-recorded database as much as possible, HMM-based speech synthesis generates the 
average of some sets of similarly sounding speech segments. In (Zen et al., 2009), the authors 
stated that although the best examples of unit-selection synthesis seem to be better than the 
best examples of statistical parametric synthesis, it appears that the quality of statistical 
parametric synthesis has already reached a level where it can stand in its own right. Moreover, 
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parametric models offer other benefits related to their flexibility in changing voice 
characteristics, speaking styles and emotions of output speech. Figure 1.13 shows the 
schematic overview of a HMM-based speech synthesis system. 

In a statistical parametric synthesis system, parametric representations of speech including 
spectral and excitation parameters are extracted from a speech corpus and then are modelled 
by using a set of generative models (e.g., HMMs). The parameters of these models are usually 
estimated by a Maximum Likelihood (ML) criterion as presented following: 

ˆ arg max{ ( | , )}p O W
λ

λ λ=                                      (1.15) 

where λ  is a set of model parameters, O is a set of training data, and W is a set of word 
sequences corresponding to O. Speech parameters o, are then generated for a given word 
sequence to be synthesized, w, from the set of estimated models, λ̂ , to maximized their 
output probabilities as 

ˆˆ arg max{ ( | , )}
o

o p o w λ=                                        (1.16) 

Finally, a speech waveform is generated from the parametric representations of speech. 
HMMs have been widely used for these representations. A HMM-based speech synthesis 
consists of training and synthesis parts (Zen et al., 2004, 2009) as presented in the figure 1.13. 

– The training part performs the maximum likelihood estimation of Eq. (1.15) by using 
EM algorithm (Dempster et al., 1977). The main difference between this training part 
and a speech recognition is the input features. In fact, in addition to the spectrum (e.g., 
mel-cepstral coefficients and their dynamic features) parameters, the excitation (e.g., 
logF0 and its dynamic features), usually ignored in the speech recognizer, is also 
extracted from a database of natural speech. Both of these parameters are modelled by 
a set of multi-stream (Young et al., 2006) context-dependent HMMs. Another 
difference is that linguistic and prosodic contexts are really taken into account in 
addition to phonetic ones (Tokuda et al., 2008). 

– The synthesis part performs the maximization of Eq. (1.16). This can be viewed as the 
inverse operation of speech recognition. First, a given word sequence is converted into 
a context-dependent label sequence, and then the utterance HMM is constructed by 
concatenating the context-dependent HMMs according to the label sequence. Second, 
the speech parameter generation algorithm proposed by Tokuda et al. (2000) generates 
the sequences of spectral and excitation parameters from the utterance HMM. Finally, 
a speech waveform is synthesized from the generated spectral and excitation 
parameters using excitation generation and a speech synthesis filter. 
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Although the current performance of HMM-based speech synthesis using MLE criterion is 
quite good, two important issues are needed to solve for the training phase. The first issue is 
the inconsistency between the training and the synthesis phases. The MLE criterion only 
evaluates the model’s pertinence to the data in the likelihood sense which does not reflect the 
final distance between the generated parameters and the target vectors. The second issue is the 
mutual constraint between static and dynamic features. These constraints are considered in 
only parameter generation while they are ignored in the training phase. The two issues above 
were both resolved by a trajectory model proposed by Tokuda et al. (2004) which can 
explicitly model the inter-frame dependencies and hidden dynamics in speech signal. 
Although this proposition implied the minimization of the error between training and 
generated data, the HMM training is still under the MLE framework, which cannot actually 
resolve the first issue. Wu et al. (2006) then proposed a reformulated training procedure for 
HMM parameters estimation by using Minimum Generation Error (MGE) criterion. In their 
experiments, the author showed that the synthesized speech by using MGE criterion is more 
natural than the one generated by MLE-based system (85.7% and 14.7% respectively in 
preference score). 

1.4 Summary 
Silent speech is a natural way that speakers use to tell private, confidential information. 
However, traditional speech interfaces seem to be inefficient or even incapable to capture this 
type of speech. As a result, a number of Silent Speech Interfaces (SSI) have been proposed to 
capture different type of multimodal signals delivered during the silent speech production 
such as EEG for cerebral activities, EMG for muscle activities, EMA, Ultrasound for 
articulatory movements or NAM microphone for speech transmitted through the soft tissue of 
the speaker's face. From the signals captured by these interfaces, some mapping techniques 
have been used to generate audible speech, i.e. direct signal-to-signal mappings borrowed 
from speaker transformation for Text-to-Speech (TTS) system (including VQ-based, LMR, 
DFW, speaker interpolation, ANN and GMM mapping) or chaining speech recognition and 
speech synthesis in order to benefit from linguistic knowledge. 

In the purpose of silent telecommunication, non audible murmur and whisper do contain some 
acoustic information (compared with inner speech, for instance). Therefore, a condenser 
NAM microphone seems to be better than other interfaces, including EMG, EMA, Ultrasound 
and EEG, because of its usability and its directly familiar acoustic signal (compared with 
electromagnetic, electric or imagery signals). This is why we focus on the NAM microphone 
as one of the promising devices. 

In the next chapter, we concentrate on some production and perception characteristics of 
whisper, one type of silent speech, which is used in this thesis. Taking these characteristics 
into account could be useful for the realization of a silent speech-to-audible speech conversion 
system. 



 

 

Chapter 2.  Whispered speech 
2.1 Introduction 
In chapter 1, I have presented some capture interfaces for silent speech and an overview of the 
techniques used to convert silent or whispered speech to phonated speech. This chapter 
concentrates on the characteristics of whispered speech, a kind of silent speech that I used for 
my work at GIPSA-Lab. To date, many studies on the differences between whispered speech 
and phonated speech have been presented in the literature from different angles such as from 
the point of view of production theory, perception theory and more recently from the use of 
computerized speech to develop new communication interfaces between humans and 
machines. The goal of this chapter is to review some interesting studies on whispered speech 
in literature. 

In this chapter, section 2.2 briefly summarizes basic mechanisms of the human speech 
production system. The specific production of whispered speech is presented in section 2.3. 
Section 2.4 describes the acoustic differences between whispered speech and phonated 
speech. Section 2.5 reviews previous studies on perceptual characteristics of whispered 
speech: “pitch-like” perception in the absence of vocal folds vibration, intelligibility and 
speaker identification. Finally, section 2.6 concentrates on the contribution of visual cues as 
complementary information for speech intelligibility, especially in the case of whispered 
speech where very little acoustic information is available. 

2.2 The speech production system 
The speech apparatus is divided into the organs of phonation (source voice production, at the 
laryngeal or glottal level) and articulation (settings of the supralaryngeal or supraglottal 
speech organs). The phonatory organs (lungs and larynx) create voice source sounds by 
setting the driving air pressure in the lungs and parameters for vocal fold vibration at the 
larynx. The two organs together adjust the pitch, loudness, and quality of the voice, and 
further generate prosodic patterns of speech (Honda, 2007). The articulatory organs (lower 
jaw, tongue, lips, and the velum) give resonances or modulations to the voice source and 
generate additional sounds for some consonants. The larynx also takes a part in the 
articulation of voiced/voiceless distinctions. The tongue and lower lip attach to the lower jaw, 
while the velum is loosely combined with other articulators. The constrictor muscles of the 
pharynx and larynx also participate in articulation as well as in voice quality control. The 
phonatory and articulatory systems influence each other mutually, while changing the vocal 
tract shape for producing vowels and consonants. Figure 2.1 shows a schematic drawing of 
the speech production system. 
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Figure 2.1. Human speech production system (Honda, 2007) 

Speech production process is initiated by the compression of the lungs which induces a stream 
of air which flows through the windpipe and throat and escapes through the oral and nasal 
cavities. In the case of voiced sounds like /a/ and /e/, the air flow sent from the lungs passes 
through an cyclically opened passage in the vocal folds, whose vibration causes that air flow 
to be converted into cyclic puffs of air that then become sound. In the case of unvoiced 
sounds like /s/ and /f/, the air flow then passes through a narrow space formed by the tongue 
inside the mouth, a turbulent flow of air is produced, and this is emitted as a noise-like sound. 

When we speak, we move our lower jaw, tongue, and other parts of our mouth; in fact, this 
changes the shape of the vocal tract and this in turn enables us to control sound resonance 
characteristics (Honda, 2007). 

The observations on different type of sounds that the human speech production mechanism is 
able to produce have led to a generalized model of speech production: The speech waveform 
is modelled as the output of a time-varying all-pole filter driven by the source component. 
The source component is the glottal waveform, noise or a mixture of two. This model is 
known as the source-filter model of speech production (Stevens, 1998). This view of speech 
production is very powerful because it can explain the majority of speech phenomena. In the 
distinctions of the model, the source or excitation waveform accounts for the physiological 
sound sources. For example, aspiration and frication noise can be modelled as random 
processes, plosion as a step-function, and voicing as a pulse train. The excitation waveform 
can be classified into an unvoiced and a voiced signal, which can be modeled as either a 
random signal or an impulse-train with varying F0 (fundamental frequency), respectively. 
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Finally, the time-varying filter represents the contribution of the vocal tract shape by 
selectively attenuating certain frequencies of the excitation spectrum resulting in a speech 
spectrum with a particular spectral envelope and formant structure. 

2.3 Whispered speech production 
The main physiological characteristic of whisper lies in the configuration of the glottis and the 
epilarynx. The vocal folds are opened for whispering, thus turbulent flow produced when the 
air stream from the lungs is forced through this glottal constriction provides a source of 
sound. In normal speech, however, the vocal folds are cyclically opened and closed which 
produces quasi-periodic pulses of airflow. The source of whisper, therefore, is the aperiodic 
noise rather than quasi-periodic voice due to the lack of quasi-periodic airflow. By comparing 
the respiratory and laryngeal functions between whispering and normal speaking, the authors 
in (Hoit and Hixon, 1987) found that whispering has lower lung volumes, lower tracheal 
pressures and lower laryngeal airway resistances than speaking, but that whispering has 
higher translaryngeal flows. Tsunoda et al. (1991) made a physiological measurement of the 
laryngeal shape during whispering by using magnetic resonance imaging (MRI) and found 
that the supra-glottal structures were not only constricted but also shifted downward, 
attaching to the vocal fold to prevent vocal fold vibration. Another study by Matsuda and 
Kasuya (1999) used a laryngeal endoscope inserted through the nasal tract of the subject to 
observe the laryngeal structure during the whispering of the five Japanese vowels /i/, /e/, /a/, 
/o/, and /u/ (Figure 2.2), the author concluded that there are two major differences between the 
modal voice and whisper: In whisper, 1) the supra-glottal structure is constricted in the false 
vocal fold regions and the vocal folds are covered by the false folds; 2) the glottis is opened to 
a slight extent. In this study, a three-dimensional vocal tract shape measurement from a 
magnetic resonance image (MRI) also showed the narrowing of the tract in the false vocal 
fold regions and weak acoustic coupling with the subglottal system. More specifically, the 
laryngeal sphincter mechanism is found to be a principal contributing physiological maneuver 
in the production of whisper, larynx rising is more evident in whispered tense vowels than lax 
vowels, and the tongue root is retracted in tense vowels also (Gao, 2002). 
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Figure 2.2. Laryngeal structure of modal voice (left) and whisper (right) (Matsuda, 1999) 

Recent research by Higashikawa et al. (2003) showed the role of lip kinematics in the 
production of whispered plosives (/p/ and /b/). The results revealed that the mean peak 
opening and closing velocities for /b/ were significantly greater than those for /p/ during 
whispered speech. No differences in peak velocity for either oral closing or opening were 
observed during voiced speech. Also, the maximum distance between the lips for oral opening 
for /b/ was significantly greater than for /p/ during whisper, whereas no difference was 
observed during voiced speech. These data supported the suggestion that whispered speech 
relies on a motor organization that is either altered or distinct from that used during normally 
voiced speech. 

Due to these differences in the generation mechanism, the acoustic characteristics of 
whispered speech are different from those of phonated speech. 

2.4 Acoustic characteristics of whispered speech 
Due to the lack of vocal folds vibration in whispering, the most significant acoustic 
characteristic of whisper is the absence of fundamental frequency and consequent harmonic 
relationships (Tartter et al., 1989). Generally, exhalation is the source of excitation in 
whispered speech and the shape of the pharynx is adjusted so that the vocal cords do not 
vibrate. “Turbulent aperiodic airflow is therefore the only source of whisper, and it is a 
strong, ‘rich’, and hushing sound” (Catford, 1977). 

 



52 Whispered speech 
 

 

Figure 2.3. Waveforms of the signal in normal (top) and whispered (bottom) speech modes 
(Ito et al., 2005) 

The acoustic energy is created by turbulence at the constriction at the vocal folds and 
interaction of the flow with the ventricular folds and the epiglottis. The resulting speech is 
completely noise excited with 20 dB lower power than its equivalent phonated speech 
(Jovičić et al., 1996). Moreover, a study by Ito et al.. (2005) showed that unlike normal 
speech, the intensity of vowels is lower than that of consonants in the case of whispered 
speech. There is a significant reduction in the intensity of vowels and voiced consonants in 
the whispered speech compared to the phonated speech because there is no vibration of vocal 
folds during the production of voiced sounds in the whispered speech. However, the intensity 
for unvoiced consonants is observed to be similar for normal and whispered speech. This 
phenomena can be observed clearly in the figure 2.3. 

Most studies of whispered speech focused on vowels, especially their formantic frequencies. 
The upward shift of the formant frequencies for vowels in whispered speech compared to 
phonated speech has been found for a long time ago (Thomas, 1969, Kallail and Emanuel, 
1984ab; Ito et al., 2005). The studies done by Kallail and Emanuel (1984a, 1984b) or recently 
by Ito (2005) revealed a similar results for whispered vowel formants, which showed that the 
formant shift was only strongly evident for F1 and larger for vowels with low formant 
frequencies. The boundaries of vowel regions in the F1-F2 plane were also found to be 
different for phonated and whispered speech (Eklund and Traunmuller, 1996). In another 
experiment of Jovicic (1998), which was performed with five Serbian vowels /i/, /e/, /a/, /o/ 
and /u/. A total of 10 speakers, 5 males and 5 females, sustained their production of each 
vowel in a normal (voiced) and whispered manner. Acoustic and articulatory analysis 
indicated that the first and second formant frequencies of whispered vowels /i/, /e/, /a/ and /o/ 
show shifts toward higher frequencies while all formants of whispered /u/ surprisingly shifts 
toward lower frequencies. The authors also showed that in all cases, the formant bandwidths 
are expanded and are nearly constant throughout the all formants and whispered vowels. 

There are also some studies on the difference between whispered and phonated consonants. 
Ito et al. (2005) found that the cepstral distances between phonated and whispered speech for 
vowels and voiced consonants are higher than those of unvoiced consonants. This means that 
the vocal tract characteristics of vowels and voiced consonants change more significantly in 
whisper relative to phonated speech than those of unvoiced consonants. Recent investigation 
of Jovičić and Šarić (2008) on Serbian consonants has a compatible result. They concluded 
that in intensity domain, all unvoiced consonants in whispered mode of articulation have 
almost unchanged intensity in comparison to phonated mode (the difference is maximum 3.5 
dB). On the contrary, voiced consonants in the whispered mode were reduced in intensity by 
as much as 25 dB, as nasals and semivowels. Average intensity of whispered consonants is 
lowered by 12 dB in comparison to phonated ones, and does not depend on syllabic position 
inside the sentences. The authors also showed that the duration of consonants is prolonged by 
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about 10% on average in whispered speech in comparison to phonated speech. More 
specifically, analysis of consonant duration in function of manner of articulation, along 
phonetic classes and subclasses, has showed that voiced consonants in whispering mode have 
prolonged duration (on average 15.3%) in comparison to unvoiced consonants (on average 
5.8%). They revealed that whispering of voiced consonants requires more articulation effort 
and a little more time to produce such articulation, in comparison to unvoiced consonants. 
The relative extension in duration of whispered consonants however depends on its position 
in the sentence. Jovičić and Šarić argued that the prolonged duration requires a higher 
precision in the motor control of vocal structures to produce an intelligible whispering. This is 
in agreement with the conclusion in (Rubin et al., 2006) which stated that whispering causes 
more trauma to the larynx than normal speech. The results in this study together with the 
results on formant differences in phonated and whispered mode of vowel articulation in other 
investigations in the literature, show a high level of prosodic feature preservation (such as 
intensity or duration) in whispering, which is the main reason for the high intelligibility in 
whispered speech (Jovičić and Šarić, 2008). 

2.5 Perceptual characteristics of whisper 
2.5.1 Pitch-like perception 

A question that has long puzzled speech scientists is how listeners identify the “pitch” speech 
sounds produced during whisper. Because of the lack of voicing, there is no fundamental 
frequency to guide listeners in their assignment of the whispered pitch. However, pitch is not 
a measure of fundamental frequency, but is defined as “that attribute of auditory sensation in 
terms of which sounds may be ordered on a musical scale” (Moore, 1997). From this 
definition, the study of pitch of whispered speech is valid and it is suggested that we are 
dealing with the pitch of something like noise bands. The purpose of this section is to clarify 
acoustical-perceptual relationships in identification of “pitch” during whispered vowel 
production from several previous studies. 

Whispered pitch was initially explained by Von Helmholtz (1954) using the simple “listen-
and-compare” method. In fact, he determined vowel resonances by listening to whispered 
vowels and by comparing the perceived pitches with some standard frequency source and 
assigned a single pitch to each of the whispered vowels. He concluded that the perceived 
pitches corresponded to typical values of the first formant frequency, F1, for the back vowels, 
and to typical values of the second formant frequency, F2, for the front vowels. Von 
Helmholtz’s experiments with whispered vowels indicate an association between the 
perceived pitches of the vowels and the formant frequencies. From these results, other studies 
then investigated whether listeners rely more heavily on the F1 or the F2 of the whispered 
speech when identifying whispered pitch. Another study of Meyer-Eppler (1957) revealed a 
different result by measuring the spectral characteristics of phonated and whispered German 
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vowels on different pitch levels within a range of about a musical fifth (the subjects were 
asked to “sing” the first five tones of a diatonic scale: c, d, e, f and g). He found that 
subjective changes in pitch are apparently due either to movements of the third and higher 
formants (F1 and F2 remaining constant) or to changes in the intensity of the vowels. 
Observation of the “singing” subjects reveals also their larynx to be raised at the “higher” 
vowels, indicating a narrowing of the glottal fissure. The study of Thomas (1969) was with 
the intention of finding some compatibility in these two widely divergent views of Helmholtz 
and Meyer-Eppler. In his experiments, listeners were presented nine whispered vowels 
/i,I,ε,oe,Λ,a,o,U,u/ pronounced by a male and a female speaker, then asked to adjust the 
frequency oscillator to match the whispered pitch. Thomas measured the formant frequencies 
F1 and F2 for each of these vowels and found that the frequencies associated with the 
perceived pitches of the whispered vowels closely approximated the frequencies of F2 for all 
of the vowels. These results are compatible with the findings of Von Helmholtz. In 
subsequent test in which the listeners were told to expect more than one pitch, two listeners 
identified additional pitches corresponding to F1 for the vowels /a/ and /o/ of both speakers. 
McGlone and Manning (1979) recorded the vowels /i,I,e,o,u/ spoken in /hV/ and /pVp/ 
contexts and found that listeners are more likely to rely on the resonance peak that arises from 
acoustical filtering in the portion of the vocal tract nearest to the lips (usually F2), even when 
the fundamental frequency, F0, was available in the voiced speech. Higashikawa et al. (1996) 
recorded whispered /a/ in three pitches: low, high, and ordinary. The correct order was found 
by a majority of the listeners (nine of the twelve speakers). The location of F1 rose 
significantly from low- to high- pitched whisper, and F3 was significantly higher in both the 
high and ordinary pitches than in the low-pitched whispers. The second formant frequency 
increased as well, but this was not statistically significant. In a follow-up study, male and 
female /a/ whispers were synthesized with the values of F1 and F2 shifted by +/- 20, 40, and 
60 Hz to simulate whisper pitch. Pitch perception was stronger when F1 and F2 were moved 
together, and shifts in F2 created more perceptible changes in pitch than F1. The percentage 
of pitch matches also increased with the magnitude of the formant shifts (Higashikawa and 
Minifie, 1999). In a recent work on the perception of boundary tones in whispered Dutch 
(Heeren et Van Heuven 2009), the authors concluded that the second formant may convey 
pitch in whispered speech, and also that first formant and intensity differences exist between 
high and low boundary tones in both phonated and whispered speech. In their experiment, 
listeners were asked whether they were able to perceive the difference between statements and 
questions as signalled by low and high boundary tones, respectively. Almost 79 % of the 
questions were correctly identified. This well-above-chance result shows that the rising 
boundary tone can be conveyed prosodically in whispered speech. Another work also shows 
that although whispered speech typically does not involve any vocal fold vibration, laryngeal 
activity may however exist during whispered speech. 

From the physiological view, Coleman et al. (2002) have shown, using dynamic Magnetic 
Resonance Imaging, that larynx movements related to intonation changes (rising and falling 
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pitch) can be observed in whispered speech. According to the authors this offers an 
explanation for perceived pitch in whispered speech: laryngeal movements modify the shape 
of the oral cavity, thus altering the vocal tract acoustics so that pitch changes can be inferred. 
Subvocal speech, such as the murmur that can sometimes be observed in hallucinating 
schizophrenic patients, has also been shown to be associated with laryngeal activity. Inouye 
and Shimizu (1970) reported increased EMG activity in speech-related muscles including 
laryngeal muscles (cricothyroid, sternohyoid, orbicularis oris, and depressor anguli oris) in 
47.6% of the hallucinations of nine schizophrenic patients. These works suggest that 
whispered speech might carry information on laryngeal activity. This activity could be useful 
in the recovery of pitch because it could modify the shape of the oral cavity and hence be 
audible. Other sources of pitch information may exist. Zeroual et al. (2005) have shown with 
ultra-high-speed cinematography that whisper is associated with an anterior-posterior 
epilaryngeal compression and an abduction of the ventricular bands. These supraglottic 
changes may also be sources of information on pitch during whisper. 

2.5.2 Intelligibility 

Kallail and Emanuel (1984a,b) collected samples of phonated and whispered English vowels 
from male and female speakers. The vowels were /i, æ, Λ, a, u/. The listeners correctly 
categorized the phonated vowels over 80% of the time. Whispered vowels, however, were 
correctly identified at about a 65% rate. 

Tatters’ experiments had 6 speakers (three males and three females) who phonate and whisper 
10 American English vowels in [hVd] context (Tatters et al., 1991). Results exceeded 80% 
average identification accuracy in whisper mode, approximately a 10% falloff in 
identification accuracy from normally phonated speech. When they used the same vowels as 
in Kallail and Emanuel’s experiment, the phonated and whispered accuracies were higher than 
the results noted by Kallail. They concluded that the use of context from surrounding 
consonants makes this difference (Tatters et al., 1991). 

Another experiment of Tatters is about the consonants. They tested the ability of listeners to 
judge the voicing, place, and manner of articulation of whispered consonants. Place of a 
consonant is defined as the location of maximum constriction and can be categorized as 
labial, labio-dental, dental, alveolar, or velar. The different manners of articulation include 
stops, nasals, fricatives and glides. 18 consonants /b, d, g, k, m, n, p, t, r, l, w, j, f, v, s, z, sh, 
zh/ were whispered in the nonsense consonant-vowel /a/ syllable: /Ca/. The overall accuracy 
of the identification by six listeners reached 64% while the majority of the errors occurred in 
the voicing decision (only 58% of accuracy for this task). 

2.5.3 Speaker identification 

The results of the experiments in the literature confirm the hypothesis that listeners are able to 
identify speaker sex from the isolated productions of whispered vowels. Schwartz and Rein 
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tested the ability of ten listeners to determine speaker sex from whispered speech of /i/ and 
/a/. In their experiment, no errors were made in the 80 identifications of speaker sex for /a/ 
and only 4 misidentifications were made of the 80 stimuli for /i/ (Schwartz, 1968). They 
concluded that the primary acoustic cue that underlies the distinction appears to be the upward 
frequency displacement of the resonance peaks of the female vowels. In another investigation 
of the relative importance of the speaker’s laryngeal fundamental and vocal-tract resonance 
characteristics in speaker sex identification tasks from the isolated vowels /i, ε, æ, a, o, u/ 
recorded by 20 speakers (10 males and 10 females) (Lass et al., 1974), the authors found that 
the accuracy was 95% for voiced vowels, but this drastically dropped to 75% for whispered 
vowels. 

2.5.2 Multimodal speech perception 

The contribution of the vision of the speaker’s face in speech perception by humans is well 
known and has been well documented for a long time. Speechreading (or lipreading) is 
needed not only for hearing-impaired listeners (Schwartz et al., 2004) but also for non-
impaired hearers when auditory speech is degraded due to the ambient noise or due to the 
need for privacy (i.e. silent speech), in order to compensate the auditory deficit (Sumby and 
Pollack, 1954; Summerfield et al.,1989; Benoît et al., 1994, 1998; Schwartz et al., 2002). 
Vision also helps when there is no noise, but the auditory signal is degraded because we listen 
to speech in a foreign language, because the speech is pronounced by a non-native speaker or 
because the speech is semantically complex (Reisberg et al., 1987). 

In the early studies of Sumby and Pollack (1954), the authors tested the speech intelligibility 
in noise in two conditions: audio-only and audio with visual observation of the speaker’s 
facial and lip movements. The authors showed that when the speech signal was nearly 
inaudible and where only visual factors operated (S/N ratio of -30 db), the visual information 
contributed to about 40% of correct word perception for the 256-word vocabulary and to 
about 80% for the 8-word vocabulary. In contrast, under noise-free conditions, or clear speech 
in other words, there was little difference in the intelligibility scores associated with the two 
conditions. From that result, the authors concluded that under degraded acoustic conditions, 
visual and auditory modalities complement each other in the perception of speech and that the 
contribution of facial and lip movements becomes more important as the auditory perception 
is decreased. This conclusion was then reinforced by following studies by (Erber, 1969, 1975; 
Summerfield, 1979; MacLeod and Summerfield 1987; Benoît et al., 1998). These studies 
show that what has been masked by noise in the speech spectrum can be partly recovered by 
the visual perception of the lips, teeth and tongue shapes that determine the place of 
articulation of several consonants. In another study by Benoît et al. (1994), the authors 
claimed that the complementarity between auditory and visual information provided by the 
vocal tract gestures is highly dependent on the phonetic context. In their experiments, stimuli 
of VCVCV nonsense words consisting of three French vowels (/i/, /a/, /y/) and six French 
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consonants (/b/, /v/, /z/, //, /R/, /l/), were presented under both auditory and audio-visual 
conditions with white noise added at various signal-to-noise ratios. The results first show that 
the identification scores were higher in the audiovisual condition than in the auditory-alone 
condition, especially in noisy acoustic situations. Secondly, the intelligibility of the 3 vowels 
was found to be different according to the modality. In the auditory modality, /a/ was most 
intelligible, followed by /i/ and then by /y/. In the visual modality, the rounded-protruded 
vowel /y/ was most intelligible, followed by the open vowel /a/ and then /i/. Thirdly, the 
results showed that the auditory and audio-visual intelligibility of consonants were 
contextually affected by the three vowels. The consonants were better identified in the /a/ 
context, followed by /i/ then /y/. These results therefore support the hypothesis that vision and 
ausition complement eaxh other, at least in the discrimination of the 3 vowels /i/, /a/ and /y/.In 
another work by Dohen et al. (2004), the authors studied if the visual modality was also 
useful for the perception of prosody. More specifically, they tested whether the visual 
prosodic cues identified through an articulatory analysis were actually perceived and could 
help listeners collect information about prosodic contrastive focus. In their experiment on 
reiterant speech, the stimuli consisted of sentences with a subject–verb–object (SVO) 
structure. They were recorded by a male speaker of French. Four contrastive focus conditions 
were studied: focus on each of the phrases (S, V or O) and broad focus. The results showed 
that a large jaw opening associated with a high opening velocity, a long phrase-initial lip 
closure and a post-focal hypo-articulation appeared to be possible visual cues to the 
perception of contrastive focus on reiterant speech. Moreover, when the participants were 
asked to identify the focus condition with only visual modality, they perceived about 86% of 
correct answers on average. From these results, the authors concluded that the visual modality 
is relevant for the perception of contrastive focus in reiterant speech in French. In further 
studies with non-reiterant speech, the contribution of the visual modality in the perception of 
contrastive prosodic focus in French was confirmed (Dohen and Lœvenbruck, 2009a; Dohen, 
Lœvenbruck and Hill, 2009b). 

Note that, on the other hand, in the study of McGurk and MacDonald (1976), the authors 
showed that visual information may distort auditory perception if the acoustic and the visual 
cues are not coherent. It is a well known effect called the McGurk effect where an acoustic 
/ba/ stimulus dubbed onto a visual /ga/ stimulus is mainly perceived as /da/. Although this 
effect shows that the visual articulation must be well synchronized with the auditory stream to 
have a benefit for speech perception, it also shows that auditory and visual information are not 
processed (fully) independently but are integrated in the speech perception process. 

Overall, these studies suggest that it is important to develop application with virtual 3D 
animated talking heads that are aligned with the auditory speech (Benoît et al. 1998; Bailly et 
al., 2003; Beskow, 2003; Massaro, 1998; Ouni et al., 2007; Odisio et al., 2004).  
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The studies on synthetic faces also showed that the intelligibility of the natural speech is 
increased when the generated facial animation are coherent and synchronized with the speech 
sounds (Brooke and Summerfield, 1983; Le Golf et al., 1996; Benoît et al., 1996). In the 
study by Benoît and Le Goff (1998), the authors compared the intelligibility scores obtained 
for visual stimuli, and audio alone stimuli under five conditions of acoustic degradation due to 
noise (Figure 2.4). Three types of visual stimuli were tested: 3D lip movements (controlled by 
five parameters and animated 25 times per second), talking head synthesis and natural video 
recordings. eIn the case of severely degraded acoustic information, where the subjects do not 
have any chance to understand the message with the audio only modality (when SNR is -18 
dB in the figure), all of the three types of visual stimuli drastically improved the scores, with 
the natural video recordings best identified, followed by the synthetic talking head and then 
by the lips alone. Specifically, with the 3D lip model, the perception score is about a third of 
the intelligibility observed for the natural face that reaches 60% of correct scores. With the 
addition of one control parameter for chin position, the lip and face models together increase 
the correct perception to around two thirds of the intelligibility of the natural face (Benoît and 
Le Goff , 1998). 

 

Figure 2.4. Intelligibility scores compared across audio alone presentation of natural speech 
(A: bottom trace) and AV presentation of A + (from top to bottom): the front view of the 
original face; the face model; and the lip model. The lip and face models were controlled 
from measurements made from the speaker's face (Benoît and Le Goff, 1998). 

A parallel can be drawn with the subvocal visible speech that I presented in chapter 1, where 
there is only visual articulation without any air emission. Although synthetic visual 
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movements are less efficient than natural one, the subjects could use synthetic visual 
information to compensate for the loss or degradation of auditory data.  

This positive influence of synthetic visual cues will be exploited in our conversion from 
whispered to audible speech (chapters 4 and 5). 

2.6 Summary 
This chapter presents some studies from both production and perception point of views in the 
literature of whispered speech. The major difference between whispered speech and phonated 
speech is the lack of voicing and pitch cues due to the absence of vocal folds vibration. 
However, the investigations in the literature suggest that whispered speech might carry 
information on laryngeal activity that could be used in the recovery of pitch from whispered 
speech. Note that this recovery is a difficult task and this is one of the main reasons that limit 
the quality of the speech generated from whispered or non-audible acoustic signals. 

This chapter also reviews the contribution of visual cues to speech perception. Facial 
movement information, when synchronized with speech sounds, enhances the intelligibility of 
speech in auditorily degraded environment, due to ambient noise or silent speech production. 
The promising contribution of facial movements when used as both input and output data in 
whisper-to-speech systems will be studied in next chapters. 

 



 

 

Chapter 3.  Audio and audiovisual 
corpora 

3.1 Introduction 
The most crucial part of any machine learning system based on a statistical framework is the 
data. In the case of speech, the database consists in a collection of recorded sentences, 
phrases, words, syllables or other units. The general purpose of a speech corpus is to acquire 
adequate data (i.e. acoustic-phonetic information), to provide the necessary data for training 
and evaluating of speech systems. Depending on the specific aim of the system, one first has 
to determine what kind of information must be present in the corpus to be collected. In 
whisper-to-speech systems, the speech corpus must satisfy particular requirements. During 
training, an adequate amount of data must be available for the estimation of models that 
represent the mapping between parameters of whispered speech and parameters of phonated 
speech. During evaluation, a sufficiently large number of additional data must be available for 
subjective testing. 

In the design of the speech corpus for our whisper-to-speech system, four issues were at stake: 
database size, phonetic coverage, time alignment and multimodality. 

Database size 

The database size refers to the amount of data that is available in the two speech modes: 
whispered speech and phonated speech. In this thesis, the recording of only one speaker under 
studio conditions was used. In order to avoid fatigue of the speaker during the recording 
sessions, and thus guarantee voice quality, the number of sentences to be pronounced should 
not be too important. A trade-off was thus made between the minimum amount of data needed 
to build and test the models and the maximum number of utterances the speaker could 
produce. 

Phonetic coverage 

The phonetic coverage describes how effectively the speech utterances produced by the 
speaker “span” the space of possible speech sounds in the language, such as phonemes, 
diphones or triphones (Kain, 2001). 

Time-alignment 

As described in (Kain, 2001), before training the mapping functions to be used in the whisper-
to-speech conversion system (based on GMM), source (whispered speech) and target 
(phonated speech) features must be aligned in time to display similar phonetic features. A 
natural way to do this task is to have the speaker utter the same sentences in both whispered 
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and phonated mode. The use of identical sentences maximizes the probability of a consistent 
transcription across modes of pronunciation (whisper and speech). Note however that such 
speech conversion systems do not always require such constraints (Mouchtaris et al., 2006; 
Toda et al., 2006; Ohtani et al., 2007). This approach ensures an accurate time-alignment of 
the training data with only a minimum of additional signal processing or with additional 
manual transcription of both whispered and phonated speech. In our case, both orthographic 
and audio prompts were used for recording whispered speech (cf. 3.2.2). 

Multimodality 

Speech is naturally multimodal. Visual cues, i.e. lip shape, tongue position and teeth visibility 
can compensate for lost of audio information or augment the perception of speech. In 
(Summerfield, 1992), the author has shown that noise up to 4-6 dB can be tolerated in speech 
understanding if one can see the speaker’s lips. Our corpus was thus recorded with both audio 
and video modalities to evaluate the contribution of facial movement information in both 
input and output modalities of our whisper-to-speech conversion system. 

To sum up, the recorded speech corpus should maximally represent all the facial movements 
and corresponding sounds which can be found in the language. The chosen sentences must 
cover maximally allophonic variations of each phoneme in context. We choose to maximize 
diphone coverage for our corpus. Moreover, as described above, the size of the corpus should 
be limited, especially in the case of a audio-visual corpus, because the speaker should not feel 
fatigue and also because the recording should be carried out in one day. The accurate 
repositioning of the NAM microphone and the markers on the speaker’s face from one 
recording session to another is quite difficult. 

In this thesis, we used two corpora, for two languages (French and Japanese), with two 
different speakers. The construction and the analysis of these two corpora will be presented in 
sections 3.2 and 3.3. 

 

3.2 French corpus 
3.2.1 Text material 

As explained above, the main objective in the constitution of a speech corpus is to gather the 
maximum of phonetic coverage for a minimum of recording time to guarantee the constancy 
of the voice quality during the recording. It is thus necessary to design “dense” sentences, that 
is a set of homogeneous sentences, neither too short nor too long, with a simple typography 
and capturing the maximum of phonetic variability with a limited number of sentences 
(several hundreds). The Greedy search (Van Santen and Buchsbaum, 1997; Franois and 
Boffard, 2002; Bozkurt et al., 2003) algorithm is often used for this task. The iterative 
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principle of this algorithm is to eliminate the sentences whose elements are already covered 
by the others. 

 

Figure 3.1. Histogram of phoneme content of the final 288 sentences selected by the greedy 
search algorithm. 

For our corpus, we ran the greedy algorithm on a list of phonetic transcriptions of 4289 
sentences, extracted from the journal Le Monde 2003. These sentences have from 5 to 7 
words in length with no abbreviations nor acronyms. Our selection criterion was to constitute 
a dense list of sentences for the recording while maximizing the number occurrences of 
diphones. We ended up with a list of selected sentences to 288 sentences in order to limit the 
duration of each recording session to approximately 30 minutes. In the final selection, each 
phoneme was represented at least 27 times (see figure 3.1 for a phoneme histogram). The 
number of covered diphones is 935, with only 157 possible diphones missing. 
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Figure 3.2. Instructions presented on a screen guide the recording of each sentence in the 
corpus. 

3.2.2 Recording protocol 

A trained male native speaker of French participated in the recording. The 288 sentences were 
first read by the speaker in a normal (voiced) speaking mode, with a natural speaking rate. 
Then to make sure that the whispered speech was uttered as close as possible to the normal 
voiced speech, that is with similar prosody (i.e. similar syllable durations, intensity and 
intended intonation, the speaker listened to its own voiced production of a sentence before 
whispering it. The sentences to be produced by the speaker in a whispered mode, were 
presented on a computer screen placed in front him. After a beep, the sentence was presented 
on the screen and the corresponding sound for the sentence produced in the normal speaking 
mode was played. The SpeechRecorder Toolkit developed by Draxler and Jänsch (2008) was 
used. Figure 3.2 shows an example of the software interface that guided the speaker to record 
each sentence. The speaker was asked to try to “mimic” the sentence in a whispered mode, 
with a similar intended intonation as the voiced utterance. After each sentence, the following 
one was immediately presented. When the speaker made a mistake, the sentence was re-
recorded. Each sentence was presented for 5 seconds, which allowed enough time for the 
sentence to be pronounced while ensuring that all the sentences were pronounced in a limited 
time. All of the 288 selected sentences were recorded in one afternoon, in two different 
sessions: the first session for the phonated speech and the second session for the whispered 
speech, without any change in position for the NAM and headset microphone. 
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Figure 3.3. Setup for the French corpus recording 

We recorded speech at a sampling rate of 44 kHz, using a 16 bit encoding. The speaker was 
seated in a professional soundproof room and wore a high quality headset microphone and a 
NAM microphone. The NAM microphone was fixed on the neck, under the ear of the 
speaker, with a plastic arch . The headset microphone was used for easing the phonetic 
segmentation in the GMM training phase. In addition, a calibrated microphone was placed 40 
cm away from the speaker to assess the intensity of the whisper. This calibrated microphone 
ensured that the whispered speech could not be heard from a distance of 40 cm, a common 
definition of non-audible murmur in the NAM literature. Figure 3.3 shows the setup for the 
recording. 
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3.3 Audiovisual Japanese corpus 
An audiovisual corpus was recorded in order to build an audiovisual synthesis system which 
generates speech-related facial movements (Revéret, Bailly et al., 2000; Elisei et al., 2001; 
Badin, Bailly et al., 2002; Bailly et al., 2003, 2006; Gibert, 2006). 

3.3.1 Text material 

The text used for this corpus was composed of two parts:  

- The first part was obtained from a set of 503 isolated sentences from the ATR 
Japanese speech database B-set. This database was collected from newspapers and 
magazines, by maximizing phonemic variance. The description of the text material 
can be found in more detail in Sagisaka et al. (1990). 

- The second part is a list of all the Japanese consonants in symmetrical context VCV 
where V is one of the Japanese vowels /a/, /e/, /i/, /o/, /u/ and C is one of the Japanese 
consonants: /p/, /pj/, /b/, /bj/, /m/, /mj/, /d/, /t/, /s/, /ts/, /z/, /j/, /n/, /nj/, /k/, /kj/, /g/, /gj/, 
/f/, //, /t/, //, /h/, /hj/, /r/, /rj/, /w/. This second part was designed to be able to carry 
out a subjective evaluation of the contribution of facial movement parameters in the 
whispered-to-phonated speech conversion. 

3.3.2 Materials and recording 

The apparatus used to record this corpus is the setup traditionally used in the building of 
talking heads, developed at DPC (ex. ICP) (Revéret, Bailly et al., 2000; Badin, Bailly et al., 
2002; Bailly et al., 2003, 2006). The setup is composed of three analogical cameras (where 
uncompressed images are grabbed by three DPS stations, one for the speaker’s face and two 
others for the profile) (figure 3.4), a helmet to maintain the speaker’s head. In addition to the 
traditional setup, two NAM microphones, a headset microphone for the phonetic 
segmentation (see explanation in Chapter 4), a calibration microphone were used. The 
calibration microphone was positioned at a distance of 40 cm away for the speaker and was 
used to check that the produced utterances were not audible at this distance. Finally, a 
synchronization device (see below) was used to synchronize the audio and video data and a 
screen computer was positioned in front of the speaker to display the sentences to be 
pronounced. 
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Figure 3.4. Three views of the apparatus used to record the audiovisual data.Colored beads 
are glued on the speaker’s face, to capture facial movements. The NAM microphones are 
strapped to the speaker’s neck. The speaker wears a helmet to restrain head movements. 

The speaker was a 27-year old Japanese student at NAIST. 142 markers (small colored beads) 
were glued on his face and his neck. 

The same protocol as the one used to record the French corpus was applied. During data 
acquisition, the sentences to be pronounced were displayed on a computer screen in front of 
the speaker. 

The audio signals from a NAM microphone and a head-set microphone were recorded at the 
sampling rate of 44 kHz. The video are recorded at frequency of 25 Hz with interleaving, 50 
Hz after de-interleaving. The visual parameters extracted from the video signals were then 
upsampled to 200 Hz to have a better alignment with audio parameters. 

The raw audio-visual was then processed and visual parameters related to the movements of 
the lips, jaw and larynx were extracted by using the talking head cloning methodology that 
will be presented in more detail in chapter 4. 

3.4  Summary 
In this chapter, the data used to evaluate the contribution of the solutions explored in this 
thesis to improve whisper-to-clear speech conversion are presented. 

The first corpus on French only consisted of acoustic signals captured by both a NAM 
microphone and a head-set microphone. A set of 288 phonetically-balanced sentences was 
recorded. The sentences were extracted from Le Monde journal, 2003. This French corpus 
was designed to test new methods to improve the existing GMM-based whisper-to-speech 
conversion procedure.  

The second corpus on Japanese, on the other hand, is multimodal data. This corpus contains 
audio data (captured by two NAM microphones and a head-set microphone) and video data 
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for face movements (captured by three cameras and using markers glued on the speaker’s 
face). A set of 278 sentences, extracted from the 503 sentences in the ATR Japanese speech 
database B-set, was recorded. The audio signal was recorded in synchrony with the video 
signal. This Japanese corpus is designed to examine the contribution of visual movements in 
whisper-to-speech conversion. 

The next chapters in this thesis will concentrate on our improvements to the naturalness and 
the intelligibility of the synthesized speech generated from whispered speech. 



 

 

Chapter 4.  Improvement to the GMM-
based whisper-to-speech system 

4.1 Introduction 
As explained in chapter 1, voice transformation has been recently promoted in order to obtain 
quickly and inexpensively new voices for Text-to-Speech (TTS) systems. This paradigm 
creates a “speaker model” from a small number of speech utterances produced by the desired 
target speaker. Among with other different techniques already presented in chapter 1, the 
mapping technique based on Gaussian Mixture Model (GMM) proposed by Stylianou et al. 
(1998) is a mature technology. 

As mentioned earlier, another application of voice conversion is whisper-to-speech 
transformation. Based on the GMM technique, the NAM-to-speech conversion system 
proposed by Toda and Shikano (2005) at NAIST which converts Non-Audible Murmur 
(NAM) to phonated speech is very promising. The quality of the converted speech is however 
still insufficient for computer-mediated communication, notably because of the poor 
estimation of F0 from unvoiced speech and because of impoverished phonetic contrasts. 

In this chapter, section 4.2 briefly presents the original NAIST system which uses a Gaussian 
Mixture Model (GMM) to match whispered-speech to voiced-speech. Then I explain why the 
original system needs improvement. The naturalness and intelligibility of the obtained 
converted speech is still poor, and I suggest that one of the reasons for this low quality is the 
weak F0 and voicing rendering in the converted speech. This chapter therefore deals with 
possible improvements to the original NAIST system, concerning F0 estimation and voicing 
decision. One way to do this is to use a better alignment between whispered- and voiced-
speech. Section 4.3.1 describes an alignment procedure for whisper- and voiced-speech 
samples. This procedure has to overcome the difficulties in getting accurate phonetic 
segmentation in whispered-speech. The feature extraction procedure is presented in section 
4.3.2. Then a method to improve voicing decision and F0 estimation is proposed in section 
4.3.3 and 4.3.4. Instead of combining voicing decision and F0 estimation in a single GMM, a 
simple feed-forward neural network is used to detect voiced segments in whispered speech 
while a GMM estimates a continuous melodic contour based on voiced segments only. 
Section 4.3.5 describes how to further improve the performance of the system by using 
different input time window sizes and by using a different vector dimension reduction 
technique. Finally, I present an experiment in which I tested adding visual parameters both as 
input and output parameters (section 4.3.6). The contribution of these suggestions is then 
evaluated by subjective tests (section 4.4). Finally, the conclusion for this chapter is presented 
in section 4.5. 
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4.2 Original NAIST NAM-to-Speech system 
The acoustic spectrum of NAM or whispered speech is considerably different from that of 
natural speech. Furthermore, NAM (or whispered speech) does not offer input F0 
characteristics since they are uttered without the vibration of the vocal folds. NAM-to-Speech 
or whisper-to-speech conversions thus need to estimate acoustic features of speech typically 
used for synthesis namely, spectral envelope, power and F0, from the acoustic features of 
NAM (or whisper) namely spectral envelope and power). Figure 4.1 shows a schematic 
diagram of the NAM-to-Speech system proposed by Toda et al. (Toda and Shikano, 2005; 
Nakagiri et al., 2006; Nakamura et al., 2006; Sekimoto et al., 2006) at NAIST. 

The NAM-to-speech system can be decomposed into two conversion processes: 

– Deriving spectral parameters from a spectral sequence of NAM or whispered speech 
to characterize the time-varying filter part of the converted speech signal. Mel-
Frequency Cepstral Coefficients (MFCC) are used to represent the spectral envelope. 

– Deriving F0 and an aperiodic component from a spectral sequence of NAM or 
whispered speech to characterize the source excitation of the converted speech signal. 
The F0 includes voiced/unvoiced information in this case (0-label presents unvoiced 
frame) and the aperiodic component includes the non-periodic part of voiced sounds 
(e.g. fricative noise in /v/) or sound emitted without any vocal fold vibration (e.g. 
unvoiced fricatives, or plosives). 

 

Figure 4.1. Conversion Process of NAM-to-Speech (Toda and Shikano, 2005; Nakagiri et al., 
2006) 
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Finally, the mixed excitation based on estimated F0 and aperiodic component using is then 
filtered with estimated spectra to generate a speech signal by a vocoder STRAIGHT 
(Kawahara et al., 1999, 2001; Ohtani et al., 2006). 

4.2.1 Spectral estimation 

The spectral estimation is described in Toda et al. (2009). The input static feature xt and 
output static feature yt at frame t are presented followed:  

[ ](1),..., ( )t t t xx x x D Τ=                                          (4.1)  

[ ](1),..., ( )t t t xy y y D Τ=                                          (4.2) 

In order to compensate for the lost characteristics of some phonemes due to body 
transmission, a segment feature 

,... ,t x t L t t L xX W x x x b
ΤΤ Τ Τ

− +⎡ ⎤= +⎣ ⎦                                    (4.3) 

extracted over several frames (t ± L) is used as an input speech parameter vector where Wx 
and bx are determined by Principle Component Analysis (PCA). As an output speech 
parameter vector, ,t t tY y yΤ Τ⎡ ⎤= Δ⎣ ⎦ is used, consisting of both static and dynamic feature vectors 

of the target spectrum. In order to alleviate the spectral discontinuities, these dynamic features 
are used with a parameter generation algorithm to take into account the correlation between 
frames (Toda et al., 2005). Moreover, Maximum Likelihood Estimation (MLE)-based 
mapping is used instead of Minimum Mean Square Error (MMSE)-based mapping proposed 
by Stylianou et al. (1998) to improve the mapping performance. As stated in (Toda, Black and 
Tokuda, 2008), MMSE-based algorithm determines the target parameter from the given 
source parameter frame by frame using the minimum mean-square error (MMSE) criterion. 
Although it works reasonably well, it is not appropriate for multiple probability density 
distributions because it ignores the covariances of the individual distributions even when they 
are different from each other and inappropriate parameter trajectories having unnatural 
movements are caused by the frame-by-frame mapping process. On the other hand, in the 
MLE-based mapping, the determination of a target parameter trajectory having appropriate 
static and dynamic properties is obtained by imposing an explicit relationship between static 
and dynamic features. (Toda, Black and Tokuda, 2004). 

As explained in Toda et al. (2007b, 2009), using parallel training data set consisting of time-

aligned input and output parameter vectors 1 1 1,Z X Y
ΤΤ Τ⎡ ⎤= ⎣ ⎦ , 

2 2 2,Z X Y
ΤΤ Τ⎡ ⎤= ⎣ ⎦ ,…, ,T T TZ X Y

ΤΤ Τ⎡ ⎤= ⎣ ⎦ as proposed by Kain et al. (1998abc), the joint probability 

density of the input and output parameter vectors is modelled by a GMM as follows: 
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and                                           
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A parameter set of the GMM is ( )Zλ , which consists of weights wm, mean vectors ( )Z
mμ  and 

full covariance matrices ( )Z
mΣ  for each individual mixture component m. The parameters 

GMM ( )Zλ  is trained in advance using aligned training data. 

The spectral conversion is performed by maximizing the following likelihood function: 

( ) ( ) ( )( | , ) ( | , ) ( | , , )Z Z Z

all m

P Y X P m X P Y X mλ λ λ= ∑  

( ) ( )

1 1

( | , ) ( | , , )
T M

Z Z
t t t

t m

P m X P Y X mλ λ
= =

=∏∑                              (4.7) 

where m = {m1, m2,…, mT} is a mixture component sequence. The conditional probability 
density at each frame is modeled as a GMM. At frame t, the m-th mixture component weight 

( )( | , )Z
tP m X λ  and the m-th conditional probability distribution ( )( | , , )Z

t tP Y X m λ  are given 

by 

( ) ( )
( )

( ) ( )

1

( ; , )( | , )
( ; , )

X XX
Z m t m m

t M
X XX

n t n n
n

w N XP m X
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μλ
μ
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Σ
=

Σ∑
                              (4.8) 

( ) ( ) ( )
,( | , , ) ( ; , )Z Y Y

t t t m t mP Y X m N Y E Dλ =                                  (4.9) 

where                         
1( ) ( ) ( ) ( ) ( )

, ( )Y Y YX XX X
m t m m m t mE Xμ μ

−

= + Σ Σ −                                (4.10) 

1( ) ( ) ( ) ( ) ( )Y YY YX XX XY
m m m m mD

−

= Σ + Σ Σ Σ                                     (4.11) 

In the MLE-based framework, a time sequence of the converted feature vectors is determined 
as follows: 

( )ˆ arg max ( | , )Zy P Y X λ=                                        (4.12) 

subject to yWY y=                                               (4.13) 
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where yW  is a window matrix to extend the static feature vector sequence to the parameter 

vector sequence consisting of static and dynamic features (Tokuda et al., 1995ab). This matrix 
is the 2DT-by-DT matrix written as 

[ ]Τ1 2, ,..., ,T D DW W W W I ×= ⊗                                      (4.14) 

where                                       (0) (1),t t tW w w⎡ ⎤= ⎣ ⎦                                                  (4.15) 

( ) ( )( ) ( )( )1
( ) ( ) ( ) ( ) ( ) ( )0 ,...,0, ( ),..., (0) , ( ),0,..., 0 , 0,1

n nt L th t L tht thst T th
n n n n n n

tw w L w w L n
− +

Τ
− − + −− −

− +

⎡ ⎤
= − =⎢ ⎥
⎢ ⎥⎣ ⎦

      (4.16) 

with (0) (0) (0)0, (0) 1.L L w− += = =  

The likelihood function in (4.7) can be approximated with a single mixture component 
sequence to effectively reduce the computational cost. The likelihood is now represented as 
follows 

( ) ( ) ( )( | , ) ( | , ) ( | , , )Z Z ZP Y X P m X P Y X mλ λ λ                    (4.17) 

In the first step, the suboptimum mixture component sequence m̂ is estimated by 

( )ˆ arg max ( | , )Zm P m X λ=                                     (4.18) 

Then the approximated log-scaled likelihood function is written as 

( ) ( )ˆ ˆlog (m | X, ) (Y | X,m, )Z ZL P Pλ λ=                             (4.19) 

The converted static feature vector sequence ŷ  that maximize L under the constraint 4.13 is 
given by 

1 1( ) 1 ( ) ( )
ˆ ˆ ˆˆ ( )T Y T Y Y
m m my W D W W D E

− −−=                                 (4.20) 

with                             
¨1 ¨ 2 ¨ ¨

( ) ( ) ( ) ( ) ( )
ˆ ˆ ˆ ˆ ˆ,1 ,2 , ,, ,..., ,...,

t T

Y Y Y Y Y
m m m m t m TE E E E E⎡ ⎤= ⎣ ⎦ ,                         (4.21) 

1 1 1 1 1

1 2

( ) ( ) ( ) ( ) ( )
ˆ ˆ ˆ ˆ ˆ, ,..., ,...,

t T

Y Y Y Y Y
m m m m mD diag D D D D

− − − − −⎡ ⎤= ⎣ ⎦                      (4.22) 

Further, the degradation of the converted speech quality caused due to an over-smoothing of 
the converted spectra can be alleviated by using “global variance” (GV) as proposed in (Toda 
et al., 2005). The GV of the target static feature vectors over a time sequence is written as 

( ) (1),..., ( )yv y v v D
Τ

⎡ ⎤= ⎣ ⎦                                         (4.23) 
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A new likelihood function consisting of two probability density functions for a sequence of 
the target static and dynamic feature vectors and for the GV of the target static feature vectors 
is defined as follows: 

( ) ( ) ( ) ( )( , , ) ( | , ) ( ( ) )Z v Z w vP Y X P Y X P v yλ λ λ λ=                      (4.25) 

The probability density of the GV of the output static feature vectors over an utterance is also 
modeled by a Gaussian distribution, 

( ) ( ) ( )( ( ) ) ( ( ); , )v v vvP v y N v yλ μ= Σ                                 (4.26) 

A parameter set )(vλ  consists of a mean vector )(vμ  and a diagonal covariance matrix ( )vvΣ . 

In the conversion procedure, the converted static feature sequence 1 2,..., ,..., Ty y y y
ΤΤ Τ Τ⎡ ⎤= ⎣ ⎦  is 

determined by maximizing a product of the conditional probability density of Y given X and 
the GV probability density as follows: 

( ) ( )ˆ arg max ( , ) ( ( ) )Z w v

y
y P Y X P v yλ λ=                                       (4.27) 

Again, the approximated log-scaled likelihood function is used to effectively perform the 
conversion process without significant quality degradation compared with the EM algorithm 
(Toda et al., 2007b): 

( ) ( ) ( )log{ ( , ) ( ( ) )} ( ( ) | )Z w v w vL P Y X P v y P v yλ λ λ=                   (4.28) 

The converted parameter trajectory is iteratively updated by using the first derivative given by 

( )1 1( ) ( ) ( )
ˆ ˆ ˆ

1 2' , ' ,... ' ,..., '

T Y T Y Y
m m m

T T T T
t T

L w W D Wy W D E
y

v v v v

− −∂
= − +

∂

⎡ ⎤+ ⎣ ⎦

                           (4.29) 

where                        [ ]' ' (1), ' (2),..., ' ( ),..., ' ( )t t t t tv v v v d v D Τ=                                    (4.30) 

( )2 ˆ ˆ ˆ' ( ) ( ( ) )( ( ) ( ))
Td

t v v tv d p v y y d y d
T

μ= − − −                                (4.31) 
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4.2.2 Source excitation estimation 

Various vocoders – called Harmonic plus Noise Models (HNM) (Laroche et al., 1993; 
Stylianou et al., 1995) - used in speech synthesis or coding decompose the speech excitation 
into two components (Richard and Alessandro, 1996): 

– A periodic or quasi-periodic component which takes into account the quasi-periodic 
segments of speech produced by the regular vibrations of the vocal folds. This 
component is characterized by the fundamental frequency F0. 

– an aperiodic component which corresponds to the noise source (frication, aspiration, 
bursts) in the speech production. 

Some results (Laroche et al., 1993; Dutoit and Leich, 1993) indicate that a separate 
processing of the periodic and aperiodic components of speech excitation may improve the 
quality of synthetic speech for time-scale/pitch-scale modifications. 

 

Figure 4.2. STRAIGHT mixed excitation (Ohtani et al., 2006) 

In the STRAIGHT system (Kawahara et al., 1999; Kawahara et al. 2001) that we use for the 
speech analysis and synthesis, the mixed excitation is defined as the frequency-dependent 
weighted sum of periodic and aperiodic components (figure 4.2). 

The weight is determined based on an aperiodic component in each frequency band which is 
calculated from the smoothed power spectrum by a subtraction of the lower spectral envelope 
from the upper spectral envelope. The upper envelope is calculated by connecting spectral 
peaks and the lower envelope is calculated by connecting spectral valleys as presented in the 
figure 4.3 (Kawahara et al. 2001; Ohtani et al., 2006). Note that the noise envelope is 
characterized by the energy in 5 frequency bands. 

Two GMM models for F0 estimation and aperiodic estimation (c.f. figure 4.1) are constructed 
in the same way as the spectral estimation except that the global variance (GV) is not used 
because GV does not cause large differences to the converted speech in the aperiodic 
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conversion (Ohtani et al., 2006). Static and dynamic features Yt of F0 and aperiodic 
components are used while keeping the same feature vector of whisper Xt as that used for the 
spectral estimation. 

 

Figure 4.3. Aperiodic component extraction from liftered power spectrum keeping 
periodicity. (Ohtani Y. et al., 2006). 

4.3 Improvement to the GMM-based whisper-to-speech 
conversion 

The NAM-to-speech conversion system proposed by Toda and Shikano (2005) opens the 
promise for efficient silent-speech communication. Although this system successfully 
generates intelligible speech using only a small number of training sentences, the quality of 
the synthesized speech is insufficient and is far from reaching a commercial level, especially 
concerning the naturalness of the converted speech. This is due to the difficulties in F0 
estimation from unvoiced speech. The authors claimed that it is inevitable to improve the 
performance of their NAM-to-Speech system. Nakagiri and Toda et al. (2006) proposed 
another system which converts NAM-to-whisper in order to avoid this F0 estimation. But this 
solution seems to be inappropriate because whisper is only another type of unvoiced speech, 
just like NAM, just a little more intelligible. 

In this section, I will present our different investigations to improve both the intelligibility and 
the naturalness of the generated audible speech, especially for the F0 contour prediction of the 
synthesized speech. 

4.3.1 Aligning data 

Due to the differences in speaking rate between recording sessions, the feature streams of 
both whispered speech and phonated speech must be aligned in time with each other before 
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training the transformation function. The most straightforward way is to use manual 
transcription information. However, it could be more time-saving to use automatic methods 
such as Dynamic Time Warping (DTW) (Itakura, 1975) or a Hidden Markov Model (Kim et 
al., 1997; Kain and Macon, 1998abc; Arslan, 1999). 

In our case, the acoustic data of both whispered speech and phonated speech was first semi-
automatically segmented into phonemes. A careful manual correction was carried out after a 
forced alignment procedure based on a general-purpose Viterbi phone recogniser using a 
HMM. The HTK3 toolkit (Young et al., 2000) and the labelling software Praat4 were used 
here. In this alignment paradigm, the whispered speech signal captured by a headset 
microphone was used instead of that captured by the NAM microphone, because the NAM 
microphone severely degraded the quality due to the lack of lip-radiation characteristics and 
the low-pass characteristics of soft tissues as well as the presence of several impulsive pop 
noises caused by the contact between the NAM microphone and the skin (Shimizu et al., 
2009). 

Table 4.1. Cepstral distortion (dB) between converted speech and target audible speech by 
using phonetic segmentation (seg) and by using DTW. 

French corpus Japanese Number of 
Gaussians Seg DTW Seg DTW 

8 7.23 
(±0.69) 

7.50 
(±0.73) 

6.06 
(±0.64) 

6.29 
(±0.648) 

16 6.96 
(±0.56) 

7.12 
(±0.64) 

5.99 
(±0.63) 

6.13 
(±0.61) 

32 6.64 
(±0.53) 

6.94 
(±0.61) 

5.83 
(±0.64) 

6.16 
(±0.64) 

This segmentation information was then used to obtain a better alignment between the two 
different modes of pronunciation than the one obtained with the blind dynamic time warping 
(DTW) used in the NAIST system. 

 

                                                 
3 http://htk.eng.cam.ac.uk/ 
4 http://www.fon.hum.uva.nl/praat/ 
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                  (a). French data                                     (b). Japanese data  

Figure 4.4 Mean cepstral distortion and standard deviation between converted speech and 
target audible speech by using phonetic segmentation and by using DTW. 

Both the French and Japanese corpora presented in chapter 3 were used to evaluate the 
alignment. For the French corpus, the training data consisted of 200 utterances and 70 
utterances were used for the test. For the Japanese corpus, the training data consisted of 150 
sentences and 40 sentences were used for the test corpus. The cepstral distortion between the 
spectral parameters of converted speech from whispered speech captured by NAM 
microphone and phonated speech was used as a quantitative measurement. 25 mel-cepstral 
coefficients were used for the French data and 20 mel-cepstral coefficients were used for the 
Japanese data. A better alignment does provide a smaller distortion (cf. table 4.1, figure 4.4). 
The results of an ANOVA with the alignment method as a 2-level factor show that we have 
an improvement by using the segmentation information compared to DTW ((F(1,70) = 17.26, 
p < 0.001) for the French corpus and (F(1,40) = 11.32, p < 0.001) for the Japanese corpus). 

4.3.2 Feature extraction 

The French corpus presented in chapter 3 was used to evaluate our system and the original 
system proposed by NAIST. 

The training corpus consists of 200 utterance pairs of whisper and speech uttered by a native 
male speaker of French. Respective speech durations are 4.9 minutes for whisper (9.7 minutes 
with silences) and 4.8 minutes for speech (7.2 minutes with silences). 

The 0th through 24th mel-cepstral coefficients (MFCC) are used as spectral features at each 
frame (with 25 ms Hanning window, shifted at the rate of 5 ms) for both whisper and 
phonated speech. The spectral segment features of whisper are then constructed by 
concatenating feature vectors at each current whispered frame ± 8 frames (i.e. representing 
105 ms of speech) to take into account the context variation. Then the vector dimension is 
reduced to 50 using a Principal Component Analysis (PCA) technique. Log-scaled F0 
extracted with fixed-point analysis (Kawahara et al., 1999) and 5 average dB values of the 
aperiodic components on five frequency bands (0-1, 1-2, 2-4, 4-6, 6-8 kHz) are used to 
characterize the excitation feature (Ohtani et al., 2006). All these parameters were extracted 
using the STRAIGHT toolkit (Kawahara et al., 1999). 

The test corpus consists of 70 additional utterance pairs of whisper and audible speech not 
included in the training data. This corpus is used to evaluate the performance of the two 
systems. 
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4.3.3 Voiced/unvoiced detection 

In the original system, all whispered feature segments (including voiced and unvoiced 
segments) are used to train the GMM model estimating F0 values for converted speech. In this 
training paradigm, the undefined F0 value on each unvoiced segment is assigned to 0. 
Therefore, in the conversion phase, F0 and voicing are then jointly estimated by a unique 
GMM: voicing decision is determined using a very simple threshold. If the predicted F0 value 
at the current frame is greater than the threshold, this segment is considered as a voiced 
segment, otherwise this segment is considered as an unvoiced segment and the value of F0 is 
then set to 0. The main drawback of this approach is that some Gaussian components are 
wasted for representing null F0 values for unvoiced segments in the training phase. The risk is 
also to predict unstable F0 values for unvoiced segments incorrectly labelled as voiced in the 
conversion phase. 

In order to improve the naturalness of this whisper-to-speech system by a better voicing 
decision and a better F0 estimation, we estimate each one by two separate models instead of 
combining them in a single GMM. Our system predicts a continuous melodic contour that is 
sampled by voiced/unvoiced decision (Tran et al., 2008b). 

A non-linear feed-forward neural network is used to predict the voiced segments from the 
whispered speech. Since the optimization of a neural network is a difficult task, I do not deal 
with this problem in this thesis. The topology of the network is empirically defined as 
follows: 

– 50 input nodes corresponding to the dimension of the whispered features used to train 
the GMM. 

– One hidden layer with 17 nodes. The best number of hidden nodes depends on several 
variables: the numbers of input and output units, the number of training cases, the 
amount of noise in the targets, the complexity of the function or classification to be 
learned, the architecture, the type of hidden unit activation function, the training 
algorithm, etc... In most situations, there is no way to determine the best number of 
hidden units without training several networks and estimating the generalization error 
of each. If we have too few hidden units, high training error and high generalization 
error occur due to underfitting and high statistical bias. If we have too many hidden 
units, we have a low training error but still have a high generalization error is occurred 
due to overfitting and high variance (Xu and Chen, 2008). For our network, we use a 
very simple “rule of thumb” proposed in (Blum, 1992, p. 60): “A rule of thumb is for 
the size of this [hidden] layer to be somewhere between the input layer size ... and the 
output layer size ...”. 

– One output node corresponding to the voiced/unvoiced decision: for tracking, the 
network assigns 0 to unvoiced segments and 1 to voiced segments. For generating, the 
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predicted output is larger than .5, the segment is labeled as voiced, otherwise, it is 
labeled as unvoiced. 

The features at each frame of the whispered utterances extracted from the training corpus for 
the GMM estimation (including spectral, F0 and aperiodic component estimation) are used as 
input vector for this network. The voiced/unvoiced label for each segment in the training 
whispered data is obtained from the voiced/unvoiced label of the corresponding speech 
utterance by aligning the two utterances as described above. 

The neural network is trained by the BackpropMomentum learning algorithm (Bishop, 1996), 
using the Stuttgart Neural Network Simulator (SNNS) (Zell et al., 1996). The configuration 
parameters for this algorithm are as followed: 

– η = 0.01: learning parameter that specifies the step width of the gradient descent. 

– μ = 0.01: momentum term that specifies the amount of the old weight change (relative 
to 1) which is added to the current change. 

– c = 0.05: flat spot elimination value, a constant value which is added to the derivative 
of the activation function to enable the network to pass at spots of the error surface. 

– dmax = 0.2: the maximum difference dj = tj – oj between a teaching value tj and an 
output oj of an output unit which is tolerated. 

The general formula for back-propagation used here is 

( 1) ( )ij j i ijw t o w tηδ μΔ + = + Δ  

( ' ( ) )( )

( ' ( ) )
j j j j

j
j j k jkk

f net c t o if unit j is a output unit

f net c w if unit j is a hidden unit
δ

δ

+ − −⎧⎪= ⎨
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with f is the sigmoid activation function in each unit : 1( )
1 xf x

e−=
+

 

Table 4.2 and figure 4.5 show the voiced/unvoiced detection by this network compared with 
the GMM method in the original system which uses a single GMM with F0 estimation. The 
number of Gaussian mixtures in this model is fixed at 16. Compared with the error in the 
original system, the statistical analysis shows that we have a significant improvement of the 
voiced/unvoiced detection (6.8% compare with 9.3% (F(1,70)=24.33, p<0.001)). In this table, 
we additionnally describe two types of error: the voiced error is the proportion of unvoiced 
frames that the system detects as voiced one and the unvoiced error is the proportion of 
voiced frames that the system detects as unvoiced. The ANOVA analysis also showed that we 
have a significantly better performance in both cases: 2.3% compared with 3.2% for the 
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voiced error (F(1,70)=10.54, p=0.0014) and 4.5% compared with 6.1% for the unvoiced error 
(F(1,70)=8.45, p = 0.042). 

 

Figure 4.5 Mean and standard deviation error of voicing decision by a neural network (ANN) 
and by a GMM. 

Table 4.2. Voicing error using neural network and GMM on the French data 

Type of error Feed-fwd NN (%) GMM (%) 

Voiced 2.3 (± 1.81) 3.2 (± 1.82) 
Unvoiced  4.5 (± 2.88) 6.1 (± 3.07) 

Total ~ 6.8 (± 2.89) ~ 9.3 (± 3.16) 

4.3.4 F0 estimation 

Only voiced segments in whispered speech were used to train the GMM for the F0 estimation 
in order to avoid wasting Gaussian components for unvoiced frames. Continuous F0 values 
are then predicted. They are then sampled by voicing decisions made by the Artificial feed-
forward Neural Network (ANN) presented above. This study was presented in (Tran et al., 
2008b). Figure 4.6 presents the synopsis of the system. 
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Figure 4.6. Synopsis of the whisper-to-speech conversion system 

We compared the F0 rendering of our system with the original one, with different numbers of 
mixtures (8, 16, 32 and 64) for both training and test data. Full covariance matrices are used 
for both GMMs. The performance of the system is measured as the normalized difference 
between synthetic F0 and natural F0 in the voiced segments that were well detected by the two 
systems. This difference, which we will refer to as the “deviation from natural F0”, is given 
by the following formula: 

0 0

1 0

_ _1 100%
_

N
i i

i i

synthetic F natural F
Diff

N natural F=

−
= ×∑  

where N is the number of frames that well detected by the two systems. 

 

Figure 4.7. Parameter evaluation on training (solid line) and test corpus (dashed line). 

Figure 4.7 shows that the proposed framework outperforms the original system, since the 
deviation from natural F0 is lower. In addition, when the number of Gaussian mixtures 
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increases, the deviations of both systems on the training data decrease, but the deviations on 
the test data are almost insensitive to the number of mixtures. 

 

Figure 4.8. Natural and synthetic F0 curve for the test utterance: “Armstrong tombe et 
s'envole” 

Figure 4.8 shows an example of a natural (target) F0 curve and the synthetic F0 curves 
generated by the two systems. It shows that our proposed system is closer to the natural F0 
curve than the original system, especially for the final contour. An ANOVA analysis showed 
that this improvement is statistically significant (F(1,70) = 20.72, p < 0.001). 

Figure 4.9 shows an example of whispered-, converted- (by our system) and natural-speech. 
As can be seen the formant patterns of the converted speech are flatter than those of natural 
speech. Global variance was used to partly attenuate this difference (Toda et al., 2004). 

4.3.5 Influence of spectral variation on the predicted accuracy 

4.3.5.1 Context window 

In this section, we compare two different data reduction methods: Linear Discriminant 
Analysis (LDA) versus Principal Component Analysis (PCA) to compute the input spectral 
features for whispered speech. Classes of F0 ranges or phonemes were determined to label 
whispered frames for LDA training. Furthermore, we used different sizes of context window 
to study the influence of spectral variation on the pitch estimation performance as well as the 
spectral estimation performance of GMM-based system. This was presented in (Tran et al., 
2008a). 

a. / Whisper captured by a headset microphone / 
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b. / Whisper captured by NAM microphone / 

 
c. / Converted speech / 

 
d. / Natural speech / 

 

Figure 4.9. Whispered speech captured by headset microphone (a), NAM sensor (b), 
converted speech (c) and ordinary speech (d) for the same utterance: “Armstrong tombe et 

s'envole”. 
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Figure 4.10. Combining multiple frames for input features 

In (Toda, Black and Tokuda 2008), the authors showed that the use of feature vectors 
constructed by concatenating multiple acoustic frames, employed as an input feature to take 
into account the dynamic constraints on acoustic parameters, is effective for improving the 
mapping accuracy. In this article, the size of the context window is increased by 
concatenating more adjacent frames. In our case, this context window is widened by picking 
one frame every m frames (as presented in the figure 4.10 for the cases of m = 1 to 4) keeping 
thus the number of frames for the concatenation remains constant. PCA or LDA is then 
applied to this multi-frames vector for dimensionally reduction. 

4.3.5.2 F0 estimation 

For this evaluation, the dimension of the whispered characteristics is reduced by using a PCA 
as proposed in the original system or by using a LDA. For the LDA, the target speech frames 
are classified into 13 classes: unvoiced frames are labelled with a ‘0’ label and voiced frames 
fall into 12 other labels, depending on which interval the F0 value in this frame belongs to 
(bark scale between 70Hz and 300 Hz). The class of a whispered frame is deduced from the 
class of the corresponding speech frame using the warping path generated by the transcription 
boundaries for each utterance pair. This information is then used to guide the LDA in the 
dimension reduction of the whispered sequence features. While the PCA reduces the 
dimension of the whispered sequence without regarding the corresponding speech features, 
we hope that the seek for traces of the F0 control performed by LDA will improve the 
performance of the system. 
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For the voiced/unvoiced estimation, we used the same neural network as the one proposed in 
4.3.3 to ensure that the results were not influenced by this step. 

The number of Gaussian mixtures for F0 estimation varied from 8 to 64 (8, 16, 32, 64). The 
size of the context window was also varied from the phoneme size (90 ms) to the syllable (or 
foot) size (350 ms) (by picking one frame every 1-5 frames). 

Table 4.3. Mean and standard deviation of F0 difference (%) between converted and target 
speech on the French data. 

method window size 
 

Number of Gaussian mixtures 

 frame 
interval 

Context 
size 
(ms) 

8 16 32 64 

1 105 10.96  
(± 2.04) 

10.90  
(± 2.02) 

10.92  
(± 1.99) 

10.90  
(± 1.94) 

2 185 10.77  
(± 2.02) 

10.41  
(± 2.03) 

10.29  
(± 2.13) 

10.44  
(± 2.2) 

3 265 10.33  
(± 2.03) 

9.98  
(± 2.19) 

10.08  
(± 2.17) 

10.28  
(± 2.09) 

4 345 9.90  
(± 2.29) 

9.58  
(± 2.24) 

9.47  
(± 1.98) 

9.82  
(± 2.03) 

 
 

PCA 

5 425 9.44  
(± 2.14) 

9.17  
(± 2.16) 

9.32  
(± 2.21) 

9.31  
(± 2.14) 

1 105 10.85  
(± 2.02) 

10.58  
(± 1.99) 

10.56  
(± 2.08) 

10.64  
(± 1.82) 

2 185 10.36  
(± 2.16) 

10.23  
(± 2.07) 

10.11  
(± 2.09) 

10.36  
(± 1.88) 

3 265 9.98  
(± 2.3) 

9.94  
(± 2.23) 

9.93  
(± 2.16) 

10.29  
(± 2.2) 

4 345 9.45  
(± 2.06) 

9.43  
(± 2.19) 

9.62  
(± 2.2) 

9.67  
(± 2.21) 

 
 

LDA 

5 425 9.15  
(± 2.08) 

9.22  
(± 1.99) 

9.25  
(± 2.19) 

9.37  
(± 2.18) 

Table 4.3 shows that using LDA and a large window size improves the precision of pitch 
estimation with respect to PCA with a small window. When using LDA with a window about 
400 ms, the F0 error decreases by 16% compared to our previous system with PCA and a 
smaller window size (10.90% with 16 mixtures → 9.15% with 8 mixtures). However, using 
LDA instead of PCA with the same context window size does not significantly improve the 
precision (9.17% with 16 mixtures → 9.15% with 8 mixtures). But with a reduced number of 
mixtures (8), LDA outperforms PCA. Furthermore, The ANOVA on three factors (number of 
Gaussians, context size and dimensional reduction method) also showed that using a larger 
context window (including at least one syllable) is more significant than using a smaller 
window (including only a phoneme) for the F0 estimation (F(4,70)=52.81, p<0.001). The 
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LDA is also statistically outperforms PCA (F(1,70)=6.25, p=0.013) while the number of 
Gaussians does not have significant effect (F(3,70)=1.7, p = 0.17). 

 

Figure 4.11. Comparing natural and synthetic F0 curves (French data). 

Figure 4.11 shows an example of a natural (target) F0 curve and the synthetic F0 curves 
generated by the two systems (LDA + large context window vs. PCA + small context 
window). The predicted F0 contour is closer to the natural F0 curve than the one generated by 
the reference system and also smoother. This suggests that increasing the context window size 
probably helps generating smooth F0 contours. Largest effect takes place at the end of the 
sentences. 

4.3.5.3 Spectral estimation 

We also evaluated the influence of LDA and long-term spectral variation to the spectral 
estimation. The phonetic segmentation was used to guide the LDA: each whispered frame was 
classified into one of 34 classes, depending on which phonetic segment it belonged to. 

Table 4.4 provides the cepstral distortion between the converted and the target speech (the 
higher the distortion, the worse the performance). It shows that LDA is better than PCA 
(F(1,70)=22.59, p<0.001). But contrary to F0 estimation, the spectral distortion increases 
when the size of the time window increases (F(3,70)=18.55, p<0.001). The most plausible 
interpretation is that a phoneme-sized window optimally contains necessary contextual cues 
for spectral conversion. 

Table 4.4. Mean cepstral distortion (dB) and standard deviation between converted and 
target speech (French data). 

window size Number of Gaussian mixtures Method 
frame 

interval 
Context 
size (ms) 

8 16 

1 105 7.23 (± 0.69) 6.96 (± 0.56) 
2 185 7.20 (± 0.59) 7.01 (± 0.57) 

 
PCA 

3 265 7.42 (± 0.77) 7.26 (± 0.66) 
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4 345 7.25 (± 0.71) 7.55 (± 0.66) 
1 105 6.96 (± 0.6) 6.83 (± 0.57) 
2 185 6.98 (± 0.57) 7.01 (± 0.59) 
3 265 7.03 (± 0.61) 7.17 (± 0.59) 

 
LDA 

4 345 7.19 (± 0.65) 7.34 (± 0.54) 

 

4.1.1 Influence of visual information for the conversion 

To convey a message, humans produce sounds by controlling the configuration of oral 
cavities. The speech articulators determine the resonance characteristics of the vocal tract 
during speech production. Movements of visible articulators such the jaw and lips are known 
to significantly contribute to the intelligibility of speech during face-to-face communication 
(Summerfield 1979; Summerfield, MacLeod et al. 1989). In the field of person-machine 
communication, visual information can be helpful both as input and output modalities (Bailly, 
Bérar et al. 2003; Potamianos, Neti et al. 2003). 

To evaluate the contribution of the facial movements to the performance of the GMM-based 
system, the Japanese audiovisual corpus presented in chapter 3 was used. 

4.3.5.4 Visual parameters extraction 

The facial movement parameters were obtained using the face cloning methodology 
developed at DPC (ex. ICP) of GIPSA-Lab (Revéret et al., 2000), (Elisei et al., 2001), (Badin 
et al., 2002), (Bailly et al., 2003). In our case, we identified the contribution of the jaw 
rotation, lip rounding vertical movement of upper and lower lips, lip corner movements and 
throat movement. 

The face and profile views of the subject have been video-monitored under good lighting 
conditions. From the raw motion data of the 142 colored beads glued on the speaker's face 
(particularly those on the lips and the jaw since their movements are supposedly dominating 
for the speech), a linear model composed of 5 degrees of freedom was computed. A so-called 
guided Principal Component Analysis (PCA) was used, which iteratively estimates and 
subtracts the elementary movements of segments (lips, jaw, etc.) known to drive facial 
motion. The resulting articulatory model also includes other components for head movements 
and facial expressions but only components related to speech articulation were considered in 
this thesis, namely: 

1. Jaw Raising/lowering (Jaw1 parameter). The PCA was applied to the vertical 
coordinates (y) of the beads on the jaw and the lower teeth; 

2. Lip Protrusion (Lip1 parameter). The PCA was applied to the coordinates (residue) 
xyz of the beads on the lips; 
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3. Lower lip raising/lowering (Lip2 parameter). The PCA was applied to the vertical 
coordinates (residue) (y) of the beads on the lower lip; 

4. Upper lip raising/lowering (Lip3 parameter). The PCA was applied to the vertical 
coordinates (residue) (y) of the beads on the upper lip; 

5. Larynx raising/lowering (Lar1 parameter). The PCA was applied to the vertical 
coordinates (residue) (y) of all the beads on the neck. 

These five visual parameters are used as input and output modalities to obtain a multimodal 
whisper-to-speech system. 

 

Figure 4.12. Video-realistic rendering of computed movements by statistical shape and 
appearance models driven by the same articulatory parameters 

4.3.5.5 Facial animation 

The audiovisual rendering of the estimated visual parameters is performed by texturing the 
mesh piloted by the shape model introduced above. An appearance model that computes a 
texture at each time frame is built using a technique similar to AAM (Active Appearance 
Models) (Cootes, Edwards et al., 2001) in three steps: (1) shape-free (SF) images are obtained 
by morphing key images to a reference mesh; (2) contrary to AAM, these pooled SF images 
are then directly linked to articulatory parameters via a multilinear regression; (3) the 
resulting appearance model is then used to compute a SF synthetic image given the set of 
articulatory parameters of each frame and used to texture the corresponding shape. The main 
difference with AAM is the direct multilinear regression used instead of a joint PCA and the 
number of configurations used: while AAM typically uses a few dozen images on which a 
generic mesh is adapted by hand or semi-automatically, we use here more than a thousand 
configurations on which the mesh is positioned automatically thanks to marked fleshpoints 
(Bailly, Bégault et al. 2008). The videorealistic audiovisual rendering of computed facial 
movements is illustrated in Figure 4.12. This figure presents from left to right: original frame; 
its shape-free transform (note the texture distortion in the mouth region because the reference 
mesh is chosen with an open mouth) and three different synthesized frames sampling a 
bilabial closure (note the nice rendering of the inner mouth despite the linear modelling of the 
nonlinear appearance/disappearance of the inner parts, notably the teeth). 
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4.3.5.6 Contribution of the visual parameters to the conversion system 

For this evaluation, the database consists of 150 sentences for training and 40 sentences for 
testing, pronounced by a native Japanese speaker. The audiovisual feature vector combines 
whispered spectral and visual feature vectors in an identical way to the AAM where two 
distinct dimensionality reductions by PCA are performed in shape and appearance and further 
combined into a third PCA to get a joint shape and appearance model. Acoustic and visual 
features are fused, using an identical process. The 0th through 19th mel-cepstral coefficients 
are used as spectral features at each frame. The input feature vector for computing the speech 
spectrum is constructed by concatenating feature vectors at current ±8 frames and further 
reduced to a 40-dimension vector by a PCA. Each visual frame is interpolated at 200 Hz – so 
as to be synchronous with the audio signal – and characterized by a feature vector obtained by 
concatenating and projecting ±8 frames centred around the current frame on the first n 
principal components. The dimension of the visual vector n is set to 10, 20 or 40. Prior to 
joint PCA, the visual vector is weighted. The weight w varied from 0.25 to 2. The conversion 
system uses the first 40 principal components of this joint audiovisual vector. In the 
evaluation, the number of Gaussian is fixed at 16 for the spectral estimation, 16 for the F0 
estimation and 16 for the aperiodic components estimation. 

Table 4.5. Influence of visual information on voicing decision (Japanese data) 

Feed-fwd NN (%) 
AUVI 

 
Type of 
error 

AU 
w = 1 w = 0.75 w = 0.5 w = 0.25 

GMM 
(%) 

Voiced 
error 

3.71 3.58 3.74 3.34 2.75 4.29 

Unvoiced 
error 

4.34 4.19 4.71 4.37 4.87 5.47 

Total 8.05 
(± 3.99) 

7.77 
(± 3.45) 

8.45 
(± 3.46) 

7.71 
(± 3.48) 

7.62 
(± 3.86) 

9.76 
(± 4.43) 

Voicing decision 

In the same way as for the evaluation of voicing decision described in section 4.2, the 
audiovisual vectors of whisper in the training corpus of the conversion system are used to 
train the network. This network has 40 input neurons, 17 hidden neurons and 1 output neuron. 
Table 4.5 shows that visual information improves the accuracy of voicing decision. With a 
visual weight empirically set at 0.25, the voicing error is decreased by 5.4 % (8.05 % → 
7.62%) compared to audio-only 21.9 % compared with the baseline system (9.76 % → 
7.62%) (F(1,40) = 2.8, p = 0.065). 

Spectral and excitation estimations 
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The visual information also enhances the performance of the conversion system. As shown in 
Table 4.6, the best results are obtained with weighting equally acoustic and visual parameters 
(w = 1) and with the dimension of the visual vector equal to 40. The spectral distortion 
between the converted speech and the target speech is decreased by 3.7% (5.99 dB → 5.77 
dB) while the difference between the converted speech and that of target speech is decreased 
by 6.9 % (11.56 % → 10.76 %) for F0 estimation and 3.6 % for aperiodic components 
estimation. 

Figure 4.13 shows an example of F0 curves converted from audio and audiovisual input 
whisper. With visual information as an additional input, we have a better converted F0. 

 

Figure 4.13. Natural and synthetic F0 curve converted from audio and audiovisual whisper. 
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Table 4.6 Influence of visual information on the estimation of spectral and excitation features 

 Visual weight 

Distorsions Visual 
dimension 

Audio-
only 

0.25 0.5 0.75 1 1.25 1.5 1.75 2 Video-
only 

10 7.01 5.97 5.80 5.78 5.88 5.87 5.86 5.84 

20 7.01 5.97 5.79 5.77 5.86 5.83 5.95 5.89 

Cepstral 
distortion (dB) 

40 

 
5.99 

7.02 5.96 5.79 5.77 5.86 5.82 5.94 5.88 

 
9.28 

10 14.55 12.44 11.42 10.99 11.71 12.75 14.24 15.77 

20 14.79 12.38 11.40 10.78 11.66 12.62 14.31 15.43 

F0 estimation 
(%). 

40 

 
11.56 

14.57 12.39 11.04 10.76 11.66 12.62 14.33 15.46 

 
12.95 

10 41.46 38.26 37.73 37.57 37.33 37.95 37.57 37.95 
20 41.42 38.25 37.79 37.55 37.33 38 37.90 37.95 

AP distortion 
(dB) 

40 

 
38.72 

41.42 38.21 37.78 37.53 37.33 37.99 37.53 37.93 

 
51.45 
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4.4 Perceptual evaluations 
In this section, the objective improvement of our system over the original one proposed by 
Toda et al. is further evaluated by subjective tests. We recall that two corpora were recorded. 
The French corpus is used for the acoustic evaluation. The Japanese corpus is used for the 
audiovisual evaluation. 

4.4.1 Acoustic evaluation 

For this evaluation, sixteen French listeners, who had never listened to NAM, participated in 
our perceptual tests on the comparison of the intelligibility and naturalness of the converted 
speech in the two systems (Tran et al., 2008c). We used 20 test utterances not included in the 
training set. 

Each listener heard an utterance pronounced in normal (original voiced) speech and the 
converted utterances obtained from the whispered speech with both systems. For intelligibility 
testing, the spectral, F0 and aperiodic component parameters were obtained by the two voice 
conversion procedures and the synthesis was performed using STRAIGHT (Kawahara, 
Masuda-Katsuse et al., 1999). For naturalness, the spectral and aperiodic component 
parameters were original and the stimuli were obtained by substituting only predicted voicing 
and F0 values to the original warped target frames. 

 

Figure 4.14. ABX results. (left) intelligibility ratings (right) naturalness ratings 

This procedure was chosen because the quality of the converted spectrum could also influence 
the perception in the naturalness test. We want to make sure that we were testing the 
prediction of F0 and voicing only. 

For each utterance, listeners were asked which one was closer to the original one, in terms of 
intelligibility and in terms of naturalness. An ABX test (or matching-to-sample test) was used. 
It is a discrimination procedure involving presentation of two test items and a target item. The 
listeners are asked to tell which test item (A or B) is closest to the target (X). Figure 4.14 
(left) displays the mean intelligibility scores for all the listeners for the converted sentences 
using the original system and our new system. An ANOVA showed that the intelligibility 
score is higher for the sentences obtained with our new system (F = 23.41, p <.001). Figure 



 

 

4.14 (right) shows the mean naturalness. Again the proposed system is strongly preferred to 
the original one, as shown by an ANOVA (F = 74.89, p <.001). 

4.4.2 Audiovisual evaluation 

To confirm the positive contribution of visual information, eight Japanese listeners 
participated in our perceptual tests on audiovisual converted speech (see also Tran et al., in 
press). The stimuli consisted of Japanese VCV (with V chosen amongst five vowels and C 
amongst twenty-seven consonants) sequences with four conditions: 

1. Speech generated from whispered audio (named ‘condition A from A’) 

2. Speech generated from whispered audio and video (‘condition A from AV’) 

3. Speech and facial animation generated from whispered audio (‘condition AV from A’) 

4. Speech and facial animation generated from whispered audio and video (‘condition 
AV from AV’) 

The five vowels were /a/, /i/, /e/, /o/, /u/. The 27 consonants were the following: /p/, /pj/, /b/, 
/bj/, /m/, /mj/, /d/, /t/, /s/, /ts/, /z/, /j/, /n/, /nj/, /k/, /kj/, /g/, /gj/, /f/, //, /t/, //, /h/, /hj/, /r/, /rj/, 
/w/. Only 115 combinations of vowels and consonants were tested. 

Each participant heard and viewed a list of randomized synthetic audio and audiovisual VCV. 
For each VCV, she/he was asked to select what consonant she/he heard among a list of 27 
possible Japanese consonants.  

Figure 4.15 provides the mean recognition scores for all the participants. Visual parameters 
significantly improve consonant recognition: the identification ratios for ‘AV from A’ (28.37 
%), ‘A from AV’ (30.56 %) and ‘AV from AV’ (36.21 %) are all significantly higher than 
that of the ‘A from A’ condition (23.84 %) (F = 1.23, p < 0.303). The figure also shows that 
providing visual information to the speakers is more beneficial when it is synthesized from 
audiovisual data (‘AV from AV’) than when it is derived from audio data alone (‘AV from 
A’). Furthermore the addition of visual information in the input data (‘A from AV’) increases 
identification scores compared with audio data alone (‘A from A’), but is not significantly 
different from providing audiovisual information derived from the audio alone (‘AV from 
A’). 
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Figure 4.15. Mean of consonant identification ratio. 

Although adding visual information greatly increases the identification scores on all the tested 
VCVs, the scores are still quite low (less than 40%). It should be noted however that nonsense 
VCV recognition is a difficult task, especially in a language with a lot of consonants. It could 
therefore be argued that identification scores on words or sentences could be much higher, 
with the help of lexical, syntactic and contextual information. With this in mind, it could be 
interesting to check whether the addition of visual information provided in fact some cues to 
place of articulation, even if accurate phoneme detection was too difficult. Therefore we also 
grouped the consonants into different place of articulation categories to examine which 
consonantal groups benefited most from the addition of visual information. The 27 
consonants were thus grouped into bilabials (/p/, /pj/, /b/, /bj/, /m/, /mj/), alveolars (/d/, /t/, /s/, 
/ts/, /z/, /j/, /n/, /nj/), palatals (/k/, /kj/, /g/, /gj/), non-alveolar fricatives (/f/, //, /t/, //) and 
others (/h/, /hj/, /r/, /rj/, /w/). The first aim was to check whether consonants belonging to the 
bilabial category,  

* *

*
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                                                 (a) bilabials (F = 2.62 , p < 0.079)              (b) non-alveolar fricatives (F = 0.17, p < 0.912) 

 
           (c) alveolars (F = 0.16, p < 0.922)                        (d) palatals (F = 0.3 , p < 0.822)                            (e) others (F = 0.42, p < 0.744 

Figure 4.16. Recognition ratios for different groups of consonants, classified according to their places of articulation
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which are intrinsically more salient visually, were better identified as bilabials, when visual 
information was taken into account in the speech conversion procedure and when audiovisual 
stimuli were presented. The second aim was to examine what kind of perceptual confusions 
were observed. 

Table 4.7. Confusion matrices for the 5 places of articulation in the 4 conditions 

   bilabial alveolar palatal fricative other 
A from A bilabial 18.29 10.86 22.86 34.86 13.14 
 alveolar 2.38 59.52 11.90 8.73 17.46 
 palatal 3.86 15.44 54.83 12.74 13.13 
 fricative 0.95 25.71 21.90 47.62 3.81 
 other 5.00 20.71 25.71 9.29 39.29 
       
AV from A bilabial 15.00 10.50 28.00 36.50 10.00 
 alveolar 3.47 65.97 9.03 9.72 11.81 
 palatal 2.36 16.89 65.20 9.12 6.42 
 fricative 0.83 21.67 27.50 49.17 0.83 
 other 7.50 19.38 27.50 10.63 35.00 
       
A from AV bilabial 32.57 5.14 20.57 30.29 11.43 
 alveolar 0.79 63.49 15.87 6.35 13.49 
 palatal 6.56 13.51 57.14 12.74 10.04 
 fricative 3.81 21.90 24.76 47.62 1.90 
 other 5.00 20.00 21.43 6.43 47.14 
       
AV from AV bilabial 75.00 1.00 9.50 10.50 4.00 
 alveolar 0.69 70.83 11.81 2.78 13.89 
 palatal 1.01 17.91 62.84 10.14 8.11 
 fricative 0.83 23.33 26.67 47.50 1.67 
 other 4.38 16.88 25.00 6.88 46.88 

Figure 4.16 displays the evolution of the identification scores along the four conditions (‘A 
from A’, ‘AV from A’, ‘A from AV’, ‘AV from AV’) for the five articulatory groups. The 
average of the correct identification rates for each consonant in an articulatory group was 
calculated to provide an overall correct identification rate for each group. This articulatory 
grouping shows that visual information effectively helps the participants to identify bilabials. 
The identification ratio for the bilabial consonants rises from 11.67 % in the ‘A from A’ 
condition to 39.83 % in the ‘AV from AV’ condition (F = 2.62, p < 0.079). The identification 
ratios for all the other groups are quite stable and are not significantly increased by the 
addition of visual information. 
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Table 4.7 provides the confusion matrices with places of articulation chosen among 5 
categories (bilabial, alveolar, palatal, fricative, or other), rather than among 27 individual 
consonants. The focus here is on the broad category the consonant belongs to, not on the score 
of individual consonants. Interestingly, the bilabial place of articulation, which is poorly 
identified in the ‘A from A’ and ‘AV from A’ conditions (less than 20 %), becomes quite well 
identified in the ‘AV from AV’ condition (75 %). When the bilabial place of articulation is 
wrongly identified, it is most often mistaken for what we named “non-alveolar fricatives”, a 
group which contains labiodentals or rounded consonants. This suggests that the labial place 
of articulation remains quite perceptible. Table 4.6 also shows that the alveolar place of 
articulation is quite well recovered from the audio alone (approximately 60 %). Although its 
recovery does benefit from the addition of visual information, the ‘AV from AV’ score does 
not reach as high a score as the one for the bilabial place of articulation (70.83 % vs. 75 %). 
We must recall here that the visual synthesis used in this study does not provide information 
on tongue movements, which could in fact be visible for alveolar consonants. This probably 
explains why the addition of visual information does not provide such a drastic improvement 
on the scores. The palatal place of articulation reaches a good score (above 50 %) but does not 
benefit much from visual information, as could be expected. The other two groups do not 
benefit from visual information and are not well identified (less than 50 %). 

4.5 Summary 
This chapter proposes several solutions to improve the intelligibility and the naturalness of the 
speech generated by a whisper-to-speech conversion system. The original system proposed by 
Toda and Shikano (2005) is based on a GMM predicting the three parametric streams of the 
STRAIGHT speech vocoder (F0, harmonic and noise spectrum) from spectral characterization 
of the non-audible-murmur input. 

The first improvement concerns characteristics of the voiced source. We have shown that the 
estimation of voicing and F0 by separate predictors improves both predictions. We have also 
shown that F0 prediction is improved by the use of a large input context window (about 425 
ms) to get more spectral variation compared to the original smaller window (about 105 ms). 
Predictions of all parametric streams are further improved by a data reduction technique that 
makes use of the phonetic structure of the speech stream (LDA). 

The second part of the chapter compared objective and subjective benefits offered by 
multimodal data. Improvements obtained by adding visual information in the input stream as 
well as including articulatory parameters in the output facial animation are very significant. 

Although the performance of the system is improved, the estimated pitch as well as the 
spectral structures of converted speech is still flat due to the impoverished phonetic contrasts 
of the GMM-based method. Listeners therefore have sometimes difficulty in chunking the 
speech continuum into meaningful words due to incomplete phonetic cues provided by output 
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signals. The next chapter consequently studies another approach consisting in combining 
HMM-based statistical speech recognition and synthesis techniques to convert silent speech to 
audible voice. By introducing phonological constraints, such systems are expected to improve 
the phonetic consistency of output signals. 



 

 

Chapter 5.  Multi-streams HMM-based 
whisper-to-speech system 

5.1 Introduction 
As presented in chapter 1, two main approaches have been proposed to generate audible – and 
visible – speech from signatures of non-audible articulation: 

– Mapping techniques based on a GMM can be used to directly convert whispered 
signals into sound using aligned training corpora (of paired non-audible and audible 
sentences, words or other units) without the need for any phonetic information: joint 
multi-frame representations of non-audible and speech signals are either stored or 
modelled and then used to perform direct estimation – or inversion – of audible speech 
given the sole representation of non-audible signals. A conversion system based on 
this approach was presented in chapter 1 and improvements to this system were 
proposed in chapter 4. 

– The second approach consists in plugging a speech synthesis system to a speech 
recognizer. The approach is quite straightforward: the recognizer segments the speech 
flow into phonemic units using both signal-dependent information and a language 
model. A standard speech synthesis system then converts the phonetic string into a 
synthetic voice either using the pre-recorded modal voice of the speaker or built-in 
available resources. The performance of such a system is mainly dependent on the 
recognition performance: correct recognition will result in a perfect reconstructed 
speech while recognition failures or inadequate language models result in drastic 
degradations. 

In this chapter, we examine the feasibility of the second approach in a whisper-to-speech 
conversion system, including audiovisual data. A summary of this study was published in 
(Tran et al., 2009). In this section, we only focus on the segmental intelligibility of the 
converted speech. The source excitation (F0) generation is beyond the scope of this study. We 
first study the impact of visual information for a recognition – synthesis system. This system 
is based on statistical Hidden Markov Models (HMM), which are traditionally used in speech 
recognition. Then, this system is compared with the original GMM-based system proposed by 
Toda and Shikano (2005). 

The chapter is organized as follows. Section 5.2 provides an overview of the multi-stream 
HMM-based whisper-to-speech conversion system. The promising contribution of visual 
information to this system and the comparison between the two approaches (GMM-based 
mapping and HMM-based recognition and synthesis) are presented in the section 5.3. Finally, 
conclusions are drawn in section 5.4. 
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5.2 Multi-stream HMM-based Whisper-to-Speech system 
In order to compare the performance of the GMM-based voice conversion technique proposed 
by Toda and Shikano (2005) with the approach of combining NAM recognition and speech 
synthesis, HMM-based whisper-to-speech conversion system was developed which combines 
2 modules, namely HMM recognition and HMM synthesis. 

Advantages of an HMM Speech synthesis method 

Instead of using the diphone-based concatenative synthesis proposed in (Hueber et al., 
2008ab), we used an HMM-based synthesis, as described in (Tokuda et al., 2000) because 
integrating a speaker specific parametric model offers some benefits. First of all, the whole 
synthesis system is parameterised rather than consisting of stored pre-recorded waveforms. 
The system is therefore trainable. Secondly, HMMs provide a much more compact 
representation compared to the concatenated approach. Moreover, the synthesized speech 
from an HMM-based system has an overall lower variance, more constrained articulatory 
quality than that obtained from a concatenative approach and the voice characteristics, 
speaking styles, emotions can be controlled parametrically. Finally, an HMM-based 
parametric model could bring a more intimate coupling between speech recognition and 
synthesis components, by tackling both problems in a unified coherent statistical framework 
(Tokuda et al., 2004; Zen et al., 2004, 2009; Zhang, 2009) 

Training methods 

As stated in Zhang et al. (2009), two training frameworks could be used to estimate the 
models.  

The first uses separate training: while the whispered speech HMMs are trained on the 
whispered data only, and the phonated speech HMMs are built from the speech data alone 
using the standard HMM training procedure. The idea behind the separate training is clearly 
that training the two types of HMMs individually is likely to bring out the best performance 
from each channel. This framework does not need a prior alignment of whisper and speech 
data. 

The second scheme, on the other hand, tries to find a way to jointly optimise a single model 
for both whispered speech and phonated speech information. The model therefore has two 
components, both are modelled as multi-state phone-level HMMs: a speech synthesis model 
which generates speech parameters given a phone sequence and a whisper model which 
derives the phone sequence for synthesis from the whispered features extracted from a 
whispered utterance. Both the whispered and speech model have the same topology: i.e. they 
have exactly the same set of HMM states and allophonic variations. This structure enables to 
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bridge the whisper and speech domains. The Hidden Markov Model Toolkit5 (HTK)’s multi-
stream functionality makes this type of training possible by combining the two sets of HMMs 
into a single (for our system, we have a two-stream model when only acoustic information is 
available, and a four-stream model when facial data are added as a complementary 
information). This framework, on the other hand, needs a prior alignment of whisper and 
speech data represented the same phonetic information. 

The overview of the HMM-based conversion system is presented in figure 5.1. The system 
consists of two processes: training and conversion. The training process is performed by the 
second scheme described above. The conversion process is carried out in 2 steps: 

– The first step performed phoneme recognition, based on the acoustic HMMs. The 
result is a sequence of recognised allophones together with their durations. 

– The second step of the conversion aims at reconstructing the speech parameters 
(cepstral coefficients in this work) from the chain of phoneme labels and boundaries 
delivered by the recognition procedure. As described in (Govokhina et al., 2006), the 
synthesis is performed as follows, using the software developed by the HTS6 group 
(Tamura et al., 1999; Zen et al., 2004). A linear sequence of HMM states is built by 
concatenating the corresponding segmental HMMs. The proper state durations are 
estimated by z-scoring. A sequence of observation parameters is generated using a 
specific ML-based parameter generation algorithm (Zen et al., 2004). 

Table 5.1. Phone occurrences in the Japanese training corpus 

Phone No. of 
occ 

Phone No. of 
occ 

Phone No. of 
occ 

Phone No. of 
occ 

a 472 gj 6 n 171 s 83 
a: 5 h 63 nj 8  68 

b 61 hj 5 N 134 t 154 
bj 1 i 370 o 347 ts 38 
t 37 i: 3 o: 60 u 290 

d 78  59 p 24 u: 72 

e 255 k 179 pj 1 j 73 
e: 17 kj 20 r 164 z 40 
f 23 m 109 rj 7 w 47 
g 101 mj 3 q 56 sil 362 

Data 

                                                 
5 http://htk.eng.cam.ac.uk/ 
6 http://hts.sp.nitech.ac.jp/ 
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The data used to train and test this HMM-based conversion system are the Japanese corpus 
used for the evaluation of audiovisual GMM system presented in chapter 4 (c.f. 4.3.6) which 
includes 150 sentences for the training and 40 sentences for the test. These data are used in 
order to compare the spectral conversion performance of the two systems. Table 5.1 and 5.2 
show the number of occurrences of each phone in the training and the test corpus respectively. 

As can be seen in Table 5.1, some phones have a very low number of occurrences in the 
training corpus (e.g. /bj/ and /pj/ occur only once) but these phonemes have a very low 
frequency in the language (Amano & Kondo, 1999). 

Table 5.2 shows that some phones are not represented in the test corpus. These phones 
correspond to phonemes that are rare in the language, however. 

The 0th through 19th mel-cepstral coefficients extracted by STRAIGHT7 and their first deltas 
were used as spectral features for the acoustic information while 5 visual parameters and their 
first deltas, extracted by the “talking head” cloning system developed at DPC (Bailly et al., 
2006), were used to characterize the movements of the jaw, throat and lips. 

Table 5.2. Phone occurrences in the Japanese test corpus 

Phone No. of 
occ 

Phone No. of 
occ 

Phone No. of 
occ 

Phone No. of 
occ 

a 141 gj 2 n 47 s 24 
a:  h 18 nj   24 

b 13 hj 2 N 35 t 50 
bj  i 90 o 87 ts 4 
t 13 i: 1 o: 22 u 61 

d 18  12 p 6 u: 11 

e 55 k 51 pj  j 13 
e: 8 kj 4 r 38 z 10 
f 6 m 20 rj 2 w 10 
g 31 mj  q 22 sil 89 

5.2.1 Concatenative feature fusion 

To build the multi-stream HMM-based system by HTK Toolkit (Young et al., 2006), a simple 
audio-visual fusion approach is concatenative feature fusion. Whispered and phonated speech 
audio and visual data need first to be aligned due to the different speaking rates and syllable 
durations in the two speaking modes (whispered and phonated). This alignment is carried out 
by the same semi-automatic procedure as presented in chapter 4. 

                                                 
7 http://www.wakayama-u.ac.jp/~kawahara/index-e.html 
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Acoustic and visual parameters of whispered speech and phonated speech are then stored in 4 
streams (whispered audio spectral stream, whispered visual stream, phonated audio spectral 
stream and phonated visual stream). Static and dynamic features are used for each stream to 
generate a realistic parameter trajectory in which the variations in parameters are much 
smoother. The joint bimodal feature vector is therefore presented as:  



104 Multi-streams HMM-based whisper-to-speech system 
 

 

 

Figure 5.1. HMM-based voice conversion system combining whisper recognition with speech synthesis
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( _ ) ( _ ) ( _ ) ( _ ), , ,
T T T T AVT

AV A W V W A S V S D
t t t t to o o o o R⎡ ⎤= ∈⎣ ⎦                       (5.1) 

where AV
to  is the joint audio-visual feature vector of aligned whispered speech and phonated 

speech, ( _ )A W
to , ( _ )V W

to  are the audio spectral feature and the facial feature of whisper, ( _ )A S
to , 

( _ )V S
to  are the audio spectral feature and facial feature of phonated speech respectively and 

DAV is the dimensionality of the augmented joint feature vector AV
to . Each state-output vector 

to  of each stream, consists of the static feature tc , and its first-order dynamic feature tcΔ : 

,
TT T

t t to c c⎡ ⎤= Δ⎣ ⎦                                                   (5.2) 

where the dynamic feature is calculated as proposed in (Zen, Tokuda et al., 2009): 

1t t tc c c −Δ = −                                                      (5.3) 

The relationship between augmented output vector to  and static vector tc  can be presented in 

matrix form as 

                  (5.4) 

where 1 ,..., Tc c c⎡ ⎤= ⎣ ⎦
TT T  is a static feature-vector sequence and W is a matrix that appends 

dynamic features to c. 

As stated above, we use 20 mel-cepstral coefficents and their first delta, together with 5 PCA-
coefficients and their first delta to present static and dynamic acoustic parameters and visual 
parameters respectively in our experiments. The dimension DAV of AV

to  is therefore 100 

(40+10+40+10). 

5.2.2 Multi-stream HMM 

The fusion data captures the reliability of each stream by combining the likelihoods of single-
modality HMM classifiers. Such an approach has been used in multi-band audio-only ASR 
(Bourlard and Dupont, 1996) and in audio-visual speech recognition (Potamianos et al., 
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2003). The emission likelihood of multi-stream HMM is the product of emission likelihoods 
of single-modality components weighted appropriately by stream weights. Given the O multi-
streams observation vector, i.e., whispered and speech acoustic and facial modalities, the 
emission probability of multi-streams HMM is given by 

1 1

( ) ( ; , )
sjt

s sN M

j t jsm st jsm jsm
s m

b O c N O
λ

μ
= =

⎡ ⎤
= Σ⎢ ⎥

⎣ ⎦
∏ ∑                           (5.5) 

where ( ; , )st js jsN O μ Σ  denotes the multivariate Gaussian distribution with mean vector 

jsμ and covariance matrix jsΣ  for each state j in stream s. In contrast to the GMM-based 

system presented in chapter 4, the covariance matrix in each state of the HMM is modelled by 
a diagonal matrix due to the limitation of the training data. For each stream s, Ms Gaussians in 
a mixture are used, each weighted with cjsm. The contribution of each stream is controlled by 
the weight λsjt. Although finding the optimized weights for the streams is interesting, it is a 
time consuming task for this system with a 4-stream topology. This optimization is therefore 
not studied in this thesis. The stream weights are set by default to 1.0 for all the streams in our 
system. 

5.2.3 HMM Training 

The joint probability densities of whispered speech and phonated speech parameters are 
modelled by “left-right” phone-sized HMM. Each HMM topology consists of five states. 
Three of these are emitting states and have output probability distributions associated with 
them. The transition matrix for this model will have five rows and five columns. The HMMs 
are trained by the following basic procedure (Young et al., 2005). 

Context-independent monophone training 

Before starting the training process, the HMM parameters must be properly initialised with 
training data in order to allow a fast and precise convergence of the training algorithm. This 
initialization is considered as an isolated estimation: 

– Extract all the corresponding segments (audio or audio+visual of aligned whisper-
speech) for a particular phone model. 

– The segments are then used ? an iterative Viterbi-training scheme until the parameters 
converge (HInit command in HTK). 

– The Viterbi-estimated parameters are then refined by a further Baum-Welch training 
cycle (HRest command in HTK). 
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Whereas the isolated training above is sufficient for initialization using hand-labelled data, the 
HMM parameters are estimated by an “embedded training” procedure (HERest command in 
HTK). 

For each utterance: 

– Join together all of the HMMs corresponding to the phone list presented in the 
transcription to make a single composite HMM. 

– Apply a Forward-Backward algorithm to collect the necessary statistics. 

When all of the training utterances have been processed, the total set of accumulated statistics 
is used to update the parameters of all HMMs. 

At the end of this stage, we have 40 HMMs for the phone presented in the training corpus (cf. 
table 5.1). 

Context-dependent training 

Starting from single Gaussian state output distribution, context-independent monophone, the 
model was enriched by two ways during the training: 

– Due to coarticulatory effects, it is unlikely that a single context-independent HMM 
could optimally represent a given allophone. Therefore context-dependent HMM is 
used as another way to enrich the model. Because of limited training data (about 12 
minutes), we only used bi-phone context for the acoustic models. In the recent study 
of Ben Youssef et al. (2009), the authors showed that the “next” context is better than 
the “precedent” context. The “next” context bi-phone is also chosen for our system by 
first grouping phonemes in context classes. In addition to using a priori phonetic 
knowledge to define such classes, confusion trees have been built based on the matrix 
of Manhattan distances of visual parameters between each pair of phone. Two 
different confusion trees were computed: one from the whispered visual (facial) 
parameters and one from the whispered acoustic features. 

The confusion tree obtained from visual data (figure 5.2) provides groupings between 
consonants that can be interpreted articulatory. In particular, most of the bilabials are 
grouped together (/p/, /b/, /m/, /mj/). Another group gathers dentals (/d/, /t/, /n/, /nj/). 
Another group gathers dental fricatives and affricates (/s/, /ts/ /z/, //, /t/, /ts/). Some 
results may seem difficult to interpret, such as the non-inclusion of /pj/ and /bj/ in the 
bilabial group. They can be explained by the fact that these consonants were very 
unfrequent in the corpus. Table 5.1 provides the number of occurrences of each phoneme 
in the corpus. 

The confusion tree obtained from audio data (figure 5.3) provides groupings between 
consonants that can be interpreted acoustically, considering that in the whispered mode 
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many phonemes are confused. Importantly, most of the stops are gathered in one group 
(/t/, /k/, /b/, /ky/, /g/, /gy, /p/). Voiced and unvoiced consonants are not separated, which is 
explained by the fact that they are undistinguishable acoustically in whisper. 

Taking these two confusion trees as well as general phonetic knowledge, phonemes 
were classified coarsely into 3 groups for vowels ({/a/}, {/i/,/e/}, {/u/,/o/} without 
distinguishing between long and short vowels) and 7 groups for consonants: bilabials 
({/p/, /pj/}, {/b/, /bj/}, {/m/, /mj/}), alveolars (/d/, /t/, /n/, /nj/, /s/, /ts/, /z/, /j/), palatals (//, 
/t/, //), velars ({/k/, /kj/},{/g/, /gj/}), /f/, /w/ and others ({/h/, /hj/}, {/r/, /rj/}). We added 
/f/ and /w/ to the list of contextual groups because they are visually distinguished from 
other consonants (see figure 5.2). Silences were also classified into 2 groups for utterance-
final and internal silences. Only phone with high number of occurrences are extended to 
“next-context” biphone (>20). The number of HMM models in the training corpus is 149. 

The biphones are initialized by making a copy of the corresponding monophones 
estimated in the previous step. These new biphone sets are then re-estimated twice by 
“embedded training” (HERest). 

– The monogaussian state output distribution is then replaced by Gaussian mixture 
models. The number of Gaussians is increased from 1-2-3 and 4. Due to the limitation 
of training data, the number of Gaussians in each state of the HMM differs for each 
biphone, depending on its number of occurrences in the corpus. For biphones with a 
high number of occurrences in the corpus (>40), the number of Gaussians is set to 4. 
For biphones with lower number of occurrences, the number of Gaussians is set to 3, 2 
and 1. 

Finally, the number of parameters of HMM models is 114989 for audio system and 143545 
for audiovisual system, calculated by the formula:  

Number of parameters = models ×  states ×  Gaussians ×  (means + variances) + models ×  
transitions. 

5.2.4 Recognition 

The recognition phase consists in identifying the most probable phoneme sequence from the 
sequence of observations (acoustic or audiovisual observations of whisper). This phase allows 
us to introduce additional linguistic constraints to enhance the recognition performance by 
using a language model. This model is especially essential for large vocabularies recognition 
task.  

The most common kind of language model in use today is based on estimates of word string 
probabilities from large collections of text or transcribed speech. In order to make these 
estimates tractable, the probability of a word given the preceding sequence is approximated to 
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the probability given the preceding one (bigram) or two (trigram) words (in general, these are 
called n-gram models). In our experiments, a bigram language model was used. 

                                 1 2 1 1( | , ,..., ) ( | )n n n nP w w w w P w w− −=                                     (5.6) 

This model was simply built from the labelled files in the training corpus via the following 
steps. 

HLStats command reads all of the context-dependent transcriptions of training corpus, builds 
a table of bigrams in memory and then outputs a back-off bigram. The probability values of 
this table is calculated by the following formula 

                            
( ( , ) ) / ( ) ( , )

( , )
( ) ( )
N i j D N i if N i j t

p i j
b i p j otherwise

− >⎧
= ⎨
⎩

                           (5.7) 

where N(i,j) is the number of times word j follows word i and N(i) is the number of times that 
word i appears. D is a constant for the discounting process in which a small part of the 
available probability mass is deducted from the higher bigram counts and distributed amongst 
the infrequent bigrams. When a bigram count falls below the threshold t, the bigram is 
backed-off to the unigram probability suitably scaled by a back-off weight in order to ensure 
that all bigram probabilities for a given history sum to one. 
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Figure 5.2. Confusion tree of whispered visual movements of consonants (the smaller the ordinate, the more confused the two categories are) 
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Figure 5.3. Confusion tree of whispered acoustic parameters of consonants (the smaller the ordinate, the more confused the two categories are) 
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The next step is to use HBuild command to construct the recognition network. One of the 
commonest forms of this network is the word-loop where all vocabulary items are placed in 
parallel with a loop-back to allow any word sequence to be recognized. In our experiments, 
HBuild reads the back-off bigram generated by HLStats and attaches a bigram probability to 
each word transition. 

Finally, for an unknown input utterance with T frames, every path from the start node to the 
exit node of the network passes through T emitting HMM states. Each of these paths has a log 
probability which is computed by summing the log probability of each transition in the path 
and the log probability of each emitting state generating the corresponding observation. 
Within-HMM transitions are obtained ? from the HMM parameters while word-end 
transitions are determined by the language model likelihoods attached to the recognition 
networks. The “Token Passing” algorithm is used to find those paths which have the highest 
log probability (Young et al., 2005). 

5.3 Experiments and results 
This section presents the objective performance of our multi-streams HMM-based whispered-
to-speech by different criteria: recognition rate and cepstral distance between the converted 
speech and target audible speech. The impact of facial information for recognition and 
synthesis, as well as the comparison of this system with the GMM-based system described in 
chapter 4 will be presented here. 

5.3.1 Impact of visual information for whisper recognition 

Table 5.3 provides the recognition scores for all phones as well as separately for all vowels 
and consonants presented in the test corpus. These results show the positive contribution of 
visual information for the recognition task. On average, all phones considered, the input facial 
movements improve recognition rate by 13.2% (61.35% to 74.52%) for the biphone system 
and 5.9% (65.25% to 71.10%) for the monophone system. In the case of vowel recognition, 
the accuracy obtained by using the visual information is 78.28% for the biphone system and 
77.36% for the monophone system, showing an improvement of 7% and 3.3% respectively 
compared with using acoustic information only. In the case of consonant recognition, this 
improvement is of 15.7% (56.62% to 72.35%) for the biphone system and 6.4% for the 
monophone one (61.71% to 68.1%). Note that in Japanese phonology, the number of vowels 
is only 5 while the number of consonants is 27. The vowel recognition may be easier than that 
of consonants. The lesser improvement of vowels in the present of facial movements compare 
to that of consonants can be attributed to this fact. 

Table 5.3. Recognition ratio for all vowels, consonants and all the phones represented in the 
test corpus 

a. monophone system 
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AU (%) AUVI (%) Number of 
Gaussians 

Vowels Cons All Vowels Cons All 

1 70.76  
(±29.70) 

58.90 
(±30.27) 

62.83 
(±30.28) 

75.70 
(±23.59) 

66.91 
(±29.01) 

69.95 
(±27.79) 

2 74.10 
(±30.99) 

59.44 
(±30.83) 

64.08 
(±31.29) 

77.36 
(±23.93) 

67.94 
(±29.11) 

71.10 
(±27.93) 

3 61.83 
(±30.56) 

58.63 
(±26.67) 

65.25 
(±30.52) 

75.28 
(±30.80) 

68.10 
(±30.25) 

70.73 
(±30.04) 

4 71.08 
(±31.18) 

61.71 
(±30.58) 

65.04 
(±30.67) 

76.91 
(±31.33) 

67.22 
(±30.86) 

70.47 
(±30.75) 

b. right biphone context system 

AU (%) AUVI (%) Number of 
Gaussians 

Vowels Cons All Vowels Cons All 

1 66.70 
(±25.73) 

57.71 
(±28.35) 

61.07 
(±28.06) 

77.94 
(±21.05) 

71.68 
(±28.27) 

73.98 
(±26.52) 

2 71.30 
(±25.10) 

56.62 
(±28.96) 

61.35 
(±28.80) 

78.28 
(±21.80) 

72.35 
(±28.43) 

74.52 
(±26.71) 

3 64.41 
(±29.78) 

58.63 
(±26.67) 

61.21 
(±27.55) 

75.20 
(±25.63) 

71.82 
(±27.71) 

73.41 
(±26.83) 

4 62.46 
(±31.81) 

58.20 
(±28.45) 

60.44 
(±29.25) 

76.79 
(±23.19) 

66.33 
(±31.14) 

69.75 
(±29.43) 

Table 5.4 shows the contribution of facial movements to the recognition of consonants 
clustered according to their place of articulation. The consonants considered here are 
classified into 4 groups: bilabials, alveolars, palatals and velars. The bilabials benefit from a 
very significant improvement (32.4%, from 63.13% to 95.57% for the biphone system and 
26.2%, from 61.97% to 88.17% for the monophone system) while alveolars display an 
improvement (11.7%, from 65.37% to 77.07% and 6.5%, from 66.59% to 73.09% in biphone 
and monophone case respectively). Note that facial movements impact the recognition of the 
other consonants. For palatals, the improvement due to facial movements is of 11.3% for the 
biphone system and of 6% for the monophone system. For velars, the facial contribution is 
null in the biphone system: the recognition ratio is 80.82% with audio only and 80.65% with 
an audiovisual input; in the monophone system, adding facial movements for velars decreases 
the score by 8.9%. The small number of occurrences of velars (/kj/, /gj/) in the test corpus 
probably cause the significant improvement of velar recognition when the number of 
Gaussians increases (improvement from 56.45% to 80.82% in the biphone system). A 
possible interpretation, is that since articulatory movements associated with velar phones are 
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not visible, adding visual information does not help recognition and may even degrade it, if 
the visual data add confusing information. 

Table 5.4. Recognition ratio with different places of articulation 

a. monophone system 

AU (%) AUVI (%) Num of 
Gauss 

Bil Pal Alv Vlr Bil Pal Alv Vlr 

1 54.03 
±4.15 

62.93 
±19.20 

60.06 
±26.58 

60.93 
±44.53 

80.83 
±21.05 

68.27 
±9.53 

69.31 
±15.70 

54.63 
±37.44 

2 56.27 
±7.31 

58.17 
±32.54 

59.74 
±23.82 

63.18 
±44.79 

82.60 
±18.25 

68.93 
±11.91 

70.83 
±14.46 

55.20 
±37.66 

3 60.50 
±0.87 

57.13 
±25.07 

65.27 
±25.16 

66.05 
±45.49 

88.17 
±12.55 

63.40 
±20.92 

73.09 
±17.23 

57.33 
±39.46 

4 61.97 
±10.44 

57.60 
±25.85 

66.59 
±23.72 

66.25 
±45.84 

88.17 
±12.55 

65.37 
±20.81 

71.60 
±20.46 

52.15 
±38.31 

b. right biphone system 

AU (%) AUVI (%) Num of 
Gauss 

Bil Pal Alv Vlr Bil Pal Alv Vlr 

1 63.13 
±11.76 

56.30 
±11.11 

60.08 
±24.90 

54.77 
±40.21 

87.23 
±17.96 

67.90 
±18.53 

72.64 
±23.51 

80.42 
±22.34 

2 54.43 
±29.84 

50.40 
±19.33 

62.99 
±23.56 

56.45 
±41.68 

90.0 
±13.23 

62.33 
±22.92 

77.07 
±22.85 

80.65 
±21.90 

3 47.16 
±23.70 

48.50 
±25.96 

65.37 
±21.38 

80.82 
±21.90 

95.57 
±4.18 

58.10 
±21.62 

74.21 
±14.07 

78.78 
±22.25 

4 51.06 
±27.12 

45.10 
±21.80 

59.48 
±28.29 

80.70 
±21.92 

95.30 
±4.56 

56.80 
±26.15 

71.41 
±19.87 

51.78 
±39.16 

5.3.2 Impact of visual information for speech synthesis 

The GMM-based system that we used as a reference for this comparison is described in 
chapter 4. A GMM with 16 Gaussians, full covariance matrix is used for the spectral 
estimation. The number of estimated parameters is of 103680. Global variance is also used to 
reduce the over-smoothing, which is inevitable in the conventional ML-based parameter 
estimation. 

Table 5.5. Cepstral distortion between converted speech and target speech (dB) with ideal 
recognition 

a. monophone system 

Modality HMM 



Multi-streams HMM-based whisper-to-speech system 115 
 

 

 ngauss=1 ngauss=2 ngauss=3 ngauss=4 

AU (dB) 5.93 (± 0.57) 6.98 (± 0.45) 6.28 (± 0.54) 6.51 (± 0.63) 
AUVI (dB) 5.92 (± 0.57) 7.60 (± 0.45) 8.45 (± 0.64) 6.54 (± 0.66) 

b. Right context-biphone system 

HMM Modality 
 ngauss=1 ngauss=2 ngauss=3 ngauss=4 ngauss=

5 
AU (dB) 6.48 

(± 0.51) 
6.47 

(± 0.6) 
6.42 

(± 0.59) 
6.37 

(± 0.59) 
6.52 

(± 0.6) 
AUVI (dB) 5.88 

(± 0.56) 
6.01 

(± 0.58) 
6.49 

(± 0.6) 
6.76 

(± 0.64) 
 

For the HMM system, in order to evaluate the contribution of the stochastic parameter 
generation to the intelligibility of the converted speech in terms of cepstral distortion between 
target speech and synthesized speech, we first synthesized spectral parameters from the 
original phonetic transcription, i.e. simulating a perfect recognition step. The results presented 
in table 5.5 show that the facial movements also have a positive contribution to the 
performance of the synthesis task in the biphone system, since the cepstral distortion is 
improved. In the monophone system, however, facial information does not provide any 
improvement. In the context-dependent system, the cepstral distortion decreases by 7.7% 
relatively, from 6.37 dB to 5.88 dB (F(1,40) = 4.13, p = 0.034). This table allows us to select 
the best synthesis model: in the monophone system, it is the monogaussian model, for both 
audio only and audiovisual input; in the biphone system, the best synthesis models are the 
monogaussian one with audiovisual input and the quadruple-gaussian one with audio only 
input. Table 5.6 presents the cepstral distortion obtained with synthesized parameters which 
were generated by the best synthesis models from the phonetic sequences decoded by the 
recognition module. Again, adding visual information improves the cepstral distortion of the 
converted spectral parameters by 8.3% (from 6.98 dB to 6.4 dB) with F(1,40) = 35.1, p < 
0.001, for the biphone system and by 1.5% (from 6.76 dB to 6.66 dB) with F(1,40) = 0.5, p = 
0.48 for the monophone one. 

Table 5.6 Cepstral distortion between converted speech and target speech (dB) 

a. monophone system 

HMM Modality 
 ngauss=1 ngauss=2 ngauss=3 ngauss=4 

AU (dB) 6.79 (± 0.74) 6.76 (± 0.74) 6.77 (± 0.72) 6.78 (± 0.73) 
AUVI (dB) 6.66 (± 0.74) 6.68 (± 0.72) 6.76 (± 0.68) 6.77 (± 0.73) 
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b. Right context-biphone system 

HMM Modality 
 ngauss=1 ngauss=2 ngauss=3 ngauss=4 

GMM 

AU (dB) 7.10 
(± 0.65) 

7.02 
(± 0.72) 

6.98 
(± 0.70) 

7.03 
(± 0.75) 

5.99 
(± 0.66) 

AUVI (dB) 6.40 
(± 0.67) 

6.40 
(± 0.67) 

6.57 
(± 0.79) 

6.74 
(± 0.97) 

5.77 
(± 0.61) 

Although facial movements have a positive contribution in both HMM-based and GMM-
based systems, the performance of the HMM-based system is currently inferior compared 
with the direct signal-to-signal system based on GMM model. First, the diagonal covariance 
currently used for each state of the models in the HMM-based system does not take into 
account the covariance between whispered speech parameters and speech parameters, but the 
GMM-based system does, by using a full covariance matrix. Second, synthesis and 
recognition are used separately: the trained HMM models tend to minimize the recognition 
error, but not the final reconstruction error. 

 

5.4 Summary 
This chapter describes an audio-visual whisper to speech conversion procedure that couples a 
speech synthesis system with a speech recognizer instead of using direct mapping function. 
The facial movements seem to act as a compensation for lip radiation loss in the signal 
captured by the NAM microphone. Integrating them noticeably improves the performance of 
such a system, especially for the recognition task. The experimental results also show that the 
contribution of visual data depends on place of articulation. 

The performance of the HMM-based system is however currently inferior compared with the 
direct signal-to-signal system based on GMM model. This should be confirmed by a 
subjective test but objective performances are still too different to motivate such an additional 
benchmark. As mentioned above, this inferior score could be explained by two reasons. 

– First, the diagonal covariance currently used for each state of the models in the HMM-
based system does not take into account the covariance between whispered speech 
parameters and speech parameters, but the GMM-based system does, by using a full 
covariance matrix. We hope that by modelling the covariance between whispered 
speech parameters and speech parameters, using more data, extending the acoustic 
models as well as the linguistic model, and by exploiting state-dependent variance, the 
performance of this system will further improve. 
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– Second, synthesis and recognition are used separately, therefore the trained HMM 
models tend to minimize the recognition error, but not the final reconstruction error. 
We think that a more intimate coupling of recognition and synthesis – obtained for 
example by considering trajectory formation accuracy in HMM training based on 
Minimum Generation Error (MGE) criterion (Wu et al., 2006, 2008) or by considering 
N-best solutions in the synthesis process – should overcome the limitation of the 
proposed approach. 



 

 

Chapter 6.  Conclusions and 
perspectives 

6.1 A brief review 
The focus of this thesis is the conversion of whispered speech to phonated speech by using a 
statistical framework. If this conversion could successfully be carried out, silent cell-phones, 
speech communication in adverse conditions, speaking-aids for laryngeal handicaps or new 
human-computer interfaces would become feasible. 

By using a condenser microphone attached on the neck, under one ear of the speaker to 
capture whispered speech, we propose several solutions to improve the intelligibility and the 
naturalness of the speech generated by whisper-to-speech conversion systems. 

The first system that we used is based on a GMM model. It is inspired by the original system 
proposed by Toda and Shikano (2005) at NAIST. Although the original system successfully 
predicts the three parametric streams of the STRAIGHT speech vocoder (F0, harmonic and 
noise spectrum) from a spectral characterization of the non-audible-murmur input, the authors 
claimed that the quality of the converted speech is however still insufficient for computer-
mediated communication, notably because of the poor estimation of F0 from unvoiced speech 
and because of impoverished phonetic contrasts. The substantial improvements that we 
brought to the original system are presented in Chapter 4. Our first improvement 
unsurprisingly concerns characteristics of the voiced source. We have shown that the 
estimation of voicing and F0 by separate predictors improves both predictions. F0 prediction is 
then further improved by the use of a large input context window (>400 ms) to get more 
spectral variation compared to the original smaller window (105 ms). Predictions of source 
and spectral streams are both improved by a data reduction technique using LDA instead of 
PCA. LDA slightly helps with subtle traces of that PCA blindly discards. Another issue 
concerned with this system is to compare objective and subjective benefits offered by 
multimodal data. We have shown that improvements obtained by adding visual information in 
the input stream as well as predicting articulatory parameters for output facial animation are 
very significant, especially in the case of bilabial consonants where the visual information has 
an important impact for both production and perception. 

We also studied in this thesis another whisper-to-speech conversion system that couples a 
speech synthesis system with a speech recognizer by jointly optimising a single model for 
both whispered speech and phonated speech information using the multi-stream functionality 
supported by the HTK toolkit. The joint probability densities of whispered audiovisual and 
phonated audiovisual parameters and common state duration densities are modelled by 
context-dependent phone-sized HMM. Our experiments show that including facial movement 
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noticeably improves the performance of such a system, especially for the recognition task. 
Furthermore, this positive contribution depends on the place of articulation. Another results 
from our experiments also proved the inconsistency between the training and the generation 
of such system. Gaussian mixture models (GMMs) were chosen instead of single Gaussian 
densities for the output distribution in each state to provide a richer modelling capacity. The 
best performance of recognition doesn’t bring about the best performance for synthesis. 
Finally, our experiments also show that the objective performance of our HMM-based system 
is currently inferior compared with the direct signal-to-signal system based on GMM model. 

6.2 Future research 
Based on the research in this work, I would like to highlight some possible directions for 
future works. 

6.2.1 HMM-based system 

The major difficulty for the HMM-based whisper-to-speech conversion system is how to 
tackle both speech recognition and synthesis in a unified framework due to the lack of a 
coherent statistical model that can be used for both problems. HMMs that have been 
successfully used in ASR as recognition components, were found to be inadequate for use as 
the generative output component in a synthesis system (Wu et al., 2006). In the current 
system, we use Maximum Likelihood Estimation (MLE) criterion for the training of HMM 
models used by recognition and synthesis modules. However, the MLE criterion is the origin 
of this inconsistency between training and generation. In fact, the MLE criterion only 
evaluates the model’s pertinence to the data in the likelihood sense which does not reflect the 
final distance between the generated parameters and the target vectors. MLE criterion is 
clearly not suitable for the aim of HMM-based speech synthesis which is to generate a 
synthetic speech (acoustic parameters) as close to the natural speech as possible. Some studies 
in speech recognition suggested that a training criterion that directly minimises the error 
measure on the training set, such as the Minimum Classification Error (MCE) criteria (Juang 
et al., 1997) or Maximum Mutual Information (MMI) (Valtchev et al., 1997), tends to 
produce a better model for recognition. In the same context, we could use the Root Mean 
Square (RMS) criterion proposed by Zhang (2009) or Minimum Generation Error (MGE) 
based HMM training (Wu and Wang, 2006) to eliminate this inconsistency between training 
and generation. Furthermore, the over-smoothing problem of generated speech features could 
be alleviated by incorporating the Global Variance (GV) which represent a penalty for a 
reduction of the variance of the generated trajectory (Wu et al., 2008). 

The second critical issue is the lack of mutual constraints between static and dynamic features 
in HMM (Wu and Wang, 2006). The conditional independence assumption between state 
outputs of the hidden Markov model, which constraints the distribution at each time depends 
only on the state at that time, obstructs the modelling of temporal correlation characteristics in 
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human speech, such as the coarticulation phenomenon and is regarded as the major drawback 
of HMM (Zhang, 2009). Some solutions are proposed to fix this problem. A simple method to 
enhance HMM’s modelling capacity proposed by Furui (1986) is to use the static acoustic 
feature vector with dynamic features computed as a linear transformation of several adjacent 
acoustic feature vectors to introduce the intra-frame dependence. Although the use of these 
dynamic features (delta and delta-delta features) also improves the performance of HMM-
based speech recognizers, it has been thought of as an ad hoc rather than an essential solution 
(Tokuda et al., 2003). Trajectory-HMM proposed by Tokuda et al. (2004) offers an 
interesting direction which replaces conventional HMM with a new model that can explicitly 
model the inter-frame dependencies and hidden dynamics in speech. This model also allows 
sharing coherent knowledge between speech recognition and synthesis components. 

6.3 Noise reduction 
The signal captured by NAM microphone contains noise that influences the performance of 
the conversion system (cf. section 1.3.4). Noise reduction is obviously an important task. In 
order to enhance the Signal to Noise Ratio (SNR) of the NAM microphone, we could use the 
correlations between signals captured by two NAM microphones fixed on the speaker’s neck 
or we could use other multimodal correlations, i.e. the correlation of NAM and visual 
information. 

6.3.1 Multimodal data 

Speech is multimodal in nature. The research on exploiting visual cues from speaker’s face 
focuses on the robustness in noise for speech recognition systems. The introduction of 
speaking faces or avatars in speech synthesis systems also improves their naturalness and 
intelligibility. In general, accounting for the visual aspect of speech in ways inspired by the 
human speech production and perception mechanisms can substantially benefit to automatic 
speech processing and human-computer interfaces. 

In this context, we used visual cues extracted from the speaker’s face as a complementary 
information to the acoustic signal captured by the NAM microphone, whose high frequency 
components are attenuated due to the absence of lip radiation. Although the results show the 
positive contribution of this information for our conversion systems, the visible face 
movements only present a partial articulatory apparatus: the lips and the jaw movements, and 
this information is insufficient to adequately convey all spoken information. Including other 
data related to the movements of inner speech organs (i.e. tongue and velum displays such as 
EMA, ultrasound image of the tongue), or to laryngeal activity (EGG, EMG), etc., would 
obviously be very promising. 
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6.3.2 Real-time issue 

Real-time issues also need to be considered in order to use a NAM microphone for silent 
communication in daily life. Mapping algorithms work on large speech chunks often equal to 
isolated sentences and combine context-dependent estimations of speech frames using sliding 
windows. The amount of contextual information has a strong impact on performance. 
Realistic applications will require this context to be truncated to a maximum duration to allow 
conversation. Telecom companies estimate that a maximal delay of 200ms is tolerated to 
allow for full duplex (Guéguin, 2006; Guéguin et al., 2008). Above this threshold speech 
overlap is prohibited and the conversation enters a mode similar to the push-to-talk 
mechanism. We will thus study the impact of the limitation of contextual information with 
regards to performance and subjective quality. 
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Chapter 7.  Résumé en français de la 
thèse 

Cette annexe contient un résumé détaillé en français du travail effectué dans cette thèse. 

7.1 Introduction 
La parole silencieuse ou murmurée est définie comme la production articulée de sons, avec 
très peu de vibration des cordes vocales dans le cas du chuchotement, et aucune vibration 
dans le cas du murmure, produite par les mouvements et les interactions des organes de la 
parole tels que la langue, le voile du palais, les lèvres, etc., dans le but d’éviter d'être entendue 
par plusieurs personnes. La parole silencieuse ou murmurée est utilisée généralement pour la 
communication privée et confidentielle ou peut être employée par les personnes présentant un 
handicap laryngé et qui ne peuvent pas parler normalement. 

Cependant, il est difficile d'employer directement la parole silencieuse (murmurée) pour la 
communication face à face ou avec un téléphone portable parce que le contenu linguistique et 
l'information paralinguistique dans le message prononcé sont dégradés fortement quand le 
locuteur murmure ou chuchote. Une piste récente de recherche est donc celle de la conversion 
de la parole silencieuse (ou murmurée) en voix claire afin d'avoir une voix plus intelligible et 
plus naturelle. Avec une telle conversion, des applications potentielles telles que la téléphonie 
silencieuse » ou des systèmes d’aides robustes pour les handicaps laryngés deviendraient 
envisageables. Notre travail dans cette thèse se concentre donc sur cette piste. 

Plusieurs dispositifs d’interface de parole silencieuse ont été explorés dans la littérature, 
notamment l'électromyographie de surface (sEMG) (Jorgensen et al., 2003; Jorgensen et 
Binsted 2005 ; Jou, Schultz et al., 2006, 2008; Walliczek et al., 2006 ; Toth et al., 2009), le 
microphone capteur de murmure inaudible (NAM) (Nakajima, 2003 ; Heracleous et al., 2005; 
Toda et Shikano 2005), l’ultrason et l’image optique (Denby et Stone, 2004 ; Denby et al., 
2006 ; Hueber et al., 2007, 2008ab, 2009 ; Denby et al., 2009), l’articulographie 
électromagnétique (EMA) (Fagan et al., 2008) et l’électro-encéphalographie (EEG) (Suppes 
et al., 1997 ; Wester et Schultz 2006 ; Porbadnigk et al., 2009). Parmi ceux-ci, un dispositif 
qui semble particulièrement intéressant est le microphone NAM développé par des chercheurs 
du NAIST (Nara Institute of Science and Technology) au Japon, en raison de son usage facile 
et de sa taille appropriée pour la télécommunication mobile. Nakajima et al. (2003) ont ainsi 
proposé qu'il pourrait être plus efficace, en environnement bruyant, d’analyser les vibrations 
de parole issues directement de l'intérieur du corps, en les captant à la surface de la peau, au 
lieu d'analyser les sons transmis dans l’air, après avoir été émis par la bouche. Ils ont présenté 
une nouvelle interface de communication qui peut recueillir les vibrations acoustiques issues 
du conduit vocal à travers la vibration des tissus faciaux, en plaçant un capteur sur le cou, 
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juste en dessous de l'oreille. En utilisant ce capteur microphone, Toda et Shikano (2005) ont 
proposé un système de conversion du murmure inaudible (NAM) vers la voix claire basé sur 
un modèle de mélange de gaussiennes (GMM). Il a été montré que ce système est efficace 
mais la qualité de la parole prédite reste insuffisante, notamment en raison des difficultés dans 
l’estimation du F0 (fréquence fondamentale) à partir de la voix inaudible. La contribution 
principale de notre travail dans cette thèse est d'améliorer la performance d'un tel système. 

Ce qui suit est un résumé de nos contributions : 

Mise en correspondance directe des signaux basée sur des mixtures de 
Gaussiennes (GMM) 

– Pitch. Une première amélioration proposée dans cette thèse concerne l'évaluation de la 
source vocale pour la parole convertie. Plusieurs approches sont explorées, notamment 
celles de limiter l’apprentissage uniquement aux segments voisés, de séparer 
l'estimation du voisement et l'évaluation de F0 dans le processus de synthèse, 
d’optimiser la taille de la fenêtre de contexte du vecteur acoustique d'entrée et 
d'utiliser une analyse discriminante linéaire (LDA) au lieu d’une analyse en 
composantes principales (PCA) pour réduire la dimension du vecteur d'entrée. 

– Information audiovisuelle en entrée-sortie. Une autre solution explorée dans cette 
thèse pour améliorer la performance du système de conversion est d'intégrer 
l'information visuelle comme complément à l'information acoustique à la fois dans les 
données d'entrée et de sortie. Les paramètres visuels faciaux sont estimés en utilisant 
un système de capture de mouvement très précis, développé pour le système de têtes 
parlantes conçu au Département Parole et Cognition du laboratoire GIPSA. 

Mise en correspondance indirecte par pivot phonétique utilisant une 
reconnaissance-synthèse basée sur des modèles de Markov Cachés (HMM) 

Une autre approche pour convertir la parole silencieuse en voix audible est de combiner 
techniques de reconnaissance et de synthèse de la parole. Cette approche a été mise en œuvre 
dans (Hueber et al., 2007, 2008ab, 2009). En incluant des informations linguistiques, dans la 
reconnaissance et dans la synthèse, un tel système peut potentiellement compenser l'entrée 
appauvrie en intégrant de la connaissance linguistique dans le processus de reconnaissance. 
Nous comparons cette approche avec la technique de mise en correspondance présentée ci-
dessus, pour explorer une autre solution visant à améliorer la qualité du système de 
conversion du chuchotement en parole claire. 

Le travail présenté dans cette thèse contribue au projet CASSIS (communication assistée par 
ordinateur et interfaces silencieuses) impliquant la collaboration de GIPSA, de l'ENST-Paris, 
de l'ESPCI-Paris et de NAIST. 
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7.2 Etat de l’art 
7.2.1 Parole silencieuse et interfaces de parole silencieuse 

Parole silencieuse 

La parole silencieuse est un moyen de communication que les locuteurs utilisent pour réduire 
la perceptibilité de la parole. Par exemple quand ils ont pour consigne de parler doucement 
pour ne pas gêner les autres dans une bibliothèque, dans une conférence…, quand ils sont trop 
faibles pour parler normalement ou quand ils communiquent des informations privées, 
confidentielles. Il semble que la parole silencieuse est la communication vocale la plus 
efficace quand seules quelques personnes autour du locuteur doivent entendre le message. 

Selon le niveau de « silence » ou d'audibilité, nous pouvons définir 5 catégories : 

Parole intérieure : Elle est également appelée parole imaginée ou pensée verbale. Elle se 
rapporte à la production silencieuse mentale de mots ou de phrases. 

Parole subvocale invisible : Ce mode de la parole est articulé très doucement de sorte qu'il ne 
puisse pas être entendu, mais les articulateurs de la parole (langue, lèvres, peut-être mâchoire) 
peuvent légèrement bouger. 

Parole subvocale visible : Ce mode de la parole correspond à l’articulation silencieuse. La 
parole est articulée mais sans émission d'air. 

Murmure inaudible (NAM) : Ce mode de la parole est chuchoté doucement de sorte qu'une 
personne voisine ne puisse pas entendre. 

Parole chuchotée : Bien qu'il soit difficile de définir avec précision les différences 
acoustiques entre le « chuchotement » et le « NAM », le terme « chuchotement » implique 
que les auditeurs voisins limités peuvent entendre le contenu du message, et qu'il peut être 
enregistré par un microphone externe, par la transmission dans l’air. 

7.2.2 Interfaces de parole silencieuse 

La parole peut être considérée comme un ensemble de signaux multimodaux cohérents entre 
eux, tels que les signaux cérébraux électiques, les signaux myoélectriques issus des muscles, 
les mouvements des articulateurs orofaciaux – qu’ils soient visibles ou non -, ou encore le 
signal acoustique. 

Diverse technologies peuvent être employées pour enregistrer les signaux caractérisant 
l'articulation et la phonation: 

– L’activité cérébrale peut être capturée par EEG non-invasive. 

– Les activités musculaires peuvent être mesurées par EMG de surface. 
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– L’articulographie électromagnétique permet de déterminer les mouvements de points 
sur les articulateurs 

– Les déformations de surfaces des articulateurs peuvent être déterminées à partir de 
cinéradiographie, d’IRM dynamique, d’échographie ultrasonique. 

– Les microphones acoustiques permettent de capturer différentes sortes de signaux 
acoustiques. 

Dans le but de réaliser une télécommunication silencieuse, où le murmure inaudible et le 
chuchotement sont utilisés en entrée, un microphone à condensateur NAM semble être 
meilleur que d'autres interfaces, y compris l'EMG, l'EMA, l'ultrason et l'EEG en raison de sa 
facilité d’utilisation et de du fait que le signal recueilli est directement un signal acoustique, 
plus directement interprétable que ceux capturés par les autres interfaces. C'est pourquoi nous 
nous concentrons sur le microphone NAM en tant que capteur prometteur. 

Microphone NAM : Le son chuchoté, créé par les mouvements coordonnés de la langue, du 
vélum, des lèvres, etc., peut être capté grâce à la radiation aux lèvres mais aussi par la 
transmission des chocs entre articulateurs et parois ainsi que la transmission de l’onde de 
pression par les tissus mous. Le chuchotement peut ainsi être capté par un microphone NAM 
placé sur la peau, en dessous de l’oreille (Nakajima et al., 2003). Le tissu peaussier et la 
radiation des lèvres agissent comme un filtre passe-bas et les composantes hautes fréquences 
sont atténuées. Toutefois, les composantes spectrales du chuchotement (et du murmure 
inaudible) fournissent assez d’information pour identifier les sons (Heracleous et al., 2005). 
Le capteur NAM enregistre la parole dans une bande de fréquence allant jusqu’à 4kHz, en 
étant peu sensible au bruit externe. 

Dans le cadre de cette thèse, ce microphone est choisi pour capturer la parole chuchotée. 

7.2.3 Parole chuchotée 

Dans la voix modale (ou claire), les sons voisés impliquent une modulation de la circulation 
d’air issu des poumons par la vibration des cordes vocales. Cependant, il n’y a aucune 
vibration des cordes vocales dans la production de voix chuchotée. Pour cette raison, les 
caractéristiques acoustiques du chuchotement diffèrent de celles de la voix modale. Une étude 
des propriétés acoustiques des voyelles (Ito et al., 2005) a montré une augmentation des 
fréquences de formant pour les voyelles chuchotées comparées à la voix modale. Le décalage 
est plus grand pour les voyelles à valeurs formantiques peu élevées. Il a également été 
constaté que les caractéristiques du conduit vocal pour les phonèmes voisés changent plus 
dans le chuchotement par rapport à la voix modale que celles des consonnes non-voisées. La 
perception du pitch (hauteur du son) dans la voix modale est principalement liée à la 
fréquence fondamentale (F0). Dans le chuchotement, cependant, bien qu’il n’y ait aucune 
vibration des cordes vocales, une certaine perception de la hauteur peut être possible. 
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Higashikawa et al. (1999, 2003) ont montré que les auditeurs peuvent percevoir le pitch dans 
le chuchotement. Selon eux, les changements simultanés des formants F1 et F2 pourraient être 
l’un des indices qui influencent cette perception. 

7.2.4 Conversion de la parole silencieuse en voix claire 

Deux approches principales sont proposées pour produire de la parole audible et visible à 
partir d'articulations inaudibles : 

– Les techniques de mise en correspondance basées sur un GMM peuvent être 
employées pour convertir directement les signaux chuchotés en parole claire, en 
utilisant des corpus alignés (des phrases, des mots ou d'autres unités inaudibles et 
audibles) sans avoir à inclure d’information phonétique: des représentations 
communes de la parole inaudible et de la parole claire sont stockées ou modélisées 
puis employées pour estimer directement la parole claire à partir de la représentation 
des signaux inaudibles. 

– Une deuxième approche consiste à utiliser un pivot phonétique et à combiner 
reconnaissance de NAM avec synthèse de parole modale (Hueber et al., 2007, 2008ab, 
2009). Le système de reconnaissance segmente le signal de la parole en unités 
phonémiques, en utilisant l'information dépendante du signal et un modèle de langage. 
Un système de synthèse de la parole convertit alors ces unités phonétiques en voix 
synthétique, en utilisant la voix modale préenregistrée. La performance d'un tel 
système dépend principalement de la performance de la partie de reconnaissance : une 
reconnaissance correcte aura comme conséquence une parole reconstruite parfaite 
tandis que les échecs de reconnaissance ou un modèle de langage insatisfaisant 
pourront conduire à des dégradations fortes de la qualité de la parole convertie. 

7.3 Contribution de cette thèse 
7.3.1 Technique de mise en correspondance basée sur un modèle de 

mélange de gaussiennes (GMM) 

La technique de mise en correspondance directe de signal-à-signal en utilisant des corpus 
alignés est très prometteuse. Toda et al. (2005) ont appliqué un mapping statistique (Stylianou 
et al., 1998; Kain et Macon, 1998) basé sur un modèle GMM pour la conversion de parole 
NAM en parole claire. Dans ce système, pour synthétiser la parole, il faut estimer non 
seulement les traits spectraux mais aussi les traits d’excitation, y compris F0 et les composants 
apériodiques. Les traits spectraux à chaque trame ont été construits en concaténant les 
vecteurs spectraux de plusieurs trames autour de la trame courante, afin de compenser les 
caractéristiques perdues sur quelques phonèmes, particulièrement les fricatives, d’énergie 
élevée sur les bandes à haute fréquence. Trois GMMs ont été utilisés pour convertir les traits 
spectraux du chuchotement en trois ensembles de traits pour la parole claire, i.e. le spectre, le 
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F0 et un composant apériodique (qui capture le bruit sur chaque bande de fréquence du signal 
d’excitation) (cf. 4.2). 

Toutefois, bien que l’intelligibilité segmentale des signaux synthétiques calculés par la mise 
en correspondance soit acceptable, les auditeurs ont des difficultés à découper le flux sonore 
pour récupérer des mots. Ce problème est dû en partie à la restauration de la mélodie 
synthétique. Ainsi, dans notre système, adapté de Toda et al., nous nous sommes concentrés 
sur l’amélioration de l’estimation de la mélodie et de la détection du voisement. 

7.3.2 Séparation de l’estimation du voisement et de l’évaluation de F0 

Détection du voisement 

Dans le système original, Toda et al (2005) estiment la valeur de F0 pour toutes les trames en 
utilisant un modèle GMM. Un seuil de valeur de F0 est déterminé pour assigner une étiquette 
voisée/non-voisée à chaque trame. Dans notre système, nous avons testé la possibilité 
d’améliorer la détection du voisement en employant un Réseau de Neurones (RN) 
feedforward simple. De façon empirique, nous avons utilisé 50 neurones d’entrée (i.e. autant 
que la taille des vecteurs d’entrée du système de conversion décrit sur la figure 4.4), 17 
neurones cachés et 1 neurone de sortie. Les vecteurs de paramètres d’entrée du module de 
conversion spectral – renouvelés toutes les 5ms et issus d’une Analyse en Composantes 
Principales (ACP) des cepstres de 17 trames de 20ms centrées sur la trame courante - ont été 
utilisés comme vecteur d’entrée pour ce réseau. Pour l’apprentissage du réseau, le classement 
en voisé/non-voisé de chaque énoncé chuchoté a été obtenu en l’alignant avec l’énoncé modal 
correspondant. Le tableau 4.2 (c.f. 4.3.3) montre l’évaluation des performances de ce RN. 
Comparativement à l’erreur dans le système original, nous avons une amélioration 
significative de cette détection. 

Estimation de F0 

Pour l’estimation des valeurs de F0, au lieu de prendre tous les segments du chuchotement, 
seuls les segments voisés ont été utilisés pour entraîner une mixture de Gaussiennes (GMM), 
ceci afin d’éviter de perdre des composantes gaussiennes pour représenter les valeurs nulles 
de F0 codant les segments non-voisés. De plus, un réseau de neurones (RN) est utilisé pour 
prédire ces segments. Pour la synthèse, on prédit donc des valeurs de F0 continues, hachées 
par le voisement calculé par ce RN. La figure 4.6 montre que la courbe de F0 synthétisé par 
notre système est plus proche de la F0 cible que celle prédite par le système original. 

7.3.3 Influence de la fenêtre contextuelle sur la performance du système 

Dans (Toda, Black et Tokuda, 2008), les auteurs ont prouvé que l'utilisation des vecteurs de 
paramètre d’entrée construits en enchaînant des trames acoustiques, pour prendre en compte 
les contraintes dynamiques sur les paramètres acoustiques, est efficace pour améliorer la 
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précision du mapping. Dans cette thèse, la taille de la fenêtre contextuelle est augmentée en 
enchaînant plus de trames adjacentes. Ainsi, dans notre cas, la fenêtre de contexte est élargie 
en sélectionnant une trame toutes les m trames, et en maintenant le nombre de trames pour la 
concaténation constant. Une ACP ou une analyse discriminante linéaire (LDA) est alors 
appliquée à ce vecteur de multi-trames pour réduire sa dimension. 

Les résultats montrent qu’en augmentant la taille de la fenêtre, l’estimation de la F0 est bien 
meilleure car les contours intonatifs sont portés par des unités de taille supérieure au 
phonème, soit des syllabes ou des pieds (tableau 4.3). Par contre, la distorsion spectrale 
augmente quand la taille de la fenêtre contextuelle augmente (tableau 4.4). L'interprétation la 
plus plausible est qu'une fenêtre de taille d’un phonème contient de façon optimale des traits 
contextuelles nécessaires pour la conversion spectrale. 

7.3.4 Contribution de l’information visuelle 

Un nouveau système de conversion a été construit à partir de données audiovisuelles. La base 
de données comprend cette fois-ci 190 phrases du japonais prononcées par un locuteur natif, 
en modes chuchoté et modal, enregistrées par un capteur NAM et un microphone tête (dont 
150 phrases pour le corpus d’apprentissage et 40 phrases pour le corpus de test). Le système 
capture, à 25 Hz, les positions 3D de 142 billes collées sur le visage (c.f. figure 3.4), en 
synchronie avec le signal acoustique échantillonné à 16000 Hz. 

Un modèle de forme est construit à partir des positions 3D des 142 points sur le visage du 
locuteur. La méthodologie de clonage développée dans notre département (Bailly et al., 2006) 
consiste en une ACP itérative appliquée sur des sous-ensembles de points pertinents. Cette 
analyse extrait 5 paramètres articulatoires liés au mouvement de la mâchoire, des lèvres et du 
larynx. 

Un vecteur caractéristique audiovisuel est obtenu en combinant caractéristiques audio et 
visuelle comme pour les AAM (Active Appearance Models) de Cootes et al. (2001). Chaque 
vecteur visuel est multiplié par un poids w avant d’être concaténé avec le vecteur acoustique 
correspondant. La dimension du vecteur conjoint est ensuite diminuée grâce à une autre ACP. 

La conversion utilise les vecteurs de projection des trames sur les 40 premiers axes 
principaux. Ici, les nombres de gaussiennes sont fixés à 16 pour l’estimation spectrale pour 
l'estimation de F0 et aussi bien pour l'estimation des composantes apériodiques. 

Les tableaux 4.5 et 4.6 montrent la contribution positive de l’information visuelle sur la 
performance du système. Le meilleur résultat est obtenu pour une dimension du vecteur visuel 
de 40 et avec un poids w=0.25 pour l’estimation du voisement et w=1 pour l’estimation 
spectrale et de la source d’excitation. L’erreur de l’estimation du voisement diminue de 5.4% 
alors que la distorsion spectrale entre paroles convertie et modale diminue alors de 3.7%. La 
différence entre le F0 converti et celui naturel diminue aussi de 6.9 %. 
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7.3.5 Evaluation perceptive 

Evaluation audio 

Seize auditeurs français ont participé à nos tests perceptifs sur l’intelligibilité et le naturel de 
la parole convertie des deux systèmes. 20 phrases, qui n’étaient pas incluses dans le corpus 
d’apprentissage, ont été utilisées. Chaque auditeur a passé deux tests ABX. Il a entendu une 
phrase prononcée dans la voix modale (X) et les versions converties à partir du chuchotement 
par les deux systèmes. Pour chaque phrase, l’auditeur devait choisir laquelle était la plus 
proche de l’originale (X), en terme d’intelligibilité et de naturel. La figure 4.12 fournit les 
scores moyens d’intelligibilité et de naturel obtenus pour les phrases converties utilisant les 
systèmes original et modifié, cumulés pour tous les auditeurs. Les scores d’intelligibilité sont 
significativement plus élevés pour les phrases synthétisées par notre système (F=23.41, 
p<.001). Ceci est aussi vrai pour le naturel : le système proposé a été encore plus fortement 
préféré à l’original (F = 74.89, p < .001). 

Evaluation audiovisuelle 

Pour confirmer la contribution positive de l’'information visuelle, huit sujets japonais ont 
participé à nos tests perceptifs sur la parole audiovisuelle convertie. Les stimuli étaient 
composés des VCVs japonais (le V étant choisi parmi cinq voyelles et C parmi vingt-sept 
consonnes) dans quatre conditions :  

– Parole produite à partir de l'acoustique chuchotée (appelée condition A à partir d’A) 
(1) 

– Parole produite à partir du chuchotement audiovisuel (condition A à partir d’AV) (2) 

– Parole et animation faciale produites à partir de l'acoustique chuchotée (condition AV 
à partir d’A) (3) 

– Parole et animation faciale produites à partir du chuchotement audiovisuel (AV à 
partir d’AV) (4) 

Chaque participant a entendu et a regardé aléatoirement une liste de VCV audio et 
audiovisuels synthétiques. Pour chaque VCV, il a été invité à choisir quelle consonne il avait 
entendue parmi une liste de 27 consonnes japonaises possibles. 

La figure 4,13 fournit les taux moyens d'identification pour tous les participants. Les 
paramètres visuels améliorent de manière significative l'identification des consonnes. En 
particulier, les rapports d'identification sont de 28.37% pour la condition 2, de 30.56% pour la 
condition 3 et de 36.21% pour la condition 4 qui sont tout sensiblement plus hauts que celle 
de la condition 1 (23.84 %). 
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Bien que l'information visuelle augmente considérablement les taux d'identification sur tous 
les VCVs examiné, les taux sont toujours assez bas (moins de 40%). Il convient de noter 
cependant que l'identification de logatome VCV est une tâche difficile, particulièrement dans 
une langue avec beaucoup de consonnes. Il pourrait donc être argumenté que les taux 
d'identification sur des mots ou des phrases pourraient être beaucoup plus élevés dans une 
tâche de d’intelligibilité sur des mots ou des phrases, avec l'aide de l'information 
lexicologique, syntactique et contextuelle. Il pourrait donc être intéressant de vérifier si 
l’information visuelle a fourni en fait quelques traits liés au lieu d'articulation, même si la 
détection précise de chaque phonème était difficile. Par conséquent nous avons également 
groupé les consonnes dans des catégories correspondant à différent lieux d'articulation, pour 
examiner quels groupes consonantiques ont bénéficié le plus de l'addition d'information 
visuelle. La figure 4.14 montre que les consonnes bilabiales, ce qui sont intrinsèquement plus 
saillantes visuellement, ont été mieux identifiées comme bilabiales, quand l'information 
visuelle a été prise en entrée du système de conversion et quand des stimulus audiovisuels ont 
été présentés aux participants. 

7.4 Conversion basée sur un modèle de Markov caché 
(HMM) 

Afin de comparer la performance de la technique de conversion de voix basée sur GMM 
proposée par Toda et Shikano (2005) à l'approche consistant à combiner la reconnaissance de 
la parole NAM et la synthèse de la parole, un système de conversion du chuchotement-vers-la 
parole claire basé sur HMM est étudié. Ce système combine 2 modules, un module de 
reconnaissance basé sur HMM et un module de synthèse basé sur HMM. 

Au lieu d'utiliser la synthèse concaténative basée sur diphone proposée dans (Hueber et al., 
2008, 2009), nous avons employé une synthèse basée sur HMM, proposée par (Tokuda et al., 
2000) parce que l'intégration d'un modèle paramétrique offre quelques avantages. Tout 
d'abord, le système entier de synthèse est paramétré plutôt que les formes d'onde pré-
enregistrées stockées. Le système est donc orientable. Il a été suggéré qu’un modèle 
paramétrique basé sur HMM pourrait apporter un couplage plus intime entre la 
reconnaissance et la synthèse, en abordant les deux problèmes dans un cadre statistique 
logique unifié (Tokuda et al., 2004 ; Zen et al., 2004, 2009 ; Zhang, 2009 ; Wu et al., 2006, 
2008). 

Les densités de probabilité communes des paramètres du chuchotement et de la parole claire 
sont modélisées par des HMMs sur la taille d’un phonème. À partir de la distribution 
gaussienne simple à chaque état, monophone indépendant du contexte, le modèle a été enrichi 
de deux manières pendant l’apprentissage : 

– La distribution monogaussienne à chaque 'état est remplacée par des modèles de 
mélange de gaussiennes (GMM). Le nombre de Gaussiennes varie de 1 à 2, à 3 et à 4. 



144 Résumé en français de la thèse 
 

 

– En raison des effets de coarticulation, il est peu probable qu'un HMM indépendant du 
contexte pourrait de façon optimale représenter un allophone donné. Par conséquent 
les HMMs dépendant du contexte sont employés pour enrichir le modèle. En raison de 
données d’apprentissage limitées, nous avons seulement employé le contexte de 
biphone pour les modèles acoustiques en groupant les phonèmes dans des classes de 
contexte. En ,plus d'utiliser nos connaissances phonétiques a priori pour définir de 
telles classes, des arbres de confusion (visuels et acoustiques) ont été construits en se 
basant sur la matrice des distances euclidiennes des paramètres visuels et acoustiques 
entre chaque paire de phonème. 

Le tableau 5.2 montre la contribution positive de l'information visuelle pour la tâche 
d'identification. En moyenne, les mouvements faciaux améliorent le taux d'identification de 
13,2% (61,35% à 74,52%). En particulier, dans le cas d'identification des voyelles, la 
précision obtenue en utilisant l'information visuelle est 78,28%, montrant une amélioration de 
7% comparée avec l'information acoustique seule. Dans le cas de l'identification de 
consonnes, cette amélioration est de 15,7% (56,62% à 72,35%). 

Pour la synthèse, on a comparé ce système avec le système basé sur le modèle GMM, 
présenté dans le chapitre 4. Bien que les mouvements faciaux aient une contribution positive 
dans les deux systèmes, la performance du système basé sur HMM est actuellement inférieure 
à celle du système direct de signal-à-signal basé sur le modèle de GMM (tableau 5.4). Ce 
phénomène peut être expliqué par deux raisons. D'abord, la covariance diagonale 
actuellement utilisée pour chaque état dans le système basé sur HMM ne prend pas en compte 
la covariance entre les paramètres chuchotés et ceux de la parole claire, tandis que le système 
basé sur GMM le fait, en employant une matrice pleine de covariance. Deuxièmement, la 
synthèse et la reconnaissance sont employées séparément : les modèles HMM tendent à 
réduire au minimum l'erreur de reconnaissance, mais pas l'erreur de reconstruction finale. 

7.5 Conclusion et perspectives 
L’objectif de cette thèse est la conversion de la parole chuchotée en voix claire en employant 
un cadre statistique. Si cette conversion pouvait être effectuée, les téléphones cellulaires 
silencieux, la communication de la parole en conditions défavorables, les applications pour 
aider les personnes présentant des handicaps laryngés ou de nouvelles interfaces homme-
machine deviendraient envisageables. 

En utilisant un microphone à condensateur attaché sur le cou, au-dessous d’une oreille du 
locuteur pour capturer la parole chuchotée, nous proposons diverses solutions pour améliorer 
le naturel de la parole produite par le système de conversion de chuchotement-vers- la parole 
claire basé sur un modèle GMM : séparer la détection du voisement et l'estimation de F0 ; 
augmenter la taille de la fenêtre de contexte du vecteur d'entrée jusqu’à la taille d’une syllabe 
et utiliser un analyse discriminante linéaire (LDA) au lieu d’une analyse en composantes 
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principales (PCA) pour réduire la dimension de ce vecteur. Des tests subjectifs perceptifs ont 
été menés pour montrer l’amélioration apportée par ces méthodes. 

Une autre solution examinée dans cette thèse pour améliorer le système est celle d’utiliser les 
mouvements visuels comme complément à l'information acoustique. Les mouvements 
orofaciaux liés aux gestes des lèvres, de la mâchoire et du larynx contribuent à l’intelligibilité 
de la parole convertie, surtout quand ces informations sont ajoutées en sortie du système de 
conversion. 

Dans la lignée de ce travail de thèse, quelques pistes de recherche sont proposées pour 
l’avenir : 

Couplage entre la reconnaissance et la synthèse 

La difficulté principale pour le système de conversion chuchotement - parole claire basé sur 
les HMMs est d’aborder la reconnaissance de la parole et la synthèse dans un cadre unifié, car 
il manque un modèle statistique qui puisse être employé pour les deux problèmes. Les HMMs 
qui ont été utilisés avec succès pour la reconnaissance sont insatisfaisants pour la synthèse 
(Wu et al., 2006). Dans notre système, nous employons le critère d'estimation avec maximum 
de vraisemblance (MLE) pour apprendre les modèles HMM. Cependant, le critère de MLE 
évalue seulement la pertinence du modèle aux données dans le sens des probabilités qui ne 
reflète pas la distance finale entre les paramètres synthétisés et les vecteurs cibles. Le critère 
de MLE n'est clairement pas approprié au but de la synthèse de la parole basée sur HMM. 
Nous pourrions utiliser le critère de la racine de la moyenne du carré(RMS) proposé par 
Zhang (2009) ou l'erreur de génération minimum (MGE) (Wu et Wang, 2006) pour apprendre 
les modèles HMM. Cela nous permet d’éliminer cette contradiction entre l’apprentissage et la 
génération. En outre, le problème de lissage des paramètres générés pourrait être corrigé en 
incorporant une contrainte de restauration de la variance globale (GV) (Toda et Tokuda, 2007; 
Wu et al., 2008). 

Elimination du bruit 

Le signal capturé par le microphone NAM est bruité, ce qui influence la performance du 
système de conversion (cf. section 1.3.4). La réduction du bruit est évidemment une tâche 
importante. Afin d'augmenter le rapport signal-sur-bruit (SNR) du microphone NAM, nous 
pourrions tirer parti des corrélations des signaux capturés par deux microphones NAM sur le 
cou du locuteur ou nous pourrions utiliser d'autres corrélations multimodales, c.-à-d. la 
corrélation de la parole silencieuse avec les 'informations visuelles. 

Données multimodales 

La parole est naturellement multimodale. La recherche sur l’exploitation des signaux visuels 
du visage du locuteur est essentiellement concentrée sur la robustesse dans le bruit pour les 
systèmes de reconnaissance de la parole. L'introduction de visages ou d’avatars parlants dans 
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les systèmes de synthèse de la parole améliore également leur naturel et intelligibilité. 
Généralement la prise en compte de l'aspect visuel de la parole en s’inspirant des mécanismes 
biophysiologiques de production et de perception de la parole peut bénéficier au traitement 
automatique de la parole et aux interfaces homme-machine. 

Dans ce contexte, nous avons utilisé des signaux visuels extraits à partir du visage du locuteur 
comme information complémentaire pour le signal acoustique capturé par le microphone 
NAM, dont les composantes à haute fréquence notamment sont atténuées. Bien que les 
résultats montrent la contribution positive de cette information pour nos systèmes de 
conversion, les mouvements visuels du visage (mouvements des lèvres et de la mâchoire) 
rendent seulement compte d’un appareil articulatoire partiel. Cette information est 
insuffisante. L’inclusion des mouvements des organes intérieurs de la parole (c.-à-d. ceux de 
la langue recueillis par EMA, ou par imagerie ultrason), l'activité laryngée (EEG, EMG) etc., 
est évidemment très prometteuse. 

Temps réel 

Le traitement en temps réel est également nécessaire afin d'utiliser le microphone NAM pour 
la communication silencieuse dans la vie quotidienne. Les algorithmes de mise en 
correspondance travaillent souvent sur des phrases isolées et utilisent des informations 
dépendantes du contexte. La quantité d'information contextuelle a un impact fort sur la 
performance. Des applications réalistes exigeront que le contexte soit tronqué à une durée 
maximum pour permettre la conversation. Les spécialistes de télécommunication estiment 
qu'un retard maximal de 200ms est toléré pour permettre une conversation en duplex 
(Guéguin, 2006 ; Guéguin et al., 2008). Il pourra ainsi être intéressant d’étudier l'impact de la 
limitation d'information contextuelle sur la performance et la qualité subjective. 
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