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Abstract

Nowadays it is common to see image forgeries on almost every media in both
professional and personal contexts. From visual retouches to deliberate fake
scenes, the technology used to create image forgeries gets easier to use for all
users. At the same time, different techniques to assess the authenticity of the
content of an image have appeared by taking advantage of the deep learning
paradigm. In this paper we propose two initialization approaches for Convolu-
tional Neural Networks (CNNs) used for the detection of image manipulation
operations. We focus on the variance stability for the output of a convolutional
filter in CNN. Our first proposal is a scaling approach for first-layer convolutional
kernels which can cope well with filters generated by different algorithms. Our
second proposal is a random high-pass filter initialization approach for CNN’s
first convolutional layer. The first proposal explicitly computes simple statistical
properties of the input signal, while the second approach incorporates the con-
sideration of input statistics in the filter derivation without the need of carrying
out explicit computation on the input. Experimental results show the utility
of both approaches with improved performance in different image manipulation
detection problems and on different CNN architectures.

Keywords: Image forensics, Neural network, Image manipulation detection,
Convolutional filter, Variance stability

1. Introduction

Manipulating an image is no longer a task that requires high-level skills.
From easy-to-use software tools to popular smartphone applications, image forg-
eries are within reach with fast and realistic results. One main objective of image
forensics research is to develop a collection of techniques for the analysis of traces
left by image forgeries in an attempt to verify the authenticity of image [1, 2].
The availability of these techniques is of paramount importance because fake
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images can have serious consequences if used to mislead public opinion when an
important decision is at stake, e.g., biasing political campaigns [3].

With the help of deep learning and more specifically CNN (Convolutional
Neural Network), we can create models for detecting basic image manipulation
operations which are typically used during the creation of a real image forgery.
Some examples of these manipulation operations are JPEG (Joint Photographic
Experts Group) compression, median filtering, noise addition, etc. Regarding
CNN architectures in the image forensics field, the first layer has significant
importance because this is the layer receiving the input data [4, 5, 6], and
accordingly it has a big influence on the final performance of the model. Ma-
jority of image manipulation detection works rely on the usage of high-pass
filters which allow us to study the subtle traces left by manipulation operations.
Nevertheless, as shown later in this paper, the output variance of this kind of
high-pass filters shrinks in a noticeable manner, which in practice limits the
final performance of the network. Using natural image statistics, in this work
we provide an intuitive explanation on the signal shrinkage.

The main contribution of our work is the design and implementation of two
effective approaches for initializing the first layer of a CNN for the detection
of image manipulation operations. The first data-dependent approach takes
into account the statistical properties of the training data to properly scale a
given convolutional filter. We also propose a second, so-called data-independent
approach of random high-pass filter initialization. Different from the first ap-
proach, the second approach does not require explicit computation on the input
signal. We show on several classification problems and different CNN architec-
tures that both approaches lead to an overall better forensic performance when
compared with existing algorithms.

The remainder of this paper is organized as follows. In Section 2, a brief
review of related works is provided. In Section 3 we present theoretical and
experimental studies regarding the variance stability of input and output signals
of first-layer convolutional filters in a CNN, which provide useful insights for the
work described in the remaining sections. Our first proposal of data-dependent
filter scaling approach is presented in Section 4, followed by the second proposal
of a random high-pass initialization approach in Section 5. Experimental results
of both proposals are given in Section 6. At last, we conclude and suggest
some future working directions in Section 7. The first data-dependent scaling
approach was previously presented in a conference paper [7]. Compared with the
conference version, a new data-independent approach (Section 5) is proposed in
this paper and more experimental results are presented (Section 6). Another
new content is a theoretical explanation (in Section 3.3 of this paper) about the
somewhat surprising results of a popular CNN initialization algorithm.

2. Related Work

As mentioned in the last section, in this paper we focus on the detection
of basic image manipulation operations which are typically involved in the cre-
ation of a real image forgery, including for example median filtering, resampling,
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noise addition, and so on. These image manipulation operations slightly change
some statistics of an image and in general leave subtle traces in the image’s
high-frequency components. At the early stage of the research on image manip-
ulation detection, researchers were interested in designing handcrafted features
for the detection of each kind of manipulation, e.g., median filtering [8, 9],
JPEG compression [10, 11] and resampling [12]. Research interests were then
shifted from the aforementioned targeted methods to the general-purpose meth-
ods which can allow us to detect different kinds of manipulations with a same
feature or a same model. Existing general-purpose detection methods make use
of steganalysis features [13] or models of local image statistics [14].

Recent works have taken advantage of the deep learning paradigm in the
form of CNNs. The big advantage is their useful feature learning capability in
a data-driven fashion, without the need of creating handcrafted features which
are in general difficult to design and sometimes suboptimal. Although initially
CNNs were mainly used in the computer vision field, it did not take long for
image forensics researchers to test their performances. The direct use of CNNs
in image forensic problems did not give results as good as expected. One fun-
damental point is that in forensic problems we focus on the subtle differences
usually in image’s high-frequency components but not on the image’s semantic
content. Specifically, traditional CNN initializations such as the widely used
Xavier initialization [15] have limited performance on image forensic tasks, and
special initializations are required to cope better with forensic problems [5, 6].

As mentioned earlier, in image forensics we are usually interested in expos-
ing traces left in the high-frequency components of an image. Therefore, it is
in practice beneficial to use high-pass filters at the first layer of CNN, so as to
extract the relevant high-frequency information for further analysis. One effec-
tive way is to initialize the first-layer convolutional filters with the well-known
SRM (Spatial Rich Model) filters. SRM filters were initially designed to ex-
tract discriminative steganalysis features in the high-pass filtered domain [16].
Recently they have been successfully used for first-layer initialization of CNNs
designed for solving image forensic problems, including the detection of image
manipulation operations [17] and other tasks [18, 19].

A new constrained CNN was proposed by Bayar and Stamm in [6], for the
detection of image manipulations. A constraint is enforced on the first-layer
convolutional filters, to ensure that the network learns high-pass filters at the
first layer. This constraint is realized by an additional normalization procedure
of filter coefficients applied at each step of network training. After the normal-
ization the filter’s center coefficient is set to be −1, while the sum of all other
coefficients is equal to 1. This forms a high-pass filter for the extraction of
discriminative information for manipulation detection.

Recently, an extension of the well-known Xavier initialization [15] was pro-
posed by Castillo Camacho and Wang [20]. The Xavier initialization is broadly
used in the computer vision field to generate random filters for CNN initializa-
tion. The authors of [20] extended this algorithm so that the new algorithm
can generate high-pass initialized convolutional filters which are more suitable
for the image manipulation detection task than the conventional Xavier filters.
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In this paper, we consider and compare our proposed approaches with four
existing algorithms for first-layer initialization of CNNs used to detect image
manipulations, all briefly mentioned above and hereafter noted by Xavier [15],
SRM [16], Bayar [6], and Castillo [20]. The first one [15] is a classical algo-
rithm from the computer vision community, while the other three algorithms
[16, 6, 20] all use high-pass filters for the initialization of CNN’s first convolution
layer. In the following, we first point out the potential shortcomings of the four
algorithms and show that they in general result in output signal shrinkage after
convolution. We demonstrate that our first proposal, i.e., the data-dependent
scaling approach, can effectively solve this signal shrinkage problem by carrying
out a proper scaling of filters generated by any of the four algorithms. Ad-
ditionally, our second proposal of random high-pass initialization shows better
performance than all these four algorithms in their original non-scaled version.

3. Studies on the Output Variance of a Convolutional Filter

Keeping a stable data flow in a CNN is helpful for the training of network,
and the data flow stability is usually measured by the stability of the variance
of the signal in CNN [15, 21]. This means that in the ideal case, after passing
through a convolutional filter (also called a convolutional kernel), the variance
of the output signal should be the same as the variance of the filter input.
In this section we present our derivation of the variance computation for the
output signal of a convolutional filter. The fundamental difference between our
derivation and existing algorithms (e.g., Xavier [15] and Castillo [20]) is that
we assume realistic statistical properties for the network input of natural image
pixels, in particular we do not treat the input pixels as mutually independent as
what is assumed in Xavier [15] and Castillo [20]. As shown later in this section,
our theoretical derivation establishes a mathematical relationship between the
variance of the output of a convolutional filter and the statistical properties of
the filter input, i.e., image pixel values. Accordingly, we can then make use of
the derived result to explain the output signal shrinkage, i.e., the variance of
filter output is (much) smaller than that of filter input, which can be observed for
all the four existing initialization algorithms [15, 16, 6, 20]. To our knowledge,
the assumption of realistic input statistics and the explanation are new in the
literature of deep-learning-based image manipulation detection. For the sake of
readability and easy understanding of the mathematical derivation presented in
this paper, we provide in Table 1 the main symbols and operators/expressions
used in our derivation.

3.1. Motivation and formulation

We notice that the four existing algorithms may have limitations and that
they may not be able to ensure the data flow stability before and after the pro-
cessing of a convolutional filter. In consequence, the variance of convolutional
filter output may be very different from the variance of filter input. More pre-
cisely, in SRM [16] and Bayar [6] algorithms, there is no explicit modelling of the

4



Table 1: List of main symbols and operators/expressions used in this paper.

xi Representing an input image pixel, a scalar value
wi Representing a coefficient of convolutional filter, a scalar value
y Local output of convolutional filter, a scalar value
X A group of input pixels, vector of scalar values
W A group of filter coefficients, vector of scalar values
S Scaling factor of filter, used and deduced in first approach
C Filter center coefficient, used and deduced in second approach

〈., .〉 Inner product of two vectors
E(.) Mathematical expectation of a random variable
Var(.) Variance of a random variable
Cov(., .) Covariance of two random variables
Skewness(.) Skewness of a random variable
U(p, q) Uniform distribution between p and q
Cb

r Combination notation of “r choose b”

relationship between the input and output of the filter: they simply use hand-
crafted SRM filters or ad-hoc normalized filters at the first convolutional layer.
Xavier [15] and Castillo [20] take into account the relationship between input
and output variances in the mathematical modelling for the filter derivation.
However, both algorithms assume that network input is composed of random
variables of independent and identical distribution (iid), but it is clear that
neighboring pixels in natural images have strong local correlations [22, 23]. In
consequence, this unrealistic yet popular assumption used by Xavier [15] and
Castillo [20] may lead to unexpected or biased results for initialized filters.

In the following, we present our mathematical derivation for the computation
of the output variance of first-layer convolutional filter that can be generated by
any underlying initialization algorithm. The derived result allows us to accu-
rately predict the actual variance value of the output signal. For this purpose,
we start from the basic equation of the computation of the local output of a
convolutional filter, as given below:

y = 〈W,X〉 =

N∑
i=1

wi.xi, (1)

where W = (w1, w2, ..., wN ) are coefficients of first-layer convolutional filter,
X = (x1, x2, ..., xN ) represent the local input (i.e., a group of pixel values in
input image) “seen” by the filter, and y is the local output.

For any given filter generated by an arbitrary algorithm, we consider the
filter coefficients wi as known constants. Moreover, different from Xavier [15]
and Castillo [20] which assume that the input xi’s are mutually independent,
here we consider xi’s as mutually dependent random variables following the
classical observation of natural image statistics [22, 23] (i.e., neighboring pixels
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are highly correlated). The output y is a weighted sum of the filter coefficients
and the local input, so by using properties of the variance calculation, we obtain
the following equation for the computation of the output variance:

Var(y) = Var

(
N∑
i=1

wi.xi

)
=

N∑
i=1

N∑
j=1

wiwjCov(xi, xj)

=

N∑
i=1

w2
i Var(xi) + 2

∑
1≤i

∑
<j≤N

wiwjCov(xi, xj).

(2)

It can be seen that the output variance is related to the variance and covariance
terms of the components of the input X = (x1, x2, ..., xN ).

We then make some simplifications and approximations for the above Eq.
(2), by using one classical and well-known property of natural image statistics
[22, 23]: the property of approximate translation invariance which in our case
means that the variances of pixels at different positions are almost the same, i.e.,
Var(x1) ≈ Var(x2) ≈ ... ≈ Var(xN ) ≈ Var(x) with Var(x) the overall variance
of the input. After applying this property we obtain the following equation:

Var(y) ≈ Var(x)

 N∑
i=1

w2
i + 2

∑
1≤i

∑
<j≤N

wiwjZij

 , (3)

with Zij = Cov(xi, xj)/Var(x). Later in this paper, we will make use of an-
other well-known property of natural image statistics [22, 23]: the property of
high correlation between neighboring pixels, which means that within small
image patches Cov(xi, xj) and Var(xi) have very similar values. Together
with the above translation invariance property, we can see that the values of
Zij = Cov(xi, xj)/Var(x) are very close to 1 for pixels in small patches of natu-
ral images. In practice, the above Eq. (3) constitutes an accurate way to predict
the output variance for any given convolutional filter, by using simple statistics
of the input. Moreover, as presented in the remaining of this section, with
this equation and some relevant derivations, we are able to understand the out-
put signal shrinkage which is observed for all the four considered initialization
algorithms mentioned earlier [16, 6, 20, 15].

3.2. Convolutional filter initialized with high-pass filters

We first study the output variance of convolutional kernels initialized with
high-pass filters generated by the three existing algorithms SRM1 [16], Bayar
[6] and Castillo [20]. The size of convolutional filters is 5 × 5 (so we have
N = 25). The input is grayscale patches of size 64 × 64 from the Dresden
database [24]. The considered image manipulations and their parameters are

1Please refer to https://github.com/tansq/WISERNet/blob/master/filler.hpp, from line
347 for the values of the coefficients of 30 SRM filters.
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Table 2: List of image manipulation operations to be detected. For resampling and JPEG
compression, manipulation parameter for each sample is randomly selected from the given set.
“std” means standard deviation and “QF” means quality factor.

Median filtering WindowSize = 3
Gaussian blurring std = 0.5, WindowSize = 3
Additive Gaussian noise std = 1.1
Resampling Factor ∈ {0.9, 1.1}
JPEG compression QF ∈ {90, 91, ..., 100}

presented in Table 2. The output variance is computed in two different ways:
1) by using Eq. (3) with our mathematical derivation; 2) by carrying out actual
convolution computation on input. We find that these two options result in
almost identical results of output variance. The relative difference is typically
less than 5%. This proves the validity of the derived Eq. (3) which provides
a practical and reliable way to calculate output variance without the need of
performing convolution operation.

We compute the ratio of output and input variances, i.e., Var(y)/Var(x),
for the three high-pass filter initialization algorithms and find that they all
result in very small values of this variance ratio, meaning that the output signal
significantly shrinks. For the 30 SRM filters [16], the variance ratio values lie
within the interval of 0 to 0.02, and the mean value of Var(y)/Var(x) is around
0.005 with most of the variance ratio values being less than 1%. For Bayar
[6] and Castillo [20], we generate for each algorithm 10, 000 simulated filters.
The mean value of Var(y)/Var(x) among the 10, 000 simulations is about 0.005
and 0.010, respectively for Bayar [6] and Castillo [20]. Therefore, all the three
high-pass filter initialization algorithms have very small variance ratio values,
reflecting the drastic signal shrinkage at the output of convolutional kernel.

In the following, we provide an explanation for the observed signal shrinkage
mentioned above. This starts with a common characteristic of high-pass filters,
i.e., we have

∑N
i=1 wi = 0 which means that all the coefficients in a high-pass

filter sum up to 0. Commonly used high-pass filters, such as gradient-based
edge detection filter and Laplacian filter, all have this characteristic. From
the property

∑N
i=1 wi = 0, we can easily deduce that

∑N
j=1 wj .

∑N
i=1 wi =∑N

i=1

∑N
j=1 wi.wj = 0. By reorganizing the wi.wj terms into groups of same or

different indexes, we obtain the equation below:

N∑
i=1

w2
i + 2

∑
1≤i

∑
<j≤N

wiwj = 0. (4)

For SRM filters [16] and the constrained filter of Bayar [6], the filter coefficients
sum up exactly to 0. For Castillo [20], the sum of filter coefficients is approx-
imately equal to 0 because theoretically the mathematical expectation of this
sum is 0 (details in [20]). The expression on the left side of Eq. (4) above
looks very familiar. In fact by replacing Zij by 1 for the term in parentheses of
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Eq. (3), we obtain this same expression. Furthermore, for pixel values within
small patches of natural images, the values of Zij = Cov(xi, xj)/Var(x), i.e.,
the covariance of two pixels divided by the overall pixel variance, are close to
1. We verified on Dresden database that indeed Zij takes values that are very
close to 1 in patches of size 5× 5 (same size as the convolutional filter), with a
minimum value of 0.9573 achieved for a pair of pixels that have the maximum
distance within 5×5 patch. In all, we can see that when a high-pass filter (with
the property shown in Eq. (4)) takes natural image pixels (with Zij values close
to 1) as input, the expression in the parentheses of Eq. (3) would take a very
small value. This expression is a multiplicative factor relating the input and
output variances of a convolutional filter as shown in Eq. (3), and this explains
why high-pass filters have a small output variance Var(y) when compared to the
input variance Var(x).

The argument presented in the previous paragraph helps us understand the
reason of having a very small output variance for all the three high-pass filter
initialization algorithms of SRM [16], Bayar [6] and Castillo [20]. For SRM [16]
and Bayar [6] this is mainly caused by the fact that no consideration has been
taken on the data flow stability, while for Castillo [20] this is in part caused by
the unrealistic iid assumption of input signal components (x1, x2, ..., xN ).

3.3. Convolutional filter with Xavier initialization

It is also interesting to study the distribution of the ratio of output and input
variances for the conventional Xavier initialization [15] from the computer vision
community. We use PyTorch to generate 10, 000 random Xavier filters of size
5×5, and the obtained empirical histogram of the variance ratio Var(y)/Var(x)
is shown in Figure 1. It can be observed that the histogram has very high oc-
currences at small values within the range from 0 to 0.3. It is rather surprising
to see such a big mass concentration at small values, because the Xavier initial-
ization was designed to maintain the variance stability. Ideally the histogram
should have high occurrences around the value 1 at which the output variance
is equal to the input variance. However, in practice the output-input variance
ratio Var(y)/Var(x) has big chance to take small values. In fact, the empirical
probability to have Var(y) < 1

2Var(x) (i.e., output variance is smaller than half
of input variance) is about 52%. These simulation results demonstrate that the
output signal shrinkage problem also exists for Xavier initialization.

Theoretical explanation for the histogram shape of Xavier simulations

We give further explanation for the shape of the histogram in Figure 1. The
objective is to theoretically compute the key statistical properties, i.e., mean,
variance and skewness, of the output-input variance ratio Var(y)/Var(x), based
on a proper formulation and a realistic assumption of natural image statistics
for filter input. If the theoretical prediction coincides well with the empirical
observation as given by the simulations and the histogram, this will be a strong
evidence for the appropriateness of our theoretical formulation and of the as-
sumption of input statistics. This would also help us well understand the rather
unexpected empirical behavior of the Xavier algorithm.
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Figure 1: Histogram of the ratio of output and input variances Var(y)/Var(x) for 10, 000
simulated filters generated by the Xavier initialization algorithm [15].

We notice that the histogram in Figure 1 for the output-input variance ra-
tio of the popular Xavier initialization [15] is somewhat surprising because we
would rather expect a high peak at 1 for which Xavier keeps the stability of
output and input variances. However, in practice we observe very high occur-
rences at small values; together with a long tail on the right (probably due to
numerical sampling used in the initialization and we do not completely show
the tail in the histogram), the value of empirical mean is around 1. In addi-
tion, we can seen that the ratio Var(y)/Var(x) has a certain variance because
it can take both rather small and relatively big values. More importantly, the
histogram is featured with a big positive skewness, which means that the tail
on the right side is longer and the mass is concentrated on the left side of the
histogram. In the following, we show that with the correct assumption on the
input statistics and a proper theoretical formulation we can predict the values of
the mean, variance and skewness of the empirical histogram in Figure 1, which
are important statistical properties reflecting the shape of the histogram.

As mentioned earlier, in our simulations we generated 10, 000 Xavier fil-
ters of shape 5 × 5. These filters were created using the PyTorch function
torch.nn.init.xavier uniform . The uniform distribution used for draw-
ing pseudo-random samples is U(−

√
3/25,

√
3/25), based on the general form

of uniform distribution U(−
√

3/N,
√

3/N) for Xavier initialization of a filter
comprising N scalar coefficients (here we have N = 5 × 5 = 25). With these
characteristics we can study the theoretical properties of the output-input vari-
ance ratio and compare with the results of experimental simulations.

For this scenario of Xavier filter simulations, we consider the statistical prop-
erties of X = (x1, x2, ..., xN ) as fixed while W = (w1, w2, ..., wN ) are sampled in
a pseudo-random way to create each of the 10, 000 Xavier filters. We know that
in each simulation the output variance Var(y) is given by Eq. (2) and approxi-
mated by Eq. (3). The computation of Var(y) can be further approximated by
replacing Cov(xi, xj) by Var(x), or equivalently by replacing the Zij terms in
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Eq. (3) by 1. This gives the following Eq. (5) where we can notice that Var(y)
is a random variable dependent on wi,i=1,2,...,N while Var(x) is the fixed overall
variance of the input.

Var(y) =

N∑
i=1

N∑
j=1

wiwjCov(xi, xj)

≈ Var(x)

N∑
i=1

N∑
j=1

wiwj

= Var(x)(w1w1 + · · ·+ w1wN + w2w1 + · · ·+ wNwN ).

(5)

For the sake of clarity and easy understanding of the subsequent derivations,
we develop all the N2 terms of wiwj in the parentheses above.

1) Mean of Var(y)/Var(x)
We begin by calculating the mean of Var(y) as detailed in Eq. (6) below.

The last equation is obtained with help of the property of Xavier initialization
[15] for which we have E(w2

i ) = Var(wi) = 1
N (for Xavier wi has zero mean).

Additionally, many of the N2 terms of E(wiwj) in the summation are equal to
zero when i 6= j (because w1, w2, ..., wN follow zero-mean iid). In the end, only
the N terms of E(wiwi) contribute to the sum.

E(Var(y)) ≈ Var(x)E(w1w1 + · · ·+ w1wN + w2w1 + · · ·+ wNwN )

= Var(x)

N∑
i=1

N∑
j=1

E(wiwj) = Var(x)

N∑
i=1

E(wiwi)

= Var(x)NE(w2
i ) = Var(x).

(6)

The derived theoretical mean of output-input variance ratio, i.e., E(Var(y)/Var(x)),
is actually the desired value 1 of Xavier initialization. However as we showed
previously, the histogram of Var(y)/Var(x) does not have a high peak at 1; in
contrast, it has a big mass concentration on the left and a long tail on the right,
as well as a certain range of variation. In the following we will theoretically
derive the variance and skewness of the ratio of output-input variances to well
understand the shape of the empirical histogram, in particular the relatively big
variation range and the asymmetric distribution of the variance ratio.

2) Variance of Var(y)/Var(x)
Ideally the variance of Var(y) should be very small, reflecting the stability of

output variance in a large number of simulations. Nevertheless, we can see from
the simulations that Var(Var(y)) would not be very small because the variance
ratio Var(y)/Var(x) can be a relatively small or a relatively big value. In order
to calculate Var(Var(y)), we use the standard formula of the variance of the
sum of (potentially) correlated random variables as shown in the third row of
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Eq. (7) below.

Var(Var(y)) ≈ Var

Var(x)

N∑
i=1

N∑
j=1

wiwj


= Var2(x)Var

 N∑
i=1

N∑
j=1

wiwj


= Var2(x)

 N∑
i=1

N∑
j=1

N∑
k=1

N∑
l=1

Cov(wiwj , wkwl)


= Var2(x)

[
4

5N
+

2(N − 1)

N

]
.

(7)

In order to obtain the final result in the last row above, we make use of the fact
that among N4 terms of Cov(wiwj , wkwl) in the summation on the third row of
Eq. (7), many of them are equal to zero. For example, this is the case for terms
like Cov(w2

i , wkwl) = 0 (when i = j and i 6= k 6= l) or Cov(wiwj , wkwl) =
0 (when the four indexes are all different). In fact, only the N terms of
Cov(w2

i , w
2
i ) = 4

5N2 and the 2N(N − 1) terms of Cov(wiwj , wiwj) = 1
N2 con-

tribute to the sum of the covariance terms, which leads to the final equation. The
detailed derivation is omitted here for the sake of brevity but should be easy to
be reproduced. One hint is that the different covariance terms Cov(wiwj , wkwl)
can be easily computed by using properties of wi,i=1,2,...,N , i.e., they follow iid

of uniform distribution U(−
√

3/N,
√

3/N). Another hint is that we can group
the N4 covariance terms into different categories and count the number of terms
in each category with basic knowledge of combinatorics.

In our case we have N = 25, so according to Eq. (7) it can be deduced that
Var(Var(y)) ≈ 1.952Var2(x), i.e., we have Var(Var(y)/Var(x)) ≈ 1.952. The
10, 000 simulations show that the histogram of Var(y)/Var(x) has an empirical
variance of about 1.858. The theoretical and simulated results are close to each
other and the small difference is mainly due to the (reasonable) approximation
made in the derivation, i.e., we approximate all the Cov(xi, xj) terms by Var(x)
in Eq. (5). We can also observe that the variance of the output variance is not
small, being about 1.9 times of the square of the input variance.

3) Skewness of Var(y)/Var(x)
The skewness is probably the most interesting and important statistical

property for understanding the shape of the histogram in Figure 1 which has
a big mass concentration on the left and a long tail on the right. In order to
compute the skewness of Var(y), we start with the general formula of skewness
computation as given in Eq. (8) below:

Skewness(Var(y)) =
E[Var3(y)]− 3E[Var(y)]Var(Var(y))− E3[Var(y)]

(Var(Var(y)))
3
2

. (8)
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We have the formula of E(Var(y)) and Var(Var(y)) respectively in Eq. (6) and
Eq. (7). Therefore, in order to calculate the skewness we now only need to
compute the term E[Var3(y)]. By using Eq. (5) we can write this term as:

E[Var3(y)] ≈ Var3(x)E


 N∑

i=1

N∑
j=1

wiwj

3


= Var3(x)

N∑
i=1

N∑
j=1

N∑
k=1

N∑
l=1

N∑
m=1

N∑
n=1

E [wiwjwkwlwmwn] .

(9)

There are N6 terms in the summation above, but similar to the derivation of
the variance of Var(y) earlier in this subsection, only several kinds of specific
terms are not zero and contribute to the sum. There are three kinds of non-zero
terms respectively with the form of E(w6

i ), E(w2
iw

4
j ) and E(w2

iw
2
jw

2
k). In fact,

still using the hints mentioned earlier for the computation of Var(Var(y)), we
can show that after development the other kinds of terms all have at least a
multiplicative term like E(wi), E(w3

i ) or E(w5
i ) which is equal to 0 due to the

fact that in Xavier wi follows a zero-mean uniform distribution.
Regarding the non-zero terms, after some simple calculations we can deduce

that there are N terms like E(w6
i ) = 27/(7N3), N(N − 1)C2

6 = 15N(N − 1)
terms like E(w2

iw
4
j ) = 27/(15N3), and C3

NC2
6C2

4 = 15N(N − 1)(N − 2) terms

like E(w2
iw

2
jw

2
k) = 1/N3, where Cb

r is the combination notation of “r choose b”.

With these results we can compute the expectation of Var3(y) as shown in Eq.
(10) below.

E[Var3(y)] ≈ Var3(x)

[
N.27

7N3
+

15N(N − 1).27

15N3
+

15N(N − 1)(N − 2)

N3

]
= Var3(x)

[
105N2 − 126N + 48

7N2

]
.

(10)

Here with N = 25, we have E[Var3(y)] ≈ 14.29Var3(x). With Eq. (10) for
E[Var3(y)], Eq. (6) for E(Var(y)) and Eq. (7) for Var(Var(y)), we can calculate
the skewness of Var(y) by using Eq. (8). This results in a theoretical value of
about 2.726 for the skewness, i.e., Skewness(Var(y)/Var(x)) ≈ 2.726. From the
10, 000 simulations we obtain an empirical skewness value of about 2.811 for the
output-input variance ratio. These results confirm the validity of the theoretical
prediction as well as a relatively big positive skewness value for the histogram
with a big tail on the right and a dense mass concentration on the left.

From this theoretical analysis of the mean, variance and skewness of the
quantity Var(y)/Var(x), we demonstrate that with the new and correct as-
sumption of strong correlation between neighboring pixels in natural images,
we can accurately predict and explain the statistical properties of the output-
input variance ratio histogram for Xavier initialization. By contrary, this would
not have been possible with the previous assumption of independently and iden-
tically distributed pixel values. Indeed, the shape of the histogram is somewhat
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surprising and unexpected because in most cases the variance of the output is
smaller than the input, implying that the variance stability is not maintained
as what is expected for Xavier initialization.

In all, the theoretical and experimental studies presented in this section have
deepened our understanding about existing CNN initialization algorithms and
motivated our work on the design and implementation of new approaches. We
also hope that these studies may provide insights and inspirations for subsequent
works among the research community.

4. First Approach: Data-Dependent Scaling of Convolutional Filter

As analyzed and discussed in the previous section, the output signal shrink-
age occurs for all the four existing initialization algorithms of convolutional
filters. In particular, for algorithms generating high-pass filters [16, 6, 20], the
variance of output signal is in most cases less than 1% of the variance of input.
Additionally and surprisingly, even for the conventional Xavier initialization
[15], the output variance has quite high probability to be considerably smaller
than the input variance. This signal shrinkage is in general not favorable for
the network training, and we show in Section 6 with example that occasionally
this data flow shrinkage results in training failure of CNN.

The idea of our first approach to solving the signal shrinkage problem is
very simple. For a given filter W = (w1, w2, ..., wN ) generated by any under-
lying algorithm, we derive a proper scaling factor S and use the scaled filter
W̃ = S.W as the initialization of first-layer convolutional kernel. The scaling
factor S ensures that the scaled filter W̃ leads to almost identical values for the
input and output variances. We call it a data-dependent approach because the
derivation of scaling factor is dependent on explicit computation on the input
data. According to how the scaling factor is computed, we propose two different
versions of this first approach, as briefly described below.

Covariance-based method. We call the first version as a covariance-based
method, because this method computes the variance and covariance terms of
the input signal components for the calculation of the scaling factor. More
precisely, it can be observed from Eq. (3) that the input variance Var(x) and
the output variance Var(y) is related by a multiplicative factor dependent on
simple statistical properties of the input data, i.e., the Zij terms which is equal
to Cov(xi, xj)/Var(x). It is easy to see that if we want to have Var(y) ≈ Var(x),
we need to reverse the effect of this multiplicative factor i.e., the term in the
parentheses in Eq. (3). Therefore, the scaling factor S for a given filter W =
(w1, w2, ..., wN ) is simply computed as:

S =

√√√√√1

/ N∑
i=1

w2
i + 2

∑
1≤i

∑
<j≤N

wiwjZij

. (11)
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In practical implementation, it is sufficient to compute the Zij terms by using
a small amount of training data, e.g., selecting 10% of training samples and
extracting 10 random patches of 5×5 pixels from each selected training sample.
Experimentally this gives very reliable and stable result of scaling factor, even
when compared to the computation on the whole training dataset.

Convolution-based method. We call the second version as a convolution-
based method because it computes the scaling factor in a straightforward way by
carrying out convolution operation. Similar to the covariance-based method, it
is safe to perform convolution on a small amount of input data x̂ (e.g., randomly
selecting 10% of training samples), so as to obtain the corresponding small
amount of output data ŷ. The scaling factor S is simply obtained as:

S =
√

Var(x̂)/Var(ŷ). (12)

Technically, among the two methods we have a slight preference for the
covariance-based method. The reason is that it is sufficient to perform only
once the main part of the computation of the covariance-based method (i.e.,
the computation of input’s variance and covariance terms), and later these terms
can be reused for any new filter to be scaled. Contrarily, for the convolution-
based method, the main computation of convolution operation needs to be done
for every given filter. Nevertheless, the computational cost of both methods
is very low. The calculation of scaling factor for a given filter takes less than
3 seconds for both methods, on a computer equipped with a 2.50GHz CPU
and an Nvidia R© GeForce 1080 Ti GPU. Such computation times are orders of
magnitude lower than the time required to train a CNN.

5. Second Approach: Random High-Pass Initialization

5.1. Motivation

In the previous section we described a data-dependent scaling approach for
the initialization of the first layer of a CNN for the image manipulation detection
problem. Nevertheless, there are practical scenarios in which it is not easy
or not possible to reliably calculate the necessary statistical properties of the
training data due to different constraints in the deployment. For example, the
training data may come in a sequential and dynamic way denying the option to
reliably calculate beforehand the covariance terms and the scaling factor from
the beginning. A scarce-data scenario where the available data would not be
enough to have a confident statistical estimation may also be in place. Indeed,
in practice when we have very few data for the estimation of input statistics, we
may obtain a very small scaling factor; this inappropriate scaling factor will even
further shrink the output signal and thus decrease the performance after scaling.
Additionally, although the computation complexity of our scaling solution is
negligible in the deep learning field, one main trend is the usage of end-to-end
methods without pre-processing steps for better technical flexibility. For these
reasons we believe that it is necessary and beneficial to propose a second, random

14



Figure 2: Notations of the filter of our RHP initialization approach (left) and of the input
(right). We show as an example the case of a 5 × 5 filter.

high-pass initialization approach which does not explicitly utilize the input data,
i.e., it does not need to calculate explicitly the variance and covariance statistics
of input or to carry out convolution computation on the input data. Such
an approach follows the mainstream of data-independent random initialization
approach for CNNs in the research community. It is worth mentioning that
“data-independent” is perhaps not a very rigorous term to describe our second
approach because it indeed considers the statistics (with approximations) of the
input data; nevertheless this second approach does not explicit use the input
data for filter initialization. With a little abuse in using this term, we still from
time to time call this second proposal as a data-independent approach.

5.2. Formulation and derivation

Our objective in this section is to propose a new RHP (Random High-Pass)
initialization approach of convolutional filters for image manipulation detection
problems. The generated random high-pass filters will be used as initialization
for the first layer of a CNN. To accomplish this, we use as filter template such as
the one shown in Figure 2. The symbol C represents an unknown constant in the
filter, W = (w1, w2, ..., wN ) are independent scalar random variables following
an appropriate distribution, and X = (x1, x2, ..., xN , xN+1) contains a group of
mutually correlated random variables representing the input pixel values. We
would like to mention again that this realistic formulation of mutually correlated
input pixel values (i.e., xi’s) is the fundamental difference between our approach
and the formulation of Xavier [15] and Castillo [20] where xi’s are considered
as independent random variables. Despite the fact that the template shown in
Figure 2 has a shape of 5 × 5, our proposal can be applied to different filter
shapes where there are two groups of coefficients: the unknown constant C and
the remaining N random coefficients wi,i=1,2,...,N . For the template shown in
Figure 2 we have N = 24. The actual values of wi,i=1,2,...,N are sampled from
an adequate distribution which plays an important role as described later.

With the objective of ensuring the high-pass behavior (i.e., filter coefficients
sum up to 0) for the designed filter, the mathematical expectation of the ran-
dom variable wi should be equal to −C

N in order to compensate for the unknown
constant C. By having this characteristic, the expectation of the sum of all
wi,i=1,2,...,N is equal to −C, together with C making the initialized kernel re-
semble a high-pass filter. As mentioned before, in Xavier [15] and Castillo [20],
both wi and xi were assumed as independent random variables. In our first
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proposal described in Section 4, we considered wi as known constants (i.e., co-
efficients of a given filter to be scaled) while xi as correlated random variables.
Here for our second proposal of RHP approach, wi,i=1,2,...,N are independent
random variables, and xi,i=1,2,...,N,N+1 are mutually correlated random vari-
ables following natural image statistics.

We know that the local operation of an input and a convolutional filter can
be expressed as an inner product. With a filter of the characteristics described
above and with the notations of filter and input as illustrated in Figure 2 (with
5× 5 filter as example), the output can be calculated as

y = w1x1 + w2x2 + ...+ wNxN + CxN+1. (13)

Similar to the derivation in the last section and still using the general formula
of the variance of a sum of (potentially) correlated random variables, we can
compute the variance of the output y by dividing the possible terms into four
sets, as shown below:

Var(y) =

N∑
i=1

Var(wixi) + Var(CxN+1)

+ 2
∑
1≤i

∑
<j≤N

Cov(wixi, wjxj) + 2

N∑
i=1

Cov(wixi, CxN+1).

(14)

In the above Eq. (14), there are two sets of variance terms and two sets of
covariance terms. These four sets of terms are obtained by considering all the
possible combinations between the two groups of coefficients in the designed
filter: the first group of unknown constant C and the second group of N random
variables wi. By using the variance property of product of random variables [25]
and the expectation of wi (i.e., E(wi) = −C

N ), we obtain the following Eq. (15)
for the variance of y:

Var(y) =

N∑
i=1

Var(xi)

[
Var(wi) +

C2

N2

]
+ C2Var(xN+1)

+ 2
∑
1≤i

∑
<j≤N

C2

N2
Cov(xi, xj)− 2

N∑
i=1

C2

N
Cov(xi, xN+1).

(15)

Following the realistic and classical assumption of almost identical variance for
all input pixels xi,i=1,2,...,N,N+1 (i.e., the approximate translation invariance in
natural images [22, 23] which was also utilized in the formulation for computing
output variance in Section 3.1), we can make some adjustments to Eq. (15) by
substituting Var(xi) and Var(xN+1) by Var(x) (i.e., the total variance of input).
In addition, to simplify the notations we replace Cov(xi, xj)/Var(x) by Zij and
Cov(xi, xN+1)/Var(x) by ZiN+1. The above approximation and simplification
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give the following Eq. (16):

Var(y) ≈ Var(x)

 N∑
i=1

[
Var(wi) +

C2

N2

]
+ C2 + 2

∑
1≤i

∑
<j≤N

C2

N2
Zij − 2

N∑
i=1

C2

N
ZiN+1

 .

(16)
Next, following the reasonable assumption of highly-correlated neighboring pix-
els in natural images [22, 23], we can substitute both Zij and ZiN+1 by 1 because
theoretically and experimentally these terms are smaller than but very close to
1 (cf., the discussion below Eq. (4) in Section 3.2). With this approximation
applied to Eq. (16), we obtain the following Eq. (17):

Var(y) ≈ Var(x)

(
NVar(wi) +N

C2

N2
+ C2 + 2

N(N − 1)

2

C2

N2
− 2N

C2

N

)
= Var(x) [NVar(wi)] .

(17)

Interestingly, all the terms where C is involved nicely disappear after apply-
ing the considered approximations, which makes our derived result simple and
concise. It is now clear from the above Eq. (17) that in order to make Var(x)
and Var(y) close to each other, we should have the following property for filter
coefficients wi:

Var(wi) =
1

N
. (18)

At first glance, the above Eq. (18) happens to be the same as the one deduced
for the Xavier initialization [15], but there are fundamental differences. First,
the filter template for our case will generate a high-pass filter suitable for image
forensics problems, while the Xavier initialization in general does not have this
property. More precisely, in our filter template we have a new unknown constant
C together with wi forming a high-pass filter, while Xavier filter does not have
this unknown constant. Second, the Xavier initialization assumes that both
input X and filter coefficients W are random variables following zero-mean iid,
while in our RHP initialization approach xi’s are mutually correlated random
variables and wi’s are random variables with a non-zero mathematical expecta-
tion as E(wi) = −C

N . We can see that the statistical property of wi is related
to the unknown constant C. This is explained with further derivations in the
next paragraph.

For the sampling of wi,i=1,2,...,N , we use a simple uniform distribution with
the previously mentioned expectation of −C

N , i.e., U
(
− 2C

N , 0
)

or U
(
0,− 2C

N

)
depending on the sign of C. We choose to use this distribution because it is
probably the simplest distribution with the prescribed mathematical expecta-
tion. From the chosen distribution we can easily calculate the variance of wi

as Var(wi) = C2

3N2 . In the meanwhile, from Eq. (18) we know that in order to
make the input and output variances comparable we should have Var(wi) = 1

N .
After combining these two equations we obtain the following Eq. (19) to derive
the value of C:

Var(wi) =
C2

3N2
=

1

N
=⇒ C = ±

√
3N. (19)
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Figure 3: Histogram of occurrences of output-input variance ratio for our RHP approach and
the Xavier initialization algorithm [15]. Figure on the left shows the histogram of occurrences
of the variance ratio Var(y)/Var(x) for 10, 000 simulations of our RHP filters. On the right,
we show the comparison between the histogram of our RHP approach and the histogram of
10, 000 Xavier filters.

Accordingly, we also obtain the interval of the uniform distribution for the

sampling of wi as U
(
− 2
√
3N
N , 0

)
or U

(
0, 2
√
3N
N

)
. With a derived filter such as

the one with the template of 5× 5 shown in Figure 2 left (N = 24), we have the
value of C as C = ±

√
72 ≈ ±8.485.

5.3. Output variance

Figure 3 left shows the histogram of the output-input variance ratio, i.e.,
Var(y)/Var(x), for 10, 000 simulated filters using our proposed RHP initializa-
tion, while Figure 3 right shows a comparison between our RHP approach and
the well-known Xavier initialization [15]. As we can see, for our RHP approach
the high occurrences no longer happen in an interval of small values as what hap-
pens with Xavier algorithm. Practically there is no occurrence for our approach
within the interval where Xavier algorithm has the majority of occurrences. In-
deed, the minimum value of output-input variance ratio for our RHP approach
in the 10, 000 simulations is 0.41 with a median of 1.01, so there is no occurrence
at all from 0 to 0.40 for our approach. By contrast, the Xavier algorithm has
a minimum value of 0.002, a median of 0.46, and a big mass concentration of
occurrences between 0 and 0.3. We can also observe that for our RHP initial-
ization approach, the majority of occurrences occur in the range of 0.5 to 0.9,
which is closer to an ideal scenario of 1.0 but not centered at 1.0 (though the
median 1.01 as reported above is very close to 1). Our explanation is that this
shift occurs due to the approximations that we make in our derivations, in par-
ticular we approximate all the Zij = Cov(xi, xj)/Var(x) terms by 1. Further
theoretical studies in an attempt to design a random high-pass initialization
with a histogram ideally centered at 1 are one part of our future work.

The preliminary results in Figure 3 show the effectiveness of our RHP ini-
tialization approach. In the next section we present experimental performances
obtained for different image manipulation detection problems and on different
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CNN architectures for our two approaches, i.e., the first proposal of the data-
dependent filter scaling approach (Section 4) and the second proposal of the
random high-pass initialization approach (this Section 5).

6. Experimental Results

In this section we conduct a series of experiments for the test and valida-
tion of our initialization approaches in different scenarios. In the experiments,
we consider and compare with the four existing CNN initialization algorithms
mentioned earlier (Xavier [15], SRM [16], Bayar [6], and Castillo [20]). In or-
der to test on different CNN architectures, besides the well-known network of
Bayar and Stamm [6], we carry out experiments on a smaller network built by
ourselves. Two different image manipulation detection problems are considered:
a multi-class classification problem of a set of manipulations and a challenging
binary detection problem of high-quality JPEG compression.

In one set of experiment, we also perform test on a variant of the network
of [6] with more kernels at first layer. This is still for the purpose of consider-
ing more experimental settings for the validation of the proposed approaches.
Moreover, we conduct a comparative experiment with the well-known batch
normalization technique [26] under the multi-class classification scenario. We
also illustrate the potential problem of randomly choosing a few handcrafted
filters from a pool of such filters when used for CNN initialization.

Our experimental studies are based on PyTorch and Nvidia R© GeForce 1080
Ti GPU. The experimental data are generated from the Dresden database [24]
which comprises 1491 unprocessed raw images (in .NEF and .DNG format) with
resolutions ranging from 1828 × 1372 to 3872 × 2592. For the preparation of
experimental data, we first divide the Dresden images into three groups respec-
tively for training, validation and testing with the fraction of 3:1:1. The raw
Dresden images are read and then converted to grayscale, and the converted
grayscale images are saved in lossless .TIF format from which 64× 64 random
patches are extracted. We follow [6] to have the same number of extracted
patches, and this will be detailed later in this section. The size of patches (i.e.,
64 × 64) is rather small and this makes it challenging to detect manipulation
operations on them.

6.1. Multi-class problem with the CNN of Bayar and Stamm

The objective for the multi-class forensic problem is to correctly classify six
classes of original and manipulated patches. For the creation of manipulated
patches, we make use of the five manipulation operations listed in Table 2. As
mentioned earlier, we follow [6] to have exactly the same number of training
and testing patches. More precisely, the training set comprises 100, 000 patches
(≈ 16, 667 per class) and the testing set includes 32, 000 patches (≈ 5, 333 per
class). The manipulation operations and their parameters in our experiments
are the same as those in [20, 7] and are more challenging when compared with
[6]. Moreover, we use 64 × 64 patches in our experiments while authors of [6]
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Figure 4: Examples of images from Dresden database [24] and the generated patches used in
our experiments. Bottom images on columns A and D show original patches while columns
B and E show the JPEG compressed and median filtered patch respectively. Columns C and
F show the thresholded absolute differences for the two pairs of original and manipulated
patches. The threshold is set as 20.

mainly use 256 × 256 patches. This also makes it more difficult to detect ma-
nipulations in experiments presented in this paper. Figure 4 shows on the first
row two images of Dresden database. The bottom row shows both original and
manipulated patches along with a binary representation of thresholded abso-
lute difference between pair of original and manipulated patches. We can notice
that the difference between original and manipulated patches, both visually and
computationally, is quite small, reflecting that we indeed deal with a challenging
forensic problem.

Experiments in this subsection are performed on the well-known network
designed by Bayar and Stamm [6] which has 3 filters at the first layer. The
first-layer convolutional filters are initialized in five different ways: Bayar [6],
SRM [16], Castillo [20], Xavier [15] and our RHP approach. In order to enhance
the statistical significance of our experiments, 5 different runs are performed for
each algorithm, as well as for the scaled versions obtained by applying our data-
dependent scaling approach described in Section 4 (both covariance-based and
convolution-based methods are tested). Regarding the initialization with SRM,
in each run we randomly choose 3 filters from the set of 30 available SRM filters
(cf., link in footnote 1). In order to achieve fair and meaningful comparisons, for
each run it is ensured that the original and scaled versions have the same “base
filters” and that the only difference is the scale of filters. The network training
procedure follows the original paper of Bayar and Stamm [6]. CNN training
parameters are the followings: the batch size is 64, the total number of epochs
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is 60, the optimizer is based on stochastic gradient descent with the momentum
equal to 0.95 and the weight decay equal to 5e−4, the initial learning rate is
1e−3, and the learning rate follows a step decay schedule with a multiplicative
decay factor of 0.5 applied every 6 epochs.

For the constrained algorithm of Bayar [6], two variants are designed and
tested for the filter scaling. In the first variant denoted by “Bayar A.”, the
filter scaling is carried out at each step of network training just after Bayar’s
constraint enforcement via filter normalization (cf., Section 2). In the second
variant denoted by “Bayar B.”, we only apply scaling on the initialized con-
strained filter, and later the network is trained freely without any constraint or
scaling. With this second variant “Bayar B.” which has also much lower com-
putational cost than the first variant, we would like to test the idea that after
performing a good initialization with an appropriate filter scaling, it would not
be necessary to enforce the constrained training proposed in [6].

Following [6, 20], in this paper we measure the forensic performance by
using the classification accuracy on testing set (i.e., the test accuracy), which
is computed as the percentage of correctly classified patches among all the test
patches of different classes. The computation of test accuracy is given in Eq.
(20), where M is the number of predictions (i.e., the number of samples in
testing set), l̃i is the ground-truth label of i-th sample, li is the predicted label
of i-th sample, and 1(.) is the indicator function.

Accuracy =
1

M

M∑
i=1

1(l̃i = li). (20)

Table 3 presents the test accuracies of different algorithms under the multi-
class classification scenario. As mentioned earlier, the accuracy values are av-
erage of 5 different runs, and we make sure that for each group of run same
“base filters” are shared between original and scaled versions. Regarding our
RHP proposal, we do not consider a scaled version given the fact that a random
initialization without any pre-processing (e.g., scaling) is the objective for this
proposal. Furthermore, as described later, filter values obtained from the RHP
approach are in fact similar to the scaled ones.

In Table 3 the best result of unscaled version (i.e., in the column of “Original
version”) is in bold, and we show in parentheses the performance improve of
scaled version compared to the corresponding unscaled version in the same row.
We can see from Table 3 that in comparison to the original unscaled version of
all the other algorithms, our RHP approach has the highest test accuracy with
an improvement of at least 1.96% (96.35% vs. 94.39%, compared to the second
best SRM algorithm). We can also observe that the accuracy of RHP is similar
to but slightly lower than the results of scaled Castillo and scaled SRM. This is
probably because the RHP approach does not ensure perfect equality of input
and output variances, as illustrated in Figure 3. Nevertheless, the proposed RHP
initialization is computationally more efficient than initializations with scaled
filters, and it is also technically more flexible by avoiding a pre-processing step
of statistics or convolution computation which explicitly uses the input data.
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Table 3: Test accuracy (in %, average of 5 runs) of the multi-class classification problem, on
the network of Bayar and Stamm [6]. We report in parentheses the accuracy improvement of
scaled version in comparison to the original version in the same row.

Initialization
Original
version

Convolution-based
scaling (our)

Covariance-based
scaling (our)

Bayar [6] A.
94.19

96.04 (+1.85) 96.02 (+1.83)
Bayar [6] B. 96.15 (+1.96) 96.22 (+2.03)
Castillo [20] 93.71 96.45 (+2.74) 96.42 (+2.71)
SRM [16] 94.39 96.54 (+2.15) 96.55 (+2.16)
Xavier [15] 93.48 94.61 (+1.13) 94.71 (+1.23)
RHP init. (our) 96.35 - -

Additionally, our proposed filter scaling approach is able to consistently im-
prove the forensic performance, as reflected by values in parentheses in Table 3.
After scaling, the increase in terms of test accuracy goes from 1.13% to 2.74%.
Another observation is that the two versions of our scaling approach give almost
identical performance improvement. Experimentally, the scaling factors derived
by the two versions (covariance-based or convolution-based) have almost same
value. It is also interesting to notice that among the two variants of scaled
Bayar, “Bayar B.” achieves slightly higher test accuracy than “Bayar A.” and
in the meanwhile is more efficient in terms of computation cost. This probably
means that our intuition mentioned earlier may be correct, that is, by using
a good initialization with correct scale we would not be forced to carry out
constrained training. We would like to clarify that the forensic performance of
Bayar presented in Table 3 is generally lower than the results in the original
paper [6]. The main reason is that as mentioned at the beginning of this sec-
tion, the detection problem in our experiments is more difficult by considering
manipulations with more challenging parameters and patches of smaller size. In
the meanwhile, the performance of Castillo presented in Table 3 is higher than
in the original paper [20]. The reason would be the difference in the network
training options. In our experiments, we use the same training procedure of
Bayar and Stamm [6], in particular the training comprises more epochs when
compared to [20]. The last observation is that the conventional Xavier initial-
ization indeed performs less well than all the other algorithms which generate
high-pass filters. In accordance with the discussions in Sections 1 and 2, this
observation implies that due to the particularity of the manipulation detection
problem, new initialization algorithms are required for this specific forensic task.

Figure 5 shows some curves of evolution of test accuracy in the course of the
60 epochs of the network training. It can be seen that our proposed scaling and
RHP approaches allow us to have quicker increase of test accuracy. In particu-
lar, for SRM the accuracy increase at the beginning of training is significantly
faster after applying scaling. Throughout the training procedure, the evolution
curve of scaled SRM and Xavier is always located up above the curve of the
corresponding unscaled version. At last, the curve of our RHP approach has a
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Figure 5: Evolution curves of test accuracy (average of 5 runs) for the multi-class classification
problem, with the network of Bayar and Stamm [6].

Table 4: Values obtained in an example 5×5 filter with our RHP initialization approach. The
value of center coefficient C is 8.4853 and a uniform distribution of U(−0.7071, 0) is used for
drawing pseudo-random samples for non-center coefficients.

-0.2313 -0.0666 -0.1706 -0.5250 -0.5772
-0.5182 -0.0018 -0.5467 -0.2407 -0.0559
-0.4711 -0.5040 8.4853 -0.5513 -0.3093
-0.4237 -0.1851 -0.6255 -0.5770 -0.5398
-0.2109 -0.6927 -0.6765 -0.1684 -0.0787

good behavior of performance increase, being close to the curve of scaled SRM.
It is interesting to take a look at the values in filters generated by our

RHP initialization and compare with scaled high-pass filters. We carry out
comparison with the initial and final values of the scaled version of a simple
SRM high-pass filter with +1 and −1 as the only two non-zero values. This filter
is scaled with a factor of 10.174 and at the end of 60 training epochs for this
multi-class problem, these two non-zero coefficients have absolute values close
to 8.0. Meanwhile, the center coefficient in 5 × 5 filter of our RHP approach
has a value of 8.4853, suggesting a good amplitude of filter coefficients for RHP.
The details of the initial values in one simulation of RHP are shown in Table 4.

Experiments on a variant of Bayar and Stamm’s CNN with 30 filters
at first layer. In this set of experiments, we change the number of first-
layer filters of the network of Bayar and Stamm [6] from 3 to 30 and conduct
tests still under the multi-class classification scenario. The main purpose is to
perform experiments with a slightly different CNN. A minor side benefit is that
with this network variant we can make use of all the available 30 SRM filters
(cf., link in footnote 1). Table 5 shows the obtained results. Here for Bayar,
for the sake of brevity we only present results of the scaled option “Bayar B.”
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Table 5: Test accuracy (in %, average of 5 runs) of the multi-class classification problem, on
a variant of the network of Bayar and Stamm [6] with 30 filters at first layer.

Initialization
Original
version

Convolution-based
scaling (our)

Covariance-based
scaling (our)

Bayar [6] B. 94.91 96.11 (+1.20) 96.04 (+1.13)
Castillo [20] 94.11 96.31 (+2.20) 96.32 (+2.21)
SRM [16] 94.37 96.51 (+2.14) 96.49 (+2.12)
Xavier [15] 91.80 96.03 (+4.23) 96.02 (+4.22)

which has lower computational cost and achieves comparable test accuracy when
compared to the other option. The results in Table 5 demonstrate again that
our filter scaling approach is able to consistently improve the test accuracy. In
addition, if we compare the results in Table 3 (3 first-layer filters) and Table 5
(30 first-layer filters), one interesting observation is that with 30 filters the
performance of scaled Xavier is noticeably improved (94.71% vs. 96.02% with
covariance-based scaling). One possible explanation is that with more filters,
Xavier would have higher probability to generate an effective filter suited for
manipulation detection and that the impact of such effective filters is enhanced
after scaling. This is just an intuitive explanation and future work is planed
for the understanding of the relationship between number of filters and the
detection performance, which nevertheless is beyond the scope of this paper.

6.2. Comparison with batch normalization

The stability of the data flow in the learning process of a CNN can be
achieved in different manners with the so-called proactive and reactive measures.
If we want to start the learning process with a stable data flow, as a proactive
measure, the initialization used for the kernel weights has to be taken care
of. Differently, a reactive measure would be the usage of functions such as
batch normalization [26] to re-center and re-scale our training batch during the
learning stage.

For this set of experiment, we show the comparison of batch normalization,
our scaling-based initialization (for Xavier [15] and SRM [16]), and our RHP
initialization, in the multi-class forensic scenario with 3 filters in the first layer of
the CNN of Bayar and Stamm. The network training and all other experimental
settings remain unchanged as those described in Section 6.1.

Table 6 shows firstly three scenarios for Xavier and SRM initializations con-
sidering the different combinations of our scaling approach and the batch nor-
malization technique on the first layer. Then, for our RHP initialization we
show the cases with and without batch normalization for the first layer. We can
see that for Xavier and SRM, our scaling approach alone works better than only
using batch normalization, with an improvement of 0.25% and 1.11% respec-
tively for Xavier (i.e., 94.61% vs. 94.36%) and SRM (i.e., 96.54% vs. 95.43%).
It is also interesting to notice that in the case of Xavier, jointly using both
techniques results in a higher accuracy. Our RHP approach also gets a small
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Table 6: Test accuracy (in %, average of 5 runs) for the multi-class classification problem. The
two blocks of rows named “Xavier” and “SRM” present results for our scaling-based approach
and/or the batch normalization technique, when combined together or applied separately for
the first layer. The block of rows “RHP init. (our)” compares our RHP approach for two
cases of with and without batch normalization at the first layer.

Initialization
Covariance-based

scaling (our)
Batch

normalization
Test

accuracy

Xavier [15]
Yes Yes 95.04
No Yes 94.36
Yes No 94.61

SRM [16]
Yes Yes 96.53
No Yes 95.43
Yes No 96.54

RHP init. (our)
- Yes 96.51
- No 96.35

improvement when combined with batch normalization. For SRM filters, the
performance is comparable when using both techniques or using only our scal-
ing approach (i.e., 96.53% vs. 96.54%). Our scaling and RHP initialization
approaches are also computationally much cheaper than batch normalization,
because our approaches are applied only once during initialization while batch
normalization (with additional learnable parameters) should be applied on each
training batch and subsequently optimized for each step during training.

These results suggest that although batch normalization is an effective tech-
nique to maintain a stable data flow within a CNN, a well-designed initialization
algorithm such as our scaling proposal or our RHP approach is nevertheless of
greater importance, because experimentally our initializations work better than
batch normalization when applied separately. Moreover, the combination of
an adequate initialization algorithm and the batch normalization technique in
general can lead to a slightly higher accuracy.

6.3. Binary problem of JPEG detection with CNN of Bayar and Stamm

We observe experimentally that among all the five manipulations considered
in the multi-class classification problem, JPEG compression (with very high
quality factor as shown in the last row of Table 2, i.e., ranging from 90 to 100)
is the hardest one to be correctly detected. In this subsection, we carry out
experiments on a binary classification problem of original and JPEG compressed
patches with quality factor given in Table 2. Our purpose is to consider a new yet
challenging manipulation detection problem for the validation of our proposed
approaches. We use the network (with same training hyper-parameters and an
adaptation to binary detection) and experimental data (only of original and
JPEG compressed patches) specified in Section 6.1 for the experiments of this
binary detection problem.
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Table 7: Test accuracy (in %, average of 5 runs) for the binary JPEG compression detection
problem, on the network of Bayar and Stamm [6].

Initialization
Original
version

Convolution-based
scaling (our)

Covariance-based
scaling (our)

Bayar [6] B. 88.27 90.80 (+2.53) 90.80 (+2.53)
SRM [16] 78.24 92.33 (+14.09) 92.44 (+14.20)

Figure 6: Evolution curves of test accuracy for the binary JPEG compression detection prob-
lem. The curve of “SRM scaled” shows minimum, average and maximum values of test
accuracy among 5 runs for each epoch. The curves of “Best SRM” and “Worst SRM” show
the test accuracy for respectively the best and the worst run among 5 runs of original SRM.

Our experiments are performed for Bayar [6] and SRM [16] with “Bayar B.”
for scaled version of Bayar. The experimental results are shown in Table 7.
We can see that the original Bayar and SRM have quite limited performance
for this challenging JPEG compression detection problem. In particular, the
CNN training with original SRM occasionally fails (some details will be given
in the next paragraph). However, after applying our filter scaling approach,
the test accuracy of scaled SRM has a significant increase (of about 14%) when
compared with the unscaled original version.

Figure 6 shows several evolution curves of test accuracy throughout the net-
work training procedure, for original SRM and scaled SRM (obtained with the
covariance-based method). The network training with original unscaled SRM
can sometimes fail, as reflected by the curve of “Worst SRM” in Figure 6. The
performance varies a lot among the 5 different runs of original SRM probably
because of the randomly selected 3 SRM filters in each run. We have the empir-
ical observation that some SRM filters tend to result in lower performance. In
the meanwhile, from Figure 6 we can observe that after applying filter scaling,
both the final performance and the increase speed of test accuracy are largely
improved. We would like to mention once again that for a pair of original and

26



scaled SRM, they share the same “base filters” and the only difference is the
scale of the filter coefficients. This means that even for weak SRM filters which
lead to CNN training failure, after applying the scaling approach on these filters
we can still achieve very satisfactory forensic performance.

6.4. On the selection of SRM filters

Choosing randomly a few filters from a finite pool can sometimes result in
a weaker performance than expected. As we mentioned before, there are 30
handcrafted filters available in the pool of SRM [16] filters (cf., link in footnote
1). From the results in the previous subsection, we have observed that certain
SRM filters perform less well than others for the image manipulation detection
problem. This is the case of the results of the JPEG binary problem as shown
in Table 7 and Figure 6. Among the 5 runs, one of them contained 1 diagonal
filter which resulted in a bad forensic performance with almost random guess
for test accuracy of the original unscaled version. Here diagonal filter means
a filter only with non-zero coefficients in the diagonal or anti-diagonal of the
filter matrix. In total, there are 10 diagonal filters in the pool of 30 SRM filters.
Experimentally such diagonal SRM filters in general have a lower performance
than non-diagonal ones in the considered forensic problems. In this subsection,
we would like to test the “unlucky” scenario where 3 diagonal SRM filters are
chosen and compare its performance with our RHP initialization approach.

For this experiment we carry out tests with the same JPEG binary clas-
sification problem as described in Section 6.3. The CNN architecture is the
one designed by Bayar and Stamm [6] with 3 filters at first layer. We compare
the performance of 3 diagonal SRM filters, the corresponding scaled version
(convolution-based method), and our RHP proposal. We show in the second
column of Table 8 the average test accuracy of 5 runs for the three different
techniques at the end of the 60 epochs of training. In each run, 3 SRM diagonal
filters are randomly selected as the initialization of first-layer filters. As we can
observe, after scaling the selected diagonal filters, we can only obtain a rather
limited average test accuracy of 87.14%. This is probably due to the limited
forensic capability of these diagonal filters. By contrast, our RHP approach
achieves higher average accuracy of 91.37%. We also show in the last column
of Table 8 the worst test accuracy among the 5 runs for each method. The
difference between the average and the worst values is the smallest for our RHP
approach, which demonstrates the stability of its performance.

It is interesting to mention that for the curve of “Worst SRM” shown in
Figure 6 in the experiment of the last subsection for the unscaled SRM filters,
we had 1 diagonal filter among the 3 selected ones. In the experiment of this
subsection, we always choose 3 diagonal SRM filters to be put at the CNN’s first
layer. In the former case (1 diagonal filter among 3), sometimes the training fails
but after scaling the performance is much better (e.g., the worst run in Figure 6).
In the latter case (3 diagonal filters), we did not encounter training failure but
after scaling there is less improvement. We have two possible explanations for
these observations: first, the performance after scaling may be related to the
overall forensic capability of all the 3 selected filters (non-diagonal SRM filters
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Table 8: Comparison of test accuracy (in %) for 3 diagonal SRM filters at first layer, the cor-
responding scaled version and our RHP approach, for the binary JPEG compression detection
problem on the network of Bayar and Stamm [6]. The second column shows the average test
accuracy for 5 runs while the third column presents the worst test accuracy among the 5 runs.

Method Average Worst run
SRM [16] diagonal filters 84.50 82.98
SRM [16] diagonal filters
with convolution-based scaling

87.14 86.49

RHP init. (our) 91.37 91.25

are stronger); second, the combined use of diagonal and non-diagonal SRM
filters may cause training failure perhaps due to difficulties in achieving synergy
between different kinds of filters during training. We are aware that these are
only intuitive explanations, further studies are required to understand these
interesting observations.

In all, from the experiments presented in this subsection, we can see that
choosing randomly a few filters from a pool of handcrafted filters may present
some risks, especially when the selected filters have limited forensic capability.
Favorably, this uncertainty does not occur for our RHP approach.

6.5. Multi-class and binary classification problems on a different CNN

In this subsection, we carry out experiments of both manipulation detection
problems (i.e., the multi-class and the JPEG binary problems) on a different
CNN built by ourselves. This new network does not have any fully-connected
layers and has less learnable parameters than the network of Bayar and Stamm
[6]. More precisely, the network in [6] has about 337K parameters while our
new smaller CNN has only about 41K parameters. The fewer parameters of
our new CNN are mainly due to the removal of the fully-connected layers which
contain many parameters and which exist in the network of Bayar and Stamm.
Here our purpose is to test the proposed initialization approaches on a different
and lighter network of rather a “modern flavor” without the somehow “old
fashioned” fully-connected layers. The design of better or even optimum CNN
architecture for a forensic problem at hand is a very interesting working direction
that we would like to explore in the future. Figure 7 shows a visual comparison
of the architectures of our CNN and the CNN of Bayar and Stamm [6].

We consider both the multi-class classification problem and the binary JPEG
compression detection problem in this set of experiments, with the same experi-
mental data and configurations presented in the previous sections. We carry out
comparisons of the original Bayar [6] and SRM [16], their corresponding scaled
version (“Bayar B.” for scaled Bayar), and our RHP approach. The obtained
experimental results are shown in Table 9. First, we can observe once again that
our scaling approach is able to consistently improve the forensic performance
after scaling, as shown by the improved test accuracy values in parentheses in
the last two columns with a maximum increase of 5.27%. Additionally, our pro-
posed RHP approach has higher test accuracy than the original unscaled SRM
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Figure 7: Image on the top shows the CNN architecture of Bayar and Stamm [6], while the
architecture of our smaller CNN is depicted in the image on the bottom.

and Bayar, especially for the JPEG binary problem. When compared with the
scaled versions, the RHP approach performs better than scaled Bayar in both
multi-class and JPEG binary problems. Scaled SRM achieves higher accuracy
for both problems than the RHP approach. The latter has nevertheless its
own advantages: different from the data-dependent scaling approach, the RHP
initialization does not explicitly use input data and thus has higher flexibility,
lower computational cost and broader application range. In addition, as shown
in the previous subsection, it may present some risks when randomly choosing
handcrafted SRM filters for initializing convolutional kernels in a CNN.

One interesting observation, when comparing the results on the CNN of Ba-
yar and Stamm [6] (Table 3 and Table 7) and on our smaller network (Table 9),
is that the latter in general provides better performance. It is interesting to
investigate on the potential connections between the network architecture and
the forensic performance. Nevertheless such investigation is beyond the focus
of this paper because our main purpose in this subsection is to validate the
effectiveness of our scaling and RHP approaches on a different CNN.

6.6. Experiments on another image database with additional settings

In order to further prove the effectiveness of the proposed approaches, we
carry out additional experiments on another image database (the RAISE database
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Table 9: Test accuracy (in %, average of 5 runs) for the multi-class and JPEG binary classi-
fication problems, on a smaller CNN built by ourselves.

Problem
Original
version

Convolution-based
scaling (our)

Covariance-based
scaling (our)

Bayar [6] B.
Multi-class 95.24 96.17(+0.93) 96.18(+0.94)
JPEG binary 90.56 93.72(+3.16) 93.74(+3.18)

SRM [16]
Multi-class 95.72 97.06(+1.34) 97.09(+1.37)
JPEG binary 89.85 95.11(+5.26) 95.12(+5.27)

RHP init. (our)
Multi-class 96.76 - -
JPEG binary 94.45 - -

[27]) with additional settings of the size of input patches and the size of first-
layer filters. We consider the binary JPEG classification problem for the ex-
periments on RAISE database. For the data preparation, we first randomly
select 1491 RAISE images (same number as the Dresden images used in previ-
ous experiments), which are saved in lossless .TIF format and never processed.
RAISE images have high resolutions mostly with typical sizes of 4288 × 2848
or 4928 × 3264. As before, we randomly split these 1491 unprocessed RAISE
images into training, validation and testing sets with ratio of 3:1:1 and then
convert the images to grayscale. Afterwards, the preparation of patch samples
is the same as for the Dresden database, with the same number of samples and
the same high-quality JPEG compression applied as manipulation (with ran-
dom JPEG quality factor between 90 and 100). The difference is that here we
extract patches of different sizes and carry out classification on these different
sets of patches. We use the network of Bayar and Stamm [6], and the training
procedure and parameters are the same as those specified in subsection 6.1.

In a first group of experiments, we check the forensic performance on input
patches of different sizes (256× 256, 64× 64 and 32× 32 pixels), for SRM [16],
scaled SRM (our first approach, convolution-based), and the RHP initialization
(our second approach). The striding and pooling of the one or two convolutional
layers after the first-layer filters are slightly adjusted as so to accommodate the
network to input patches of 32 × 32 or 256 × 256 pixels. The obtained results
of test accuracies are presented in Table 10. We can observe that the test accu-
racy becomes higher as the patch size increases. This is understandable because
larger patches contain more information, which is more favorable for forensic
classification. Probably for the same reason, we find that the training of SRM
[16] has more chance to fail on small patches of 32×32 pixels. In this sense, the
improvement after applying our first scaling approach on SRM is larger for input
patches of smaller sizes (please compare the rows of “SRM [16] (all 5 runs)” and
“SRM scaled (our)” in Table 10). Furthermore, in order to have a fair analysis
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Table 10: Test accuracy (in %) on the RAISE database [27] with different sizes of input patches
of 256 × 256, 64 × 64 and 32 × 32 pixels, for the JPEG binary classification problem by using
the network of Bayar and Stamm [6]. The results are average of 5 runs, except for the row of
“SRM [16] (three best)” where we show the average of the three highest test accuracy values
(with successful convergence) among the 5 runs of the unscaled SRM algorithm [16]. For the
approach of “SRM scaled (our)” we present in the parentheses the accuracy improvement
when compared to the corresponding result in row of “SRM [16] (three best)”.

Patch size 256× 256 64× 64 32× 32

SRM [16] (all 5 runs) 76.24 75.30 70.17
SRM [16] (three best) 89.54 86.50 83.34
SRM scaled (our) 92.74(+3.20) 89.72(+3.22) 86.55(+3.21)
RHP init. (our) 90.84 89.18 84.33

of the performance improvement, we show the average test accuracy of three
best runs (all with successful convergence) of the original unscaled SRM in the
row of “SRM [16] (three best)”. Then, considering the average of three best
runs as baseline, we report the test accuracy improvement of our first scaling
approach in parentheses in the row of “SRM scaled (our)”. We can observe
that the increase of test accuracy obtained by scaling SRM filters is quite stable
for different patch sizes, and this demonstrates the stability and effectiveness of
our first approach. It can be noticed that the performance on 64 × 64 patches
is rather comparable between RAISE database and Dresden database, with a
slightly lower performance on RAISE database. Our explanation is that in gen-
eral RAISE images are of higher resolution than Dresden images. The higher
resolution of RAISE images makes the modification introduced by manipulation
smaller and more difficult to detect. At last, similar to the results of the ex-
periments on Dresden database, the performance of our second RHP approach
(the last row of Table 10) is quite satisfying and slightly lower than the scaled
SRM obtained by our first approach.

In a second group of experiments, we compare the forensic performance for
different sizes of first-layer filters of 3 × 3, 5 × 5 and 7 × 7. The padding of
the convolutional layer right after the first-layer filters is slightly changed to
accommodate the network architecture to filter size of 3× 3 and 7× 7. We still
consider SRM [16], scaled SRM and RHP initialization for the experiments.
For SRM, we only consider the 17 filters of size smaller than or equal to 3× 3,
among the pool of 30 SRM filters, for the experiments with 3 × 3 first-layer
filters. For 7× 7 first-layer filters we carry out zero-padding to change the size
of the SRM filters to 7×7. The obtained results are shown in Table 11. We can
observe that the scaled SRM (our first approach) and the RHP initialization
(our second approach) behave consistently well with stable performances under
different sizes of first-layer filters. For all the three cases our two approaches
perform better than unscaled SRM as shown in Table 11, and the test accuracy
can be consistently improved after applying our first scaling approach on original
SRM. Another observation is that the original unscaled SRM algorithm performs
poorly for 7 × 7 filters (all 5 runs fail to converge), while it has stable and
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Table 11: Test accuracy (in %, average of 5 runs) on the RAISE database [27] with different
sizes of first-layer convolutional filters of 3×3, 5×5 and 7×7, for the JPEG binary classification
problem by using the network of Bayar and Stamm [6], on 64 × 64 patches.

Filter size 3× 3 5× 5 7× 7

SRM [16] 87.94 75.30 50.12
SRM scaled (our) 90.03 89.72 89.77
RHP init. (our) 89.31 89.18 89.07

satisfying performance with 3×3 filters (all 5 runs successfully converge). In all,
we see some very interesting observations through the additional experiments
on RAISE database as presented in this subsection. We leave the understanding
of these interesting observations as future work.

6.7. Detection of images created by Generative Adversarial Networks

Finally we consider a new forensic problem and carry out tests with another
deep and popular network. GAN (Generative Adversarial Network) models have
recently been on the news for their capability of creating fake yet visually very
realistic images and videos commonly known as deepfakes. This problem has
been on the rise in part due to the realistic GAN-generated videos impersonat-
ing political or other popular figures. These deepfakes could bring distress to
the society if created with malicious purposes. Conventional image tampering
operations (e.g., splicing, copy-move and inpainting) are mostly carried out by
using advanced image processing and editing tools (e.g., Photoshop and GIMP),
while recently GANs have provided a new machine-learning-based way to gen-
erate fake images (i.e., the so-called deepfakes). Both are effective approaches
to creating fake images with altered or fictive semantic meaning, but they may
leave different traces in the created fake images. In this subsection, we are inter-
ested in detecting deepfake images whose contents are generated by GANs which
aim to mimic the properties of real images used during the network training. We
choose to carry out experiments with this deepfake detection problem to show a
different topic in the image forensics research community and demonstrate the
efficiency of our proposal when tested on a well-known CNN architecture.

In this experiment we conduct tests for a binary classification scenario to de-
tect between GAN-generated and natural images by considering different groups
of deepfake images generated by different GAN tools. For this setting we use
as reference the recent work of Wang et al. [28], where the popular ResNet50 is
used to analyze the artifacts left by GANs. We use the same dataset and code of
[28]2 in order to compare in a fair manner, while only affecting the initialization
method on the first layer of the network.

The main dataset of deepfake images for this experiment is generated with
the ProGAN network [29]. Figure 8 shows examples of some image categories

2Code and dataset are available at https://github.com/peterwang512/CNNDetection.
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Figure 8: Examples for real and GAN-generated images of different categories in a binary
classification scenario. Top row shows real images while deepfake ones are shown below. All
images come directly from the shared dataset of [28] where the GAN-generated ones were
created with ProGAN network [29].

with the top row for natural examples and the bottom row for the GAN-
generated ones. There are in total 20 categories of images (Airplane, Boat,
Cat, Horse, etc.), and each category comprises 18, 003 images of 256× 256 pix-
els for each class of natural or deepfake images. This makes a total of 720, 120
images for the training set. The validation and testing sets corresponding to
the ProGAN network contain respectively 8, 000 images, with 200 images from
each class in each category.

Following the strategy proposed by Wang et al. [28], we use the popular
ResNet50 as CNN architecture. In their original proposal, the network is pre-
trained with ImageNet [30]. Then the authors conduct further training of the
pre-trained ResNet50 on the training set of the deepfake binary classification
problem in which the fake images are created by the ProGAN network. In order
to test our method we initialize the first layer of the pre-trained ResNet50 with
our RHP initialization. This first layer contains 64 filters of shape 7 × 7. All
other layers (initialized with pre-trained ImageNet weights for both Wang et al.’s
method [28] and ours) and all experimental settings are the same as those used
in [28]. Therefore the only difference is the initialization of the first-layer filters,
i.e., ImageNet pre-trained weights for the state-of-the-art method of Wang et
al. [28] and RHP initialization for our method.

Experimentally we use Adam optimizer with a starting learning rate of 1e−4
as proposed by the authors of [28]. The code used for this experiment is the one
shared on-line by the same authors. We use the provided training scripts where
Gaussian blur and JPEG compression are considered as data augmentation
techniques during the training stage. JPEG compression is performed with a
quality factor taken from a uniform distribution on the set of {30, 31, ..., 100}.
Blurring operation is performed with standard deviation parameter σ taken
from a uniform distribution within the interval [0, 3]. Both of these techniques
are applied with a pre-defined percentage of probability. Original results by
Wang et al. [28] proved that by using these data augmentation techniques good
generalization performance can be obtained on testing sets of deepfake images
created by tools other than ProGAN. In fact as presented above, fake images
in the training and validation sets are all generated by the ProGAN network.
Here the generalization capability of a trained CNN model means the detection
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Table 12: Testing sets used for the evaluation of the generalization capability of detecting
GAN-generated images.

Model Number of images

ProGAN [29] 8,000
StyleGAN [31] 12,000
BigGAN [32] 4,000
CycleGAN [33] 2,600
StarGAN [34] 4,000
GauGAN [35] 10,000
CRN [36] 12,800
IMLE [37] 12,800
SITD [38] 360
SAN [39] 440
Deepfake [40] 5,400

performance of the model on “unseen” testing data of deepfake images generated
by GAN tools that remain unknown during the training phase.

The results obtained by Wang et al. [28] show a final accuracy of about
100.0% on the training and validation sets. This is also the case when we ini-
tialize the first layer with our RHP approach. There is no room for improvement
regarding this point. Nevertheless, we can observe performance differences when
we compare the generalization capability of the trained networks. In order to
test the generalization results, we consider 11 different testing sets coming from
a number of state-of-the-art GANs for creating deepfake images with style trans-
fer applied to a set of source images. The network architectures and training
settings of these GANs are all different. The resulting number of images for
each testing set is shown in Table 12. These testing sets are shared on-line by
Wang et al. [28].

To make a fair comparison, we follow the original idea of Wang et al. [28] to
train the networks with the ProGAN dataset, and then test the generalization
capability of trained networks on the different testing sets listed in Table 12.
This represents a real-world scenario where diverse and unknown GAN tools
with different characteristics are tested after training CNNs on data from a
unique tool (here the ProGAN network). As mentioned previously and reported
in [28] data augmentation techniques can improve the generalization perfor-
mance, and we apply these techniques in the experiments. Table 13 presents
the generalization results with two different data augmentation options: “Case
A.” where only blurring is applied with 50% of probability; “Case B.” where
both blurring and JPEG compression are applied with a probability of 50%. In
the table, we show the results obtained by Wang et al. [28] where the first layer
is initialized with pre-trained ImageNet weights and those obtained by our RHP
initialization.

As we can see from the results in Table 13, initializing the first layer with
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Table 13: Generalization results for the different testing sets with comparisons between Wang
et al.’s [28] ImageNet pre-trained weights and our RHP initialization on the first layer. Please
refer to main text for the meaning of “Case A.” and “Case B.” of data augmentation options.
We show the better result for each testing set and each case in bold. For all scenarios networks
were trained with the ProGAN dataset. Following [28], results are reported in terms of Average
Precision (in %) on individual testing set and in terms of mean Average Precision (mAP, in
%) for the overall performance on all testing sets.

Case A. Case B.

Testing set
ImageNet
weights init.

Our RHP
init.

ImageNet
weights init.

Our RHP
init.

ProGAN [29] 100.0 100.0 100.0 100.0
StyleGAN [31] 99.0 98.8 98.5 98.6
BigGAN [32] 82.5 84.7 88.2 89.0
CycleGAN [33] 90.1 93.5 96.8 97.0
StarGAN [34] 100.0 100.0 95.4 96.3
GauGAN [35] 74.7 75.7 98.1 98.1
CRN [36] 66.6 73.6 98.9 99.4
IMLE [37] 66.7 73.9 99.5 99.5
SITD [38] 99.6 99.6 92.7 95.8
SAN [39] 53.7 53.9 63.9 66.1
Deepfake [40] 95.1 93.4 66.3 69.3

mAP 84.4 86.1 90.8 91.7

our RHP approach leads to a better performance for the majority of the testing
sets. Following the original paper of Wang et al. [28], we use the Average
Precision and mean Average Precision (mAP) as respectively the performance
metric for an individual testing set and the overall performance metric on all
testing sets (for both metrics, a higher value means a better performance). In
both “Case A.” and “Case B.” the mean Average Precision is slightly better for
our method, as shown in the last row of Table 13. One possible explanation is
that our initialization can make the network more oblivious to image content
and more sensitive to the traces of GANs which are likely to be in the high-
frequency component of images.

6.8. Discussion

In this section, we have demonstrated through experiments the effective-
ness of the proposed CNN initialization approaches, on forensic problems of
image manipulation detection and deepfakes detection. In the future, we plan
to explore the utility of the proposed approaches in other practical application
scenarios related to image forensics. First, when we know what original im-
ages should be and are very strict about the manipulations (i.e., any image
processing operation is considered suspicious and not tolerable, for example in
law enforcement), our approaches could be directly applied in a sliding window
manner to locate the suspicious patches. Second, even if routine manipulations
can be tolerated, it is in general believed that there may still exist special forgery
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traces within the fake region and near the fake region boundary, in for example
splicing and copy-move forgeries [41, 42]. Therefore, still with the application of
our approaches on small local patches in a sliding window manner, additionally
combined with an efficient clustering algorithm on the extracted features of a
manipulation detection CNN, we may be able to locate the fake regions in image
forgeries. Third, the manipulation detection approaches can be jointly utilized
with existing forgery detectors. For instance, after identifying a pair of copy-
moved regions by an existing detector, we can apply manipulation detection on
the two regions to determine which one is the so-called source (i.e., original)
region and which one is the target (i.e., fake) region. Usually the fake region
has been subject to routine manipulations such as scaling and smoothing [43, 4].
We are also interested in investigating the similarities and differences between
the detection of fake images created by the conventional tampering operations
(splicing, copy-move, inpainting, etc.) and the detection of deepfakes generated
by GANs. For instance, different high-pass initializations, derived based on ei-
ther global or local differences between real and fake images, may be beneficial
for the detection of fake images fabricated by different tools. Moreover, we
would like to go one step further and extend the proposed approaches to other
image analysis tasks beyond forensics. For this purpose, the key issue would be
the design of appropriate and application-oriented filters which are not neces-
sarily high-pass ones. Proper scaling can be applied on the designed filters (for
our first approach), or the filter design can be enhanced by also incorporating
the variance stability formulation (for our second approach).

7. Conclusion

In this paper, we first carry out theoretical and experimental studies to
analyze the behavior of common CNN initializations in an image manipulation
detection scenario and show that commonly used initialization algorithms result
in a signal shrinkage at filter output which may affect the overall performance of
a network. We show that besides the high-pass initializations, the output signal
shrinkage also occurs for the conventional Xavier initialization. We also present
theoretical proofs to explain the somewhat surprising results of the Xavier al-
gorithm. We then propose two new initialization approaches for the detection
of image manipulation operations. The first proposal is a data-dependent ap-
proach which deduces an appropriate factor for the scaling of CNN’s first-layer
convolutional filters. The second proposal is a random high-pass initialization
approach which does not need to carry out explicit computation on input data.
Both approaches make use of a corrected and realistic assumption on natural
image statistics which existing methods do not take into account. Through
a series of experiments with different CNN architectures and different detec-
tion problems we show good forensic performances for our two initialization
approaches. We believe that each of our proposals has its own benefits depend-
ing on the problem and the application scenario at hand. In the future we
would like to perform further tests with more CNN architectures such as LSTM
(Long Short-Term Memory) or multi-branch models. Another possible working
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direction is to extend our work to more layers and to study the synergy between
different layers. At last, we are interested in enlarging the application range of
the proposed approaches as discussed in subsection 6.8.
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