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Introduction

Consider controller design for a system with very large uncertainty

Robust Control : A fixed controller does not necessarily exist that
stabilizes the system, or if it exists, it does not give
good performances.

Adaptive Control : The classical adaptive control gives
unacceptable transient adaptation for large and fast
parameter variation.

Solution: Multimodel adaptive control

◮ Classical multimodel adaptive control

◮ Robust multimodel adaptive control

◮ Multimodel adaptive control with switching

◮ Multimodel adaptive control with switching and tuning
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Classical multimodel adaptive control
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Robust multimodel adaptive control
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Robust multimodel adaptive control

◮ Very similar to the classical multimodel adaptive control.
◮ The controllers are robust with respect to unmodeled

dynamics and uses output feedback instead of
state-feedback.

◮ The control input is the weighted sum of the outputs of
the controllers (no switching).

u(t) =

N
∑

i=1

Pi(t)ui(t)

where Pi(t) is the posterior probability of i -th estimator.
◮ The posterior probabilities are computed as:

Pk(t + 1) =

[
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◮ The stability of this scheme is not guaranteed.
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Multimodel adaptive control with switching
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Multimodel adaptive control with switching and tuning
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ŷ0

εn

ε2

ε1

ε0

y-

-

)
-

-

3

w

u0

u1

u2

un

u

-

-

-

-

-

-

-

After a parameter variation (a large estimation error)
◮ First the controller corresponding to the closest model (fixed

model) is chosen (switching).
◮ Then the adaptive model is initialized with the parameter of

this model and will be adapted (tuning).
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Structure of Multimodel Adaptive Control with Switching

Plant: LTI-SISO (for analysis) with parametric uncertainty
and unmodelled dynamics:

⋃

θ∈Θ

P(θ)

where P(θ) = P0(θ)[1 + W2∆] with ‖∆‖∞ < 1.
Other type of uncertainty can also be considered.

Multi-Estimator: Kalman filters, fixed models, adaptive models. If
Θ is a finite set of n models, these models can be
used as estimators (output-error estimator). If Θ is
infinite but compact, a finite set of n models with
and adaptive model can be used.

Multi-Controller: We suppose that for each P(θ) there exists C (θ)
in the multi-controlller set that stabilizes P(θ) and
satisfies the desired performances (the controllers are
robust with respect to unmodelled dynamics).
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Structure of Multimodel Adaptive Control with Switching

Monitoring Signal: is a function of the estimation error to indicate
the best estimator at each time.

Ji (t) = αε2
i (t) + β

t
∑

j=0

e−λ(t−j)ε2
i (j)

with λ > 0 a forgetting factor, α ≥ 0 and β > 0
weightings for instantaneous and past errors.

Switching Logic: Based on the monitoring signal, a switching
signal σ(t) is computed that indicates which control
input should be applied to the real plant. To avoid
chattering, a minimum dwell-time between two
consecutive switchings or a hysteresis is considered.

The dwell-time and hysteresis play an important role on the
stability of the switching system.
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Switching Logic
Start

σ(t) = arg min
i

Ji (t)

Jσ ≤ (1 + h)Ji
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◮ A large value for Td may deteriorate the performance and a
small value can lead to instability.

◮ With hysteresis, large errors are rapidly detected and a better
controller is chosen. However, the algorithm does not switch
to a better controller in the set if the performance
improvement is not significant.
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Stability of Adaptive Control with Switching

Trivial case:

◮ No unmodelled dynamics and no noise,

◮ the set of models is finite,

◮ parameters of one of the estimators matches those of the
plant model,

◮ plant is detectable.

Main steps toward stability:

1. One of the estimation errors (say εk) goes to zero.

2. εσ(t) = y(t) − yσ(t) goes to zero as well.

3. After a finite time τ switching stops (σ(τ) = k t ≥ τ).

4. If εk goes to zero, θk will be equal to θ and the controller
Ck stabilizes the plant P(θ):

(Certainty equivalence stabilization theorem)
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Stability of Adaptive Control with Switching

Assumptions: Presence of unmodelled dynamics and noise.
Existence of some“good” estimators in the multi-estimator block.
The plant P is detectable.

1. εk for some k is small.

2. εσ is small (because of a“good”monitoring signal).

3. All closed-loop signals and states are bounded if:
The injected system is stable.
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Stability of Switching Systems

Each controller stabilizes the corresponding model in the
multi-estimator for frozen σ.
Question: Is the injected system stable for a time-varying
switching signal σ(t)?

Is fσ(x) stable? No
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Stability of Switching Systems
Consider a set of stable systems:

ẋ = A1x , ẋ = A2x , . . . ẋ = Anx

then ẋ = Aσx is stable if :

◮ A1 to An have a common Lyapunov matrix (quadratic

stability).

◮ If the minimum time between two switchings is greater
than Td (minimum dwell time).

◮ If the number of switching in the interval (t, T ) does not
grow faster than linearly with T (average dwell time).

Nσ(t, T ) ≤ N0 +
T − t

Td

∀T ≥ t ≥ 0

N0 = 1 implies that σ cannot switch twice on any interval
shorter than Td .
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Stability of Switching Systems

Common Lyapunov Matrix : The existence of a common
Lyapunov matrix for A1, . . . ,An guarantees the stability of Aσ.
This can be verified by a set of Linear Matrix Inequalities
(LMI):

Continuous-time

AT
1 P + PA1 < 0

AT
2 P + PA2 < 0

...

AT
n P + PAn < 0

Discrete-time

AT
1 PA1 − P < 0

AT
2 PA2 − P < 0

...

AT
n PAn − P < 0

I The stability is guaranteed for arbitrary fast switching.

I The stability condition is too conservative.
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Stability of Switching Systems by Minimum Dwell Time
Theorem : Assume that for some Td > 0 there exists a set of
positive definite matrix {P1,P2, . . . ,Pn} such that:

AT
i Pi + PiAi < 0 ∀i = 1, . . . ,N

and
eAT

i Td Pje
AiTd − Pi < 0 ∀i 6= j = 1, . . . ,N

Then any switching signal σ(t) ∈ {1, 2, . . . ,N} with
tk+1 − tk ≥ Td makes the equilibrium solution x = 0 of

ẋ(t) = Aσ(t)x(t) x(0) = x0

globally asymptotically stable.

◮ The first group of LMIs are always feasible because A1 to An

are stable.

◮ The second LMIs are always feasible if Td is large enough.

◮ Td can be minimized using LMIs.
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Stability of Switching Systems by Minimum Dwell Time

Proof : Consider the Lyapunov function V (x(t)) = xT (t)Pσx(t).
We should show that for any tk+1 = tk + Tk with Tk ≥ Td > 0 we
have V (x(t + k)) < V (x(t)). Assume that σ(t) = i for
t ∈ [tk tk+1) and σ(tk+1) = j . We have :

V (x(t + 1)) = xT (tk+1)Pjx(tk+1)

= xT (tk)eAT
i

Tk Pje
AiTk x(tk)

< xT (tk)eAT
i

(Tk−Td )Pie
Ai (Tk−Td )x(tk)

< xT (tk)Pix(tk)

< V (x(tk))

◮ This can be proved for discrete-time systems as well.

◮ If A1 to An are quadratically stable, i.e.
P = P1 = P2 = . . . = Pn then the LMIs are feasible for any
Td > 0.
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Stability of Switching Systems by Minimum Dwell Time

Comments : There are some conservatism in this approach.

1. Minimum of Td is an upper bound on the minimum dwell
time.

2. Vi(x(tq)) < Vi(x(tp)) where σ(tp) = σ(tq) = i is sufficient for
the stability.
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Application to the Flexible Transmission System
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Multiple Model with Switching and Tuning
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Design Procedure
Multi estimator Design:

◮ Number of estimators: more estimator → more accuracy but
more complexity.

◮ Type of estimators: output error, AMAX predictor, Kalman
filter, etc.

◮ Fixed or adaptive: All fixed needs too many models for a
desired accuracy. With all adaptive estimators, a persistently
excitation signal is needed. A trade-off is a few number of
fixed model such that at least one of them stabilizes the plant
model and an adaptive model to improve the accuracy.

◮ Adaptive model: It should be initialized with the parameters of
the closest fixed model. It can be a classical RLS or a CLOE
adaptive model. For regulation problem adaptive model is not
proposed.

For flexible transmission system we chose 3 output error fixed
estimators in 0 % 50% and 100% load and one adaptive model

with CLOE.
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Design Procedure
RLS versus CLOE : Disturbance and noise affect the parameters
of RLS estimators (drift problem) but not the parameters of CLOE
estimators. Therefore, in the absence of excitation signal, the
closed-loop system may become unstable.
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RLS versus CLOE

Experimental results

Classical adaptive control CLOE adaptive control
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Design Procedure

Multi-controller design : Robust pole placement

Desired closed-loop poles: Complex and simple poles are chosen.

I A pair of complex poles with the same frequency
as the first resonance mode and a damping
factor of 0.8.

I A pair of complex poles with the same frequency
as the second resonance mode and a damping
factor of 0.2.

I 6 auxiliary poles at 0.2.

Fixed terms in the controller: A fixed pole at 1 (integrator) and a
zero at -1 for reducing the input sensitivity function
at high frequencies.

Remark : Adaptive model is initialized with the parameters of the
last switched estimator and the desired closed-loop poles are
chosen based on this fixed model.

I. D. Landau, A. Karimi: “A Course on Adaptive Control”- 5 25



Design procedure

Monitoring signal and switching logic:

Ji (t) = αε2
i (t) + β

t∑
j=0

e−λ(t−j)ε2
i (j) α ≥ 0, β > 0, λ > 0

I α� β: More weights on instantaneous errors → fast reaction.
This leads to fast parameter adaptation but poor performance
w.r.t. disturbance.

I α = λ = 0: Monitoring signal is the two-norm of the error for
each estimator. The reaction to parameter variation is slow
but leads to good performance w.r.t. disturbance.

I The minimum dwell time should be chosen to assure the
stability. If the theoretical minimum is too large, a hysteresis
cycle with an average dwell time is preferred.
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Experimental results on the flexible transmission system

Multimodel adaptive control versus robust control

Load changes from 0 to 100 % in four steps (9,19,29 and 39s)
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Experimental results on the flexible transmission system

Multiple model with CLOE

Load changes from 100% to 0% in two stages (19 and 29s)
α = 1, β = 1, λ = 0.1
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Experimental results on the flexible transmission system

Same case with classical adaptive control (simulation)

Load changes from 100% to 0% in two stages (19 and 29s)
Unstable in real time experiment
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Experimental results on the flexible transmission system

Real system does not belong to the fixed models set

Load changes from 75% to 25% in one stages (19s)
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Effects of design parameters
Design parameters: Number of fixed and adaptive models, choice
of adaptation algorithm, forgetting factor λ, dwell time.
Test conditions: Spaced parameter variation and frequent
parameter variation are simulated using following signals:

Tc � T represents spaced parameter variation and
2T < Tc < 100T frequent parameter variation.

Performance criterion: Jc(t) =

(
1

Tf

∫ Tf

0
[r(t)− y(t)]2

)1/2
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Effects of design parameters

Number of fixed and adaptive models
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I One adaptive model can reduce the number of fixed models.

I Adaptive models have more effects for spaced parameter
variation.
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Effects of design parameters

Choice of forgetting factor
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I Spaced variation → λ small. Frequent variation → λ large.
I Disturbance and noisy at the output → λ small.
I In this example λ = 0.3− 0.4 is a good trade off.
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Effects of design parameters

Choice of dwell time

 frequent 

 spaced 
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Performance criterion versus dwell time for spaced and frequent
parameter variation

The smallest dwell time that assures the stability should be
chosen
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Effects of design parameters

Choice of adaptation algorithm
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I Three fixed models (no-load, half-load, full-load) in
multi-estimator.

I Fixed plant model (25% load).
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Effects of design parameters

Choice of adaptation algorithm

  RLS algorithm   

  CLOE algorithm  
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Performance criterion versus noise variance for RLS and CLOE
CLOE gives to switching control a better performance and

switching control assure the stability of adaptive control with
CLOE
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