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IDENTIFICATION IN CLOSED LOOP
A powerful design tool

(theory, algorithms, applications)

better models, simpler controllers

Part 2: Robust digital control – A brief review

Prepared for Marie Curie Action TOK 3092
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DESIGN
METHOD

MODEL(S)

Performance
specs.

PLANT

IDENTIFICATION

Robustness
specs.

CONTROLLER

1) Identification of the dynamic model
2) Performance and robustness specifications
3) Compatible controller design method
4) Controller implementation
5) Real-time controller validation

(and on site re-tuning)
6) Controller maintenance (same as 5)

Controller Design and Validation
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Outline

Robust digital control
-The R-S-T digital controller
-Basic design
-Robustness issues
-The sensitivity functions and their properties
-Robustness margins
-Robust stability
-An example
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The R-S-T Digital Controller
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Connections with other Control Strategies

- Digital PID : 
11;2 −−=== qHnn SSR

-Tracking and regulation with independent objectives(MRC):

FDPPBP *= (Hyp.: B* has stable damped zeros)

- Minimum variance tracking and regulation (MVC):

CBP *=
noise model

(Hyp.: B* has stable damped zeros)

- Internal Model Control (IMC):

FAPP = (Hyp.: A has stable damped poles)
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Digital control in the presence of disturbances and noise

Output sensitivity function
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Input sensitivity function
(p        u) 

Noise-output sensitivity function
(b        y)

Input disturbance-output sensitivity function
(v        y)

All four sensitivity functions should be stable ! (see book pg.102 - 103)
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Complementary sensitivity function

For T = R one has:
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Robustness of a control system

A control system is said to be robust for a set of given 
uncertainties upon the nominal plant model if it guarantees
stability and performance for all plant models in this set.

•To characterize the robustness of a closed loop system a 
frequency domain analysis is needed

• The sensitivity functions play a fundamental role in robustness
studies

• The study of closed loop stability in the frequency domain
gives valuable information for characterizing robustness
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Stability of closed loop discrete time systems

The Nyquist is used like in continuous time
(can be displayed with WinReg or Nyquist_OL.sci(.m))
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Nyquist criterion (discrete time –O.L. is stable)

The Nyquist plot of the open loop transfer fct. HOL(e-jω) traversed in the sense of growing
frequencies (from 0 to 0.5fS) leaves the critical point[-1, j0] on the left
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The Nyquist plot of the open loop transfer fct. HOL(e-jω) traversed in the sense of growing
frequencies (from 0 et fS) leaves the critical point[-1, j0] on the left and the number of
encirclements of the critical pointcounter clockwise should be equal to the number of
unstable poles in open loop.

Remarks:
-The controller poles may become
unstable if high performances are
required without using an appropriate
design method

-The Nyquist plot  from 0.5fS to fS is the
symmetric with respect to the real axis
of the Nyquist plot  from 0 to 0.5fS 

Stability of closed loop discrete time systems

Nyquist criterion (discrete time –O.L. is unstable)

1 unstable pole in Open Loop

ω =0

ω = π 

ω = 2π

-1

Im H

Re H

Stable Closed Loop (a)

ω = π 

Stable Open Loop 
Unstable Closed Loop(b)

ω =0
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Robustness margins

The minimal distance with respect to the critical point
characterizes the robustness of the CL with respect to
uncertainties on the plant model parameters( or their variations)

-Gain margin ∆G
-Phase margin ∆φ
-Delay margin ∆τ
-Modulus margin ∆M
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Robustness margins – typical values 

Gain margin : ∆G ≥ 2   (6 dB) [min : 1,6 (4 dB)]

Phase margin : 30° ≤ ∆φ ≤ 60°

Delay margin : fraction of system delay (10%) or 
of time response (10%) (often 1.TS)

Modulus margin : ∆ M ≥ 0.5 (- 6 dB) [min : 0,4 (-8 dB)]

A modulus margin ∆ M ≥ 0.5 implies ∆G ≥ 2 et ∆φ > 29°
Attention ! The converse is not generally true

The modulus margin defines also the tolerance with respect
to nonlinearities
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Good gain and phase margin
Bad delay margin

Robustness margins

Good gain and phase margin
Bad modulus margin

.



I.D. Landau : A course on system identification in closed loop 2/Marie Curie Action TOK 3092
17

ω

dB

S
yp

S
yp

Syp

-1

min

-1

= -    M∆

=     M∆

S
yp

max

0

=  - S yp
max

( )
fj

ypypOL

ezpour
zRzBzSzA

zSzA

zSzSzHM

π21

1

max

1111

11

1

max

1

min

11

min

1

)()()()(
)()(

)()()(1

−−

−

−−−−

−−

−−−−−

=







+

===+=∆

dBMdBMdBeS j
yp  )( 1

max
∆−=∆= −− ω

Modulus margin and sensitivity function

Minimum distance 
with respect to the
critical point

Critical region
for design



I.D. Landau : A course on system identification in closed loop 2/Marie Curie Action TOK 3092
18

Correspondance Output Sensitivityà Nyquist Plot
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– The open loop being stable, one has the property:

∫ =−S
S

f.
pf/fj

yp df)(eS
50

0

2 0log

The sum of the areas between the curve of Syp and the axis 0dB taken with
their sign is null

Disturbance attenuation in a frequency region implies amplification
of the disturbances in other frequency regions!

Properties of the output sensitivity function
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Augmenting the attenuation or widening the attenuation zone

Higher amplification of disturbances
ouside the attenuation zone

Reduction of the robustness
(reduction of the modulus margin)

Properties of the output sensitivity function
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Robust stability
To assure stability in the presence of uncertainties (or variations)
on the dynamic chatacteristics of the plant model
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Tolerance to plant normalized uncertainty
(multiplicative uncertainty)
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From (**), previous slide:

The inverse of the modulus of the “complementary sensitivity function”
gives at each frequency the tolerance with respect to “normalized

(multiplicative) uncertainty”
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Important message

Large values of the modulus of
the sensitivity functions in a 
certain frequency region

Low tolerance to model
uncertainty

Critical regions for control design
Need for a good model in these regions
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Small gain theorem
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It will be used to characterize “robust stability”
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Description of uncertainties in the frequency domain

Re H

Im H

Uncertainty disk
(at a certain frequency)

1) It needs a description by a transfer function which may have any phase but a modulus < 1
2) The size of the radius will vary with the frequency and is characterized by a transfer function
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Additive uncertainty

)()()()(' 1111 −−−− += zWzzGzG aδ

)( 1−zδ any stable transfer function with 1)( 1 ≤
∞

−zδ

)( 1−zWa a stable transfer function

∞

−

∞

−−−− =−=− )()()(')()(' 111

max

11 zWzGzGzGzG a

ABzHSRK d /;/ −==

δ aW

K G
-

+

+

aW
upS−

δ

-

1)()( 11 <
∞

−− zWzS
aupRobust stability condition:

Apply small gain theorem



I.D. Landau : A course on system identification in closed loop 2/Marie Curie Action TOK 3092
28

Multiplicative uncertainties

[ ])()(1)()(' 1111 −−−− += zWzzGzG mδ
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Feedback uncertainties on the input
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Robust stability conditions

),(', δWHH Ρ∈ Family (set) of plant models
Robust stability :
The feedback system is asymptotically stable for all the 
plant models belonging to the family ),( δWΡ

• Additive uncertainties

1)()( 11 <
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aup πωωω ≤≤< −−− 0)()( 1j
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• Multiplicative uncertainties
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• Feedback uncertainties on the input (or output)
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Im G

Re Gω = π
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ω = 0

Robust Stability

Family of plant models:

),,(' xyWGFG δ∈

G – nominal model; 1)( 1 ≤
∞

−zδ

)( 1−zWxy
- size of uncertainty

Robust stability condition:
a related sensitivity

function
a type of uncertainty

1<
∞xyxyWS

⇓
1−

< xyxy WS
defines the size of the
tolerated uncertainty

defines an upper template
for the modulus of the

sensitivity function

There also lower templates (because of the relationship between various sensitivity fct.)
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Robust stability and templates for the sensitivity functions

Robust stability condition:

•The functions                (the inverse of the size of the uncertainties) 
define an “upper” template for the sensitivity functions

• Conversely the frequency profile of               can be interpreted in
terms of tolerated uncertainties
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( G ’ = G + δWa )

Sup dB

actuator effort

size of the tolerated additive uncertainty Wa

0
0.5f s

Sup
-1

Templates for the Sensitivity Functions

Output Sensitivity
Function

Input Sensitivity
Function

Syp max= - M∆Syp dB

0.5fs
0

delay
marginnominal

perform.

Dangerous zones.
Need for good models in
these regions
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Robust Controller Design

Pole placement with sensitivity functions shaping

FDPPP =

RHRR '=

SHSS '=

Nominal performance: SRD HandHofpartandP

Allow to shape the sensitivity functions

-Iterative
Choosing and using band stop filters
(matlab toolbox « ppmaster » )

FjSjFiRi PHPH /,/FP

Several approaches to design :

-Convex optimization
(see Langer, Landau, Automatica, June99, Optreg (Adaptech) )
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The asymptotically stable auxiliary poles (PF) lead in general
to the reduction of in the frequency regions
corresponding to the attenuation regions for 1/PF

Properties of the output sensitivity function

)( ωjS yp

FPn
F qpqP )1()( 11 −− ′+= 05.05.0 −≤′≤− p

DF PPP nnn −≤

In many applications the introduction of damped high frequency auxiliary
poles is enough for assuring the required robustness margins
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and has negligible effects at f << fdisc and at f >> fdisc

Properties of the output sensitivity function

Simultaneous introduction  of a fixed part HSi and of a pair of
auxiliary poles PFi of the form:
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For details see Landau: Commande des Systèmes, Hermes
Efective computation using: filter22.sci (.m)

Properties of the output sensitivity function
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Frequency characteristics Poles-Zeros

360° Flexible Arm

(Identified Model)
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Shaping the Sensitivity Functions
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Robust Discrete Time Controller Design

More details can be found in :
I.D. Landau: Commande des systèmes – conception, identification, mise en œuvre
Hermes, 2002, Paris, chapters 2 and 3 (english translation available)

and

http://landau-bookic.lag.ensieg.inpg.fr

•« Slides » version of the chapters can be downloaded
•Free routines (matlab, scilab) can be downloaded as well as a matlab based software
« ppmaster » for pole placement design  with sensitivity functions shaping

I.D.Landau, R. Lozano, M. M’Saad « Adaptive Control », Springer, 1997, chap.8

I.D. Landau : A course on « Robust Discrete Time Control », Valencia, April 2004

Some references directly related to the course


