Parameterization of polylines in unorganized cross-sections and open surface reconstruction

Joseph Baudrillard TOTAL SA - GIPSA-Lab joseph.baudrillard@total.com

Typical computer-assisted design software reconstructs 3D surfaces by interpolating polylines hand-picked in unorganized cross-sections (not necessarily parallel or orthogonal). Modern approaches mainly consider reconstructing closed surfaces [1]. However, open geological surfaces are frequently found in oil & gas exploration. Some point cloud interpolation methods can reconstruct open surfaces [2]. The authors indeed parameterize points of space $\mathbf{x}_i \in \mathbb{R}^3$ into a convex planar domain where each associated point $\mathbf{u}_i \in \mathbb{R}^2$ is made the "barycenter" of its 3D geometrical neighbors $\mathbf{x}_j \in N_i^G$ as in equation 1. Interpolation is then performed in parameter space, and the resulting surface transformed back in \mathbb{R}^3 . $\lambda_{i,j}$ are built using the inverse distance in \mathbb{R}^3 [2].

$$\mathbf{u}_{i} = \sum_{j \in N_{i}^{G}} \lambda_{i,j}^{G} \cdot \mathbf{u}_{j} , \quad \lambda_{i,j} > 0 , \quad \sum_{j \in N_{i}^{G}} \lambda_{i,j} = 1$$
(1)

Compared to point clouds, polylines are sparse and irregularly distributed: using geometrical neighbors requires a large distance to define N_i^G and handles closed polylines well, but contracts polylines in parameter space. However by locally seeing the polylines as a connected graph, any polyline vertex has a set of topological neighbors that we note N_i^T . Replacing N_i^G by N_i^T leads to a regular distribution of points in parameter space, but closed polylines end up aligned and degenerate. In order to balance this, we propose to use a weighted sum of both neighborhoods to benefit from their respective advantages (see equation 2).

$$\mathbf{u}_{i} = \alpha \sum_{j \in N_{i}^{G}} \lambda_{i,j}^{G} \cdot \mathbf{u}_{j} + (1 - \alpha) \sum_{j \in N_{i}^{T}} \lambda_{i,j}^{T} \cdot \mathbf{u}_{j}$$
⁽²⁾

Instead of a global α value, an even better parameterization can be obtained by computing an optimal α_i for each \mathbf{u}_i that optimizes the distribution of the \mathbf{u}_i similarly to the \mathbf{x}_i (equation 3).

$$\alpha_i = \arg\min_{\alpha} || \mathbf{x}_i - \alpha \sum_{j \in N_i^G} \lambda_{i,j}^G \cdot \mathbf{x}_j - (1 - \alpha) \sum_{j \in N_i^T} \lambda_{i,j}^T \cdot \mathbf{x}_j ||^2$$
(3)

Our approach supports sparser input data and reconstructs open surfaces from a set of open and closed polylines (see figure 1). Optimization of neighborhood N_i and weights $\lambda_{i,j}$ is ongoing, with promising results.

Figure 1: Left to right: Polylines representing a salt dome. (u, v, z) parameterized polylines with 2D parameter coordinates. Triangulation in (u, v, z). Transformation back to (x, y, z)

Joint work with: S. Guillon (TOTAL SA); J. M. Chassery, M. Rombaut and K. Wang (GIPSA-Lab).

References

- M. Zou and M. Holloway and N. Carr and J. Tao. Topology-constrained surface reconstruction from crosssections. ACM Transactions on Graphics, 34(4):128:1–128:10, 2015
- [2] M. S. Floater and M. Reimers. Meshless parameterization and surface reconstruction. Computer Aider Geometric Design, 18(2):77–92, 2001