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ABSTRACT

This paper concentrates on lighting-based forensics. We first
show how to fool the forgery detector based on 2D lighting
coefficients using a simple counter-forensic strategy. This in-
termediary result advocates the use of more involved 3D light-
ing coefficients for forensics purposes. Such a research line
means that we need at least an approximation of the 3D sur-
face of the suspect object. Contrary to previous approaches
that concentrated on particular kind of shapes (e.g. human
faces), we propose a promising approach based on shape-
from-shading. This new 3D lighting-based forensic method
is more general as the 3D shape is learned from the picture
itself. Furthermore, the results are in par with the less general
state-of-the-art methods.

Index Terms— Digital forensics, image forgery detec-
tion, complex lighting environment, spherical harmonics,
shape-from-shading, counter-forensics

1. INTRODUCTION

With the increasing popularity and sophistication of photo
manipulation software, our trust on the authenticity of digital
images is decreasing. Doctored images can be easily found
in our daily life, and have been used, for instance, in adver-
tising, political and personal attacking, and forgery of scien-
tific results. Accordingly, many image forensic techniques
have been proposed during the last decade [1, 2], with the ob-
jective to faithfully detect image forgeries. Compared to the
authentication based on digital watermarking, forensic tech-
niques can assess the authenticity of an image in a passive and
blind way, without resorting to previously embedded informa-
tion (i.e. the watermark). These techniques make assumption
that manipulating an image will probably disturb the intrinsic
property, either geometrical, physical or statistical, ofthe au-
thentic image. Therefore, inconsistencies in these properties
over the image can be considered as an evidence of tampering.

In this paper, we concentrate on the physics-based im-
age forgery detection that examines inconsistencies in light-
ing under complex natural illumination. In practice, it is very
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difficult to forge physically consistent lighting when splicing
objects from different images, meanwhile experiments show
that such inconsistencies may be difficult to perceive by hu-
man eyes [3]. Lighting-based forensics have been addressed
by Johnson, Farid and Kee, under respectively simple direc-
tional lighting [4], 2D complex lighting [5] and 3D complex
lighting [6]. The basic idea of the last two methods is to first
recover the lighting environment, as represented by a group
of spherical harmonics coefficients [7], and then compare the
coefficients estimated from different parts of the image. Our
new forensic method also follows this approach.

The work presented in this paper can be thought of as
one iteration of lighting-based counter-forensics and counter-
counter-forensics. We show shortcomings of a previous
forensic method and demonstrate the possibility of develop-
ing a new lighting-based image forensic tool relying on the
most recent results from shape-from-shading research [8].
Our contributions are summarized as follows:

• First, we show, through two simple examples, that
the 2D lighting-based forensic method [5] is not com-
pletely reliable and may be vulnerable to counter-
forensic attacks.

• Second, we use the shape-from-shading technique [8]
for lighting environment estimation, which is new in
the field of image forgery detection. Our motivation
was to use 3D surface normals to estimate a more com-
plete description of the lighting environment.

• Finaly, compared to the 3D lighting-based forensic
method in [6], which relies on a predefined 3D model
and is specific to human face images, our method does
not need such a 3D model and seems more generic.

The remainder of this paper is organized as follows: Sec.
2 presents some background knowledge on lighting environ-
ment estimation, Sec. 3 depicts two simple examples to attack
the 2D lighting-based forensic method in [5], Sec. 4 describes
our new 3D lighting-based forensic tool, Sec. 5 shows some
experimental results, and we draw conclusions in Sec. 6.

2. LIGHTING ESTIMATION

In order to model complex lighting environment, we assume
that: (a) the lighting is distant; (b) the surfaces are convex and



Lambertian; (c) the surface reflectance is constant; and (d)the
camera response is linear.

DenoteL(ω) as the illumination function describing the
intensity of the incident light from directionω which is a unit
vector. LetR(n, ω) be the reflectance function of the surface,
wheren is the unit length surface normal vector. On the con-
vex surface of a Lambertian object, we suppose there are no
cast shadows or interreflections [7]. Hence, the irradianceis
only due to the lighting environment, and it can be described
as a convolution over the upper hemisphereΩ(n):

E(n) =

∫

Ω(n)

L(ω)R(n, ω)dω. (1)

A common way to approximate this function is using spher-
ical harmonics to expand both the illumination function and
the reflectance function to yield:

E(n) =

∞
∑

l=0

l
∑

m=−l

ÂlLl,mYl,m(n), (2)

whereYl,m(·) is themth spherical harmonic of orderl, with
l ≥ 0 and−l ≤ m ≤ l. Ll,m are the spherical harmonics
coefficients representing the lighting environment. Constants
Âl are the Lambertian reflectance coefficients, which decay
rapidly whenl > 2. Consequently withl ≤ 2, E(n) can be
well approximated using only the first nine terms.

It is the surface diffuse albedoρ, which is the multi-
plicative factor mapping the image irradiance to the intensity.
Without loss of generality, we assumeρ = 1 for simplicity
andI(p) = E(np) at the pointp on a Lambertian surface.
Thus the lighting coefficients are estimated up to an unknown
factor. Given the estimated surface normals atk > 9 points
on the surface of an object and their intensties, it is possible
to estimate the nine 3D lighting coefficients by
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(3)
Notei = [Ir Ig Ib]T is the image intensity for RGB color im-
ages, andll,m = [Lr

l,m Lg
l,m Lb

l,m]T is the vector containing
the lighting coefficients corresponding to spherical harmonic
Yl,m in red, green and blue channels, respectively.

Obviously, the estimation of the 3D lighting coefficients
requests 3D surface normals. And without multiple images
or known geometry, it is always difficult to satisfy this re-
quirement [5]. Nevertheless, under the assumption of ortho-
graphic projection, thez-component of the surface normal is
zero along the occluding contours of an object. Therefore,
the spherical harmonicsY1,0, Y2,−1 andY2,1 are all zeros,
and Y2,0 = −

√

5/16π becomes a constant. We add the
terms corresponding to spherical harmonicsY0,0 andY2,0 to-
gether and factor̂A0 andÂ2 to the lighting coefficients. De-
noteÂ′

0 = Y ′

0,0 = 1, we can estimateL′

0,0 =
√

π/4L0,0 −

(a) GRC (b) GAL (c) Forgery

Fig. 1. Mapping (c) on (a) of the 2D lighting coefficients
taken from (b).

Table 1. Pairwise 2D lighting differences
Errors

GRC vs. GAL 0.2370
Forgery vs. GRC 0.2336
Forgery vs. GAL 2.6228× 10−5

√

5π/256L2,0. Hence, along the boundaries of an object, the
five 2D lighting coefficients we are able to compute areL′

0,0,
L1,−1, L1,1, L2,−2, andL2,2.

Forgeries are detected by comparing the lighting coeffi-
cients estimated from different objects in an image. In [5],the
authors proposed a distance measure between two lighting en-
vironments that is normalized to the interval[0, 1]. Here, we
also use this measure to evaluate lighting differences.

3. COUNTER FORENSICS

In [5], although the authors proposed the 3D lighting-based
forensic model, due to the difficulty of 3D normal estima-
tion, their main approach for forgery detection is still concen-
trated on 2D lighting-based forensic method. In this section,
we introduce two counter-forensic methods to show how 2D
lighting-based forensic method can be vulnerable.

3.1. Fooling the 2D Lighting-based Detector

We rewrite Eq. (3) in matrix formI = ML. The lighting
coefficients are obtained as the least-squares solution to the
system:L = (MTM)−1MT I. we can see that the estima-
tion of lighting coefficients needs both the surface normals
(determiningM) and the image intensities (I).

Lighting-based forensics compare the lighting coeffi-
cients from different objects to decide whether the image isa
forgery. The goal of counter-forensics is to fool the detector
so that it obtains different lighting coefficients. For an object
in the image, a simple strategy is to first keep the surface
normals unchanged to yield the sameM; meanwhile, if we
succeed in modifying the pixel values along the occluding
contours, i.e. modifyingI, different lighting coefficientsL
can be generated.

The weakness of the 2D lighting-based forensic method
we are targeting is that it uses only the information along the
object boundaries. It should therefore be possible to create a



(a) GAL (b) GAL forgery-1 (c) GAL forgery-2

Fig. 2. Rendered spheres from actual and fake lighting envi-
ronments.

Table 2. Comparison of estimated lighting coefficients
R G B

Fig. 2-(a)
3D 6.3× 10−4 6.9× 10−4 6.6× 10−4

2D 5.0× 10−5 4.8× 10−5 5.6× 10−5

Fig. 2-(b)
3D 0.1135 0.1233 0.1093
2D 3.5× 10−4 3.8× 10−4 3.4× 10−4

Fig. 2-(c)
3D 0.2008 0.2059 0.1947
2D 3.3× 10−4 3.7× 10−4 3.2× 10−4

fake picture by modifying the pixel values along the occlud-
ing contours, as long as the contour shape is kept the same in
order to yield the same boundary normals.

We have tested this idea on the synthetic images rendered
using thepbrt environment [9] with lighting probes main-
tained by Paul Debevec [10]. Fig. 1-(a) and -(b) are the ren-
dered Lambertian spheres with lighting probes captured in
Grace Cathedral, San Francisco (GRC) and Galileo’s Tomb,
Florence (GAL)1. In order to create the forgery of Fig. 1-(c),
we doctor the boundary pixel values according toIforg =
MgrcLgal. We also use interpolation in the area between the
boundary and the central part (which is kept the same as the
original image of Fig. 1-(a)) to smooth the image. A visu-
ally more plausible forgery compared with Fig. 1-(c), can be
obtained, by using advanced image processing algorithms.

According to the thresholds reported in [5], the results in
Table 1 show that the image in Fig. 1-(c) successfully fools the
2D lighting-based forensic method, which mistakenly consid-
ers that Fig. 1-(b) and -(c) are from the same lighting environ-
ment. However, the truth is that the picture in Fig. 1-(c) is
a forgery created from -(a) using the 2D lighting coefficients
estimated from -(b). Note that Fig. 1 only shows the green
channel of the images, but the modification in red/blue chan-
nels can be achieved similarly.

3.2. Building upon 3D Lighting Environments

The 2D lighting-based forensic method is only able to es-
timate five lighting coefficients: L′

0,0 =
√

π/4L0,0 −
√

5π/256L2,0, L1,−1, L1,1, L2,−2 and L2,2, which cor-
respond to non-z-component-related spherical harmonics.
Among the five 2D lighting coefficients, note thatL′

0,0 is the

1http://www.pauldebevec.com/Probes

combination ofL0,0 andL2,0. Hence, if there are two lighting
environments with similarL0,0, L2,0, L1,−1, L1,1, L2,−2 and
L2,2 but differentL1,0, L2,−1 andL2,1, the 2D lighting-based
forensic method would fail to distinguish them. After simu-
lation, we verified that this weakness may be made use of by
opponents to perform counter-forensic attacks.

Based on the ground truth of the nine 3D lighting coeffi-
cients of lighting environment GAL, we create two lighting
environment forgeries. Fig. 2-(a) is the rendered sphere us-
ing the original lighting environment GAL, while Fig. 2-(b)
and -(c) are rendered using GAL forgeries. In GAL forgery-
1, the modification is applied toL1,0, L2,−1 andL2,1, while
one more coefficientL2,0 is added to the modification in GAL
forgery-2. And in both cases,L0,0 is modified due to the fact
that we should ensure that each value in the modified lighting
environment should be positive. But it does not increase the
lighting environment difference [5].

The figures in Table 2 are the estimation errors of RGB
channels, in both the 3D and 2D cases, as compared with the
ground truth of the GAL lighting environment. The small er-
rors in the fourth and the sixth rows in Table 2 indicate that the
2D lighting-based forensic method is successfully attacked.
3D lighting-based forensics is a more reliable choice as it still
can distinguish different lighting environments with similar
2D lighting coefficients.

4. IMPROVED LIGHTING-BASED FORENSICS

As explained in Sec. 3, it is relatively easy for opponents to
fool the 2D lighting-based forensic method by modifying the
boundary pixels. Moreover, the 2D method also fails to de-
tect different 3D lighting environments that have similar 2D
lighting coefficients.

A natural extension consists of using 3D lighting environ-
ments. Estimating a 3D lighting environment involves that
some 3D information about the shape of the underlying ob-
ject is available. Such an approach was already suggested by
Kee and Farid [6]. They focused on detecting forgeries for
human faces by matching a 3D model of a face on the image.

We propose a different approach by using shape-from-
shading (SFS) [8] to estimate the 3D normals of the underly-
ing object. Our goal is to produce a more general 3D lighting-
based forensic tool that works on objects of arbitrary shape.

As shown above, the first nine spherical harmonics (l ≤ 2)
are either constant (l = 0), linear (l = 1) or quadratic (l = 2).
As the 1st-order approximation of the Lambertian irradiance
can capture up to 87.5% of the light energy [8], the image
formation model can be simplified to a linear problem from
Eq. (3):
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whereA = Â1[l1,1 l1,−1 l1,0] anda = Â0l0,0.



Fig. 4. A forgery with two swans inserted, and the lighting
spheres from the estimated 3D lighting coefficients.

The main idea to recover the unit surface normal vector
n∗ is to solve the following quadratically constrained linear
least-squares problem [8]:

n∗ = argmin
n

‖An− b‖2, s.t.‖n‖ = 1, (5)

whereb = i − a. Once the recovered surface normals are
obtained, we can use the model of Eq. (3) to compute the
nine 3D lighting coefficients.

The process of 3D lighting coefficients estimation based
on SFS is enumerated as follows:

1. Use bicubic interpolation to coarsely estimate the sur-
face normals{n0} of the target object;

2. Estimate the linear/constant lighting coefficientsA and
a by Eq. (4);

3. Solve least-squares problem Eq. (5) at each point of the
surface to recover the surface normals{nr};

4. Add a smoothness constraint [8] to obtain the global
optimum of the surface normals{ns};

5. RecomputeA anda for another iteration of surface re-
covery using{ns} from Step 4, and repeat Steps 3-5;

6. According to Eq. (3), compute the 3D lighting coeffi-
cients by using{ns}.

5. RESULTS

The six images shown in the first row of Fig. 3 are: the
lighting probe captured in a Eucalyptus Grove, UC Berkeley
(EUC, also maintained by Paul Debevec [10]), the rendered
Stanford bunny under EUC lighting environment, the RGB
map of the recovered surface normal components, thez-
component of the recovered surface normals, the spheres
representing the actual lighting and the estimated 3D lighting
coefficients (green channel). The three figures on the very
right in the first row of Fig. 3 are the errors between the

Table 3. Errors between object pairs of Fig. 4
R G B

S-1 vs. S-2 0.0277 0.0356 0.0456
U-1 vs. U-2 0.0031 0.0035 0.0058
S-1 vs. U-1 0.4533 0.4432 0.3696
S-1 vs. U-2 0.4394 0.3902 0.3001
S-2 vs. U-1 0.4722 0.4801 0.4245
S-2 vs. U-2 0.4752 0.4314 0.3535

ground truth and the estimated 3D lighting coefficients in red,
green and blue channels respectively from up to down. And
the second/third rows of Fig. 3 are the results for the follow-
ing lighting environments: Dining room of the Ennis-Brown
House, Los Angeles, California (ENN), and Pisa courtyard
nearing sunset, Italy (PIS)2.

In the third and the fourth columns in Fig. 3, some noise
appears in the RGB map and thez-component of the 3D sur-
face normal estimates. This can be explained by the fact that
the linear image formation model in Eq. (4) is only a rough
approximation. And the crudely estimated lighting coeffi-
cientsA anda therefore introduce surface normal recovery
errors when solving Eq. (5). Although the 3D surface normal
estimates are not perfect, but becausek ≫ 9 in Eq. (3), the
matrixM is highly overdetermined and in practice the system
can yield good results. We have tested our 3D lighting-based
forensic method using 11 lighting probes to render Stanford
bunny. In the red channel, the average estimate error is0.0313
with a maximum of0.0558 and a minimum of0.0063. In
the green channel, the average estimate error is0.0283 with
a maximum of0.0580 and a minimum of0.0094. And in the
blue channel, the average estimate error is0.0278with a max-
imum of 0.0594 and a minimum of0.0064. Compared with
[6], for the synthetic images, we achieve better results even
without a predefined 3D model.

Shown in Fig. 4 is a forgery from [5]. We extract the
information from the bodies of the swans and the umbrellas
to establish their 3D models and the estimated surface nor-
mals are then used for 3D lighting estimation. Four light-
ing spheres with estimated 3D lighting coefficients are also
shown in Fig. 4. Qualitatively, in accordance with the results
in [5], the lighting spheres between the swans and between
the umbrellas are both very similar, while the differences of
those between the swans and the umbrellas are quite obvi-
ous. In addition, the pairwise lighting differences are sum-
marized in Table 3. Note that all the errors either between
the swans or between the umbrellas are smaller than0.05,
similar to the differences between consistent lightings inthe
simulations of [6]. Based on the significant differences of the
lighting environment between the swans and the umbrellas,
we can conclude that the picture is a forgery. Besides, instead
of only using boundary information of the objects to estimate
five 2D lighting coefficients, we are able to estimate the nine

2http://gl.ict.usc.edu/Data/HighResProbes



0.0111
0.0094
0.0093

0.0377
0.0354
0.0322

0.0063
0.0099
0.0117

Fig. 3. From left to right are: the lighting probes, the rendered Stanford bunnies, the two results from SFS, the lighting spheres
of the actual and the estimated lighting environments, and the figures of their lighting differences in red, green and blue channels
respectively. The lighting environments from top to bottomare: EUC, ENN and PIS.

3D lighting coefficients, which is more reliable for lighting
consistency comparisons.

6. CONCLUSIONS

We have presented that in lighting-based forensics, the orig-
inal 2D lighting-based detector can be fooled by modifying
the pixel intensities around the border of the inserted object.
Therefore, we propose to use shape-from-shading to estimate
3D lighting coefficients in order to enhance the capabilities of
the forgery detector. This has the potential to make lighting-
based forensics more reliable and general.

The main issue with this new method is the estimation of
the 3D shape of the object. At present a crude estimation of
the shape seems sufficient for simple objects. Future work
consists in improving the accuracy of shape recovery and in-
vestigating the effect for more complicated objects. We also
plan to undertake comprehensive evaluation of the method by
detecting more real world forgeries.
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