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ABSTRACT difficult to forge physically consistent lighting when spiig
: T . ._objects from different images, meanwhile experiments show
This paper concentrates on lighting-based forensics. \& flrthat such inconsistencies may be difficult to perceive by hu-

show how to fool the forgery detector based on 2D lighting o .
coefficients using a simple counter-forensic strategys T ?ya\r]]o?;esso?]i:;_rli%hggg_ﬁzzeir:%r:rnrségzgg\i/\?eE/eseirrLz?ed:j?f(aS(:e-d
termediary result advocates the use of more involved 3I3}-I|ghtional lighting [4], 2D complex lighting [5] and 3D complex

ing coefficients for forensics purposes. Such a researeh lin. . . .
9 PuTP L r\lghtmg [6]. The basic idea of the last two methods is to first
means that we need at least an approximation of the 3D sur= o .
cover the lighting environment, as represented by a group

face of the suspect object. Contrary to previous approaché . . -

that concentrated on particular kind of shapes (e.g. humagsff??”r?tal hatrimoP'gsfforiﬁé?#e?tsn[tﬂ’ ?tnd tfht(:]n ?r%mpm(aoth
faces), we propose a promising approach based on shapceQe fce S €s t:?j IO foll N eth' parts o he ager Ou
from-shading. This new 3D lighting-based forensic method'€W forensic method aiso 1o7lows this approach.

: : . The work presented in this paper can be thought of as
is more general as the 3D shape is learned from the picture

itself. Furthermore, the results are in par with the lesegan ggﬁr:t;ﬁg?ggigght'RébziiivcszégzﬁnSS'CCS)fagdmg\"/iOus
state-of-the-art methods. : g p

o o forensic method and demonstrate the possibility of develop
Index Terms— Digital forensics, image forgery detec- ing a new lighting-based image forensic tool relying on the
tion, complex lighting environment, spherical harmonics,most recent results from shape-from-shading research [8].

shape-from-shading, counter-forensics Our contributions are summarized as follows:
e First, we show, through two simple examples, that
1. INTRODUCTION the 2D lighting-based forensic method [5] is not com-
_ _ _ _ o pletely reliable and may be vulnerable to counter-
With the increasing popularity and sophistication of photo forensic attacks.

manipulation software, our trust on the authenticity ofitdig
images is decreasing. Doctored images can be easily found
in our daily life, and have been used, for instance, in adver-
tising, political and personal attacking, and forgery déee
tific results. Accordingly, many image forensic techniques
have been proposed during the last decade [1, 2], with the ob-
jective to faithfully detect image forgeries. ComparedHe t
authentication based on digital watermarking, forensitite
nigues can assess the authenticity of an image in a passive an
blind way, without resorting to previously embedded infarm
tion (i.e. the watermark). These techniques make assumptio The remainder of this paper is organized as follows: Sec.
that manipulating an image will probably disturb the insitn 2 presents some background knowledge on lighting environ-
property, either geometrical, physical or statisticalthaf au- ment estimation, Sec. 3 depicts two simple examples tolattac
thentic image. Therefore, inconsistencies in these ptager the 2D lighting-based forensic method in [5], Sec. 4 dessib
over the image can be considered as an evidence of tamperirayr new 3D lighting-based forensic tool, Sec. 5 shows some
In this paper, we concentrate on the physics-based imexperimental results, and we draw conclusions in Sec. 6.
age forgery detection that examines inconsistencies ht-lig
ing under complex natural illumination. In practice, it isry 2. LIGHTING ESTIMATION

e Second, we use the shape-from-shading technique [8]
for lighting environment estimation, which is new in
the field of image forgery detection. Our motivation
was to use 3D surface normals to estimate a more com-
plete description of the lighting environment.

e Finaly, compared to the 3D lighting-based forensic
method in [6], which relies on a predefined 3D model
and is specific to human face images, our method does
not need such a 3D model and seems more generic.

*Wei Fan performed this work while at GIPSA-Lab on the graondr . .
China Scholarship Council (No. 2011602067). In order to model complex lighting environment, we assume

TThis work was funded, in part, by French ANR Estampille. that: (a) the lighting is distant; (b) the surfaces are cararel



Lambertian; (c) the surface reflectance is constant; anithéd) ]

camera response is linear. ,
DenoteL(w) as the illumination function describing the '

intensity of the incident light from directian which is a unit

vector. LetR(n, w) be the reflectance function of the surfacey

wheren is the unit length surface normal vector. On the co

vex surface of a Lambertian object, we suppose there are

cast shadows or interreflections [7]. Hence, the irradiamice (a) GRC (b) GAL (c) Forgery

only due to the lighting environment, and it can be describe

as a convolution over the upper hemisphe(e):

?—'ig. 1. Mapping (c) on (a) of the 2D lighting coefficients
taken from (b).

E(n) = / L(w)R(n,w)dw. (1) Table 1. Pairwise 2D lighting differences
Q(n) | Errors

A common way to approximate this function is using spher- GRCvs. GAL|  0.2370
ical harmonics to expand both the illumination function and Forgery vs. GR 0.2336

i ield: Forgery vs. GAL| 2.6228 x 105
the reflectance function to yield: gery

oo Lo \/bm/256L4 o. Hence, along the boundaries of an object, the

Em) =YY AL nYim(n), (2)  five 2D lighting coefficients we are able to compute Afg,,
=0 m=—1 Li_1,L11, L5, andLy 5.

Forgeries are detected by comparing the lighting coeffi-

whereY; ,,,(-) is them" spherical harmonic of ordér with . ) . : h !
cients estimated from different objects in an image. Intl%g,

[ >0and— < m < [. L;,, are the spherical harmonics ] e
coefficients representing the lighting environment. Cantt ~ 2uthors proposed a distance measure between two lighting en
A, are the Lambertian reflectance coefficients, which decayironments that is normalized to the interyaJ 1]. Here, we
rapidly whenl > 2. Consequently with < 2, E(n) can be also use this measure to evaluate lighting differences.
well approximated using only the first nine terms.

It is the surface diffuse albedp, which is the multi- 3. COUNTER FORENSICS
plicative factor mapping the image irradiance to the initgns
Without loss of generality, we assumpe= 1 for simplicity | [5], although the authors proposed the 3D lighting-based
andI(p) = E(np) at the pointp on a Lambertian surface. forensic model, due to the difficulty of 3D normal estima-
Thus the lighting coefficients are estimated up to an unknowRon, their main approach for forgery detection is still cen-
factor. Given the estimated surface normalé at 9 points  trated on 2D lighting-based forensic method. In this segtio
on the surface of an object and their intensties, it is ptessib we introduce two counter-forensic methods to show how 2D
to estimate the nine 3D lighting coefficients by lighting-based forensic method can be vulnerable.

1,{ 1405/0,0(1’11) e 1212}/272(1’11) 1,(1;70
: - : . : : ) 3.1. Fooling the 2D Lighting-based Detector

i AgYopo(ny) ... ArYas(ny) 13, We rewrite Eq. (3) in matrix forri = ML. The lighting
(3)  coefficients are obtained as the least-squares solutidmeto t

Notei = [I" 19 I]" is the image intensity for RGB colorim- system:L = (M”M)~'M7I. we can see that the estima-
ages, and, ., = [Lj,, L}, L,]" is the vector containing tion of lighting coefficients needs both the surface normals
the lighting coefficients corresponding to spherical hatimo  (determiningM) and the image intensitie)(
Y., inred, green and blue channels, respectively. Lighting-based forensics compare the lighting coeffi-

Obviously, the estimation of the 3D lighting coefficients cients from different objects to decide whether the image is
requests 3D surface normals. And without multiple imagesorgery. The goal of counter-forensics is to fool the deiect
or known geometry, it is always difficult to satisfy this re- so that it obtains different lighting coefficients. For arjeaty
quirement [5]. Nevertheless, under the assumption of erthan the image, a simple strategy is to first keep the surface
graphic projection, the-component of the surface normal is normals unchanged to yield the sadvg meanwhile, if we
zero along the occluding contours of an object. Thereforesycceed in modifying the pixel values along the occluding
the spherical harmonics; o, Y>,—1 andY>; are all zeros, contours, i.e. modifyind, different lighting coefficientd.

andY>, = —/5/16m becomes a constant. We add thecan be generated.
terms corresponding to spherical harmonligg andY; g to- The weakness of the 2D lighting-based forensic method

gether and factod, and A, to the lighting coefficients. De- we are targeting is that it uses only the information alorey th
note Ay = Yy, = 1, we can estimaté; , = \/m/4Loo —  object boundaries. It should therefore be possible to eraat



combination ofL o andLs . Hence, if there are two lighting
environments with similat o, L2 o, L1,—1, L1,1, L2,—2 and
L, 5 butdifferentL o, Lo 1 andLs 1, the 2D lighting-based
forensic method would fail to distinguish them. After simu-
lation, we verified that this weakness may be made use of by
opponents to perform counter-forensic attacks.

Based on the ground truth of the nine 3D lighting coeffi-
(a) GAL (b) GAL forgery-1 (c) GAL forgery-2  cients of lighting environment GAL, we create two lighting
Fig. 2. Rendered spheres from actual and fake lighting envi__envwonm(_eqt forgengs. F'g'. 2-(a) is the rendgred §phe4re us
ronments. ing the original lighting environment GAL, while Fig. 2-(b)

) ) o o and -(c) are rendered using GAL forgeries. In GAL forgery-
Table 2. Comparison of estimated lighting coefficients 1, the modification is applied th; o, Lo _; and L, 1, while

R — G — B — one more coefficient;  is added to the modification in GAL
Fig. 2-(a) 3D 6.3 x 1075 6.9 x 1075 6.6 x 1075 forgery-2. And in both cased, o is modified due to the fact
2D|5.0 x 107> 48 x 107> 5.6 x 10 that we should ensure that each value in the modified lighting
Fig. 2-(b) 3D 0-113574 0-123374 0-109374 environment should be positive. But it does not increase the
2D|3.5x 107" 3.8 x 10* 3.4 x 10 lighting environment difference [5].
Fig. 2-(c) 3D} 0.2008 0.2059 0.1947 The figures in Table 2 are the estimation errors of RGB
9219 2p|3.3x 1074 3.7 x 10~* 3.2 x 10~ : i
: : : channels, in both the 3D and 2D cases, as compared with the

ground truth of the GAL lighting environment. The small er-

fake picture by modifying the pixel values along the occlud-rors in the fourth and the sixth rows in Table 2 indicate that t
ing contours, as long as the contour shape is kept the same4p lighting-based forensic method is successfully attecke
order to yield the same boundary normals 3D lighting-based forensics is a more reliable choice adlit s

We have tested this idea on the synthetic images rendercg h distinguish different lighting environments with skani

using thepbrt environment [9] with lighting probes main- lighting coefficients.

tained by Paul Debevec [10]. Fig. 1-(a) and -(b) are the ren-

dered Lambertian spheres with lighting probes captured in 4. IMPROVED LIGHTING-BASED FORENSICS

Grace Cathedral, San Francisco (GRC) and Galileo’s Tomb,

Florence (GAL}. In order to create the forgery of Fig. 1-(c), AS explained in Sec. 3, it is relatively easy for opponents to

we doctor the boundary pixel values accordinglf,, = fool the 2D !lghtmg-based forensic method by modlf_ylng the

M,,.L,.;. We also use interpolation in the area between th&oundary pixels. Moreover, the 2D method also fails to de-

boundary and the central part (which is kept the same as tHgct different 3D lighting environments that have similay 2

original image of Fig. 1-(a)) to smooth the image. A visu-lighting coefficients.

ally more plausible forgery compared with Fig. 1-(c), can be A hatural extension consists of using 3D lighting environ-

obtained, by using advanced image processing algorithms. Ments. Estimating a 3D lighting environment involves that
According to the thresholds reported in [5], the results inSome 3D information about the shape of the underlying ob-

Table 1 show that the image in Fig. 1-(c) successfully fdués t ject is available. Such an approach was already suggested by

2D lighting-based forensic method, which mistakenly cdnsi Kee and Farid [6]. They focused on detecting forgeries for

ers that Fig. 1-(b) and -(c) are from the same lighting emviro human faces by matching a 3D model of a face on the image.

ment. However, the truth is that the picture in Fig. 1-(c) is e propose a different approach by using shape-from-

a forgery created from -(a) using the 2D lighting coefficgent Shading (SFS) [8] to estimate the 3D normals of the underly-

estimated from -(b). Note that Fig. 1 only shows the greeind object. Our goalis to produce a more general 3D lighting-

channel of the images, but the modification in red/blue chanPased forensic tool that works on objects of arbitrary shape
nels can be achieved similarly. As shown above, the first nine spherical harmonics @)

are either constant & 0), linear ( = 1) or quadratic{ = 2).
As the P-order approximation of the Lambertian irradiance
can capture up to 87.5% of the light energy [8], the image

The 2D lighting-based forensic method is only able to esformation model can be simplified to a linear problem from

3.2. Building upon 3D Lighting Environments

timate five lighting coefficients: Ly, = +/7/4Loo — EO @): o ol

\/57T/256L270, Llﬁfl, L171, L21,2 and L212, which cor- 1 1 AT

respond to nor-component-related spherical harmonics. = P { al ], (4)
Among the five 2D lighting coefficients, note theg , is the il n} 1

Lhttp:/Avww.pauldebevec.com/Probes whereA = Al[lLl 1,1 lio)anda = /101070.



Table 3. Errors between object pairs of Fig. 4
R G B

S-1vs. S-20.0277 0.0356 0.0456
U-1vs. U-2/0.0031 0.0035 0.0058
S-1vs. U-10.4533 0.4432 0.3696
S-1vs. U-20.4394 0.3902 0.3001
S-2vs. U-10.4722 0.4801 0.4245
S-2vs. U-20.4752 0.4314 0.3535

ground truth and the estimated 3D lighting coefficients oh re
green and blue channels respectively from up to down. And
the second/third rows of Fig. 3 are the results for the follow
ing lighting environments: Dining room of the Ennis-Brown
House, Los Angeles, California (ENN), and Pisa courtyard
Fig. 4. A forgery with two swans inserted, and the lighting nearing sunset, Italy (PI%)

spheres from the estimated 3D lighting coefficients. In the third and the fourth columns in Fig. 3, some noise

The main idea to recover the unit surface normal vectopPPears in the RGB map and treomponent of the 3D sur-
n* is to solve the following quadratically constrained linear @C€ normal estimates. This can be explained by the fact that
least-squares problem [8]: the Imegr image formation model in Eq. (4) is onlly a roug-h
approximation. And the crudely estimated lighting coeffi-
n* = argmin||An — b||?, s.t.|n| = 1, (5) cientsA anda therefore introduce surface normal recovery
n errors when solving Eqg. (5). Although the 3D surface normal
whereb = i — a. Once the recovered surface normals areestimates_ are not perfect, bUt. becaﬂs§ 9in Eq' (3), the
matrix M is highly overdetermined and in practice the system

o_btamed: e can us_e_the model of Eq. (3) to compute thgan yield good results. We have tested our 3D lighting-based
nine 3D lighting coefficients.

The process of 3D lighting coefficients estimation base(i)orensm method using 11 lighting probes_to render Stanford
on SES is enumerated as follows: unny. In the red channel, the average estimate erfod3d 3
' with a maximum of0.0558 and a minimum 010.0063. In
1. Use bicubic interpolation to coarsely estimate the surthe green channel, the average estimate err610233 with

face normalg{ny} of the target object; a maximum o0f0.0580 and a minimum 00.0094. And in the
2. Estimate the linear/constant lighting coefficieAtand ~ blue channel, the average estimate errorG278 with a max-
a by Eq. (4); imum of 0.0594 and a minimum 00.0064. Compared with

h[;@]’ for the synthetic images, we achieve better resultsmeve
without a predefined 3D model.
. . Shown in Fig. 4 is a forgery from [5]. We extract the
4. Ad(.j a smoothness constraint [8] FO obtain the global. ¢, mation from the bodies of the swans and the umbrellas
optimum of the surface normafs, }; to establish their 3D models and the estimated surface nor-
5. RecomputeA anda for another iteration of surface re- mals are then used for 3D lighting estimation. Four light-
covery using{n;} from Step 4, and repeat Steps 3-5;ing spheres with estimated 3D lighting coefficients are also
6. According to Eqg. (3), compute the 3D lighting coeffi- shown in Fig. 4. Qualitatively, in accordance with the resul
cients by usingdn,}. in [5], the lighting spheres between the swans and between
the umbrellas are both very similar, while the differencés o
those between the swans and the umbrellas are quite obvi-
5. RESULTS ous. In addition, the pairwise lighting differences are sum
marized in Table 3. Note that all the errors either between
The six images shown in the first row of Flg 3 are: thethe swans or between the umbrellas are smaller tha:h
lighting probe captured in a Eucalyptus Grove, UC Berkeleysimilar to the differences between consistent lightingthia
(EUC, also maintained by Paul Debevec [10]), the renderegimulations of [6]. Based on the significant differenceshef t
Stanford bunny under EUC lighting environment, the RGBighting environment between the swans and the umbrellas,
map of the recovered surface normal components,zthe e can conclude that the picture is a forgery. Besides,anste
component of the recovered surface normals, the sphergs$only using boundary information of the objects to estienat

representing the actual lighting and the estimated 3Dilight five 2D lighting coefficients, we are able to estimate the nine
coefficients (green channel). The three figures on the very

right in the first row of Fig. 3 are the errors between the 2nttp://gl.ict.usc.edu/Data/HighResProbes

3. Solve least-squares problem Eq. (5) at each point of
surface to recover the surface normls };




0.0111
0.0094
0.0093
0.0377
L ga RN 0.0354
) 0.0322
} 0.0063
X 0.0099
: 5 0.0117

Fig. 3. From left to right are: the lighting probes, the rendereah8ird bunnies, the two results from SFS, the lighting spher
of the actual and the estimated lighting environments, adigures of their lighting differences in red, green anctllnannels
respectively. The lighting environments from top to bottara: EUC, ENN and PIS.

3D lighting coefficients, which is more reliable for lightin ~ [3] Y. Ostrovsky, P. Cavanagh, and P. Sinha, “Perceiving

consistency comparisons. illumination inconsistencies in scene®grceptionvol.
34, no. 11, pp. 1301-1314, 2005.
6. CONCLUSIONS [4] M. K. Johnson and H. Farid, “Exposing digital forg-

eries by detecting inconsistencies in lighting,” ACM

We have presented that in lighting-based forensics, ttge ori Workshop on Multimedia & Securitg005, pp. 1-10.
inal 2D lighting-based detector can be fooled by modifying

the pixel intensities around the border of the insertedaibje [3] M. K. Johnson and H. Farid, “Exposing digital forg-
Therefore, we propose to use shape-from-shading to estimat ~ €ries in complex lighting environmentsJEEE Trans.

3D lighting coefficients in order to enhance the capabdité Inf. Forensics Securityol. 2, no. 3, pp. 450-461, 2007.
the forgery dgtector. This_ has the potential to make ligjtin [6] E. Kee and H. Farid, “Exposing digital forgeries from
based forensics more reliable and general. 3-D lighting environments,” ifEEE Int. Conf. on Inf.

The main issue with this new method is the estimation of Forensics Security2010, pp. 1-6.
the 3D shape of the object. At present a crude estimation of
the shape seems sufficient for simple objects. Future workl7] R. Ramamoorthi and P. Hanrahan, “An efficient rep-
consists in improving the accuracy of shape recovery and in-  resentation for irradiance environment maps,”Piroc.
vestigating the effect for more complicated objects. We als SIGGRAPH2001, pp. 497-500.
plan to undertake comprehensive evaluation of the method by[8] R. Huang and W. A. P. Smith, “Shape-from-shading
detecting more real world forgeries. under complex natural illumination,” iRroc. of IEEE

Int. Conf. on Image Proces2011, pp. 13-16.

7. REFERENCES [9] M. Pharr and G. Humphrey$®hysically Based Render-

ing: From Theory to ImplementatiopnMorgan Kauf-

[1] H. Farid, “A survey of image forgery detection|EEE mann Publishers Inc.. 2004.

Signal Process. Magvol. 26, no. 2, pp. 16—-25, 2009.
) . [10] P. Debevec, “Rendering synthetic objects into real
[2] A. Rocha, W. Scheirer, T. Boult, and S. Goldenstein,” * gcenes: Bridging traditional and image-based graphics
\ﬁs_mn_ of the unseen. Current. tre,nds and challenges in with global illumination and high dynamic range pho-
digital image and video forensics8CM Comput. Sury. tography,” inProc. SIGGRAPH1998, pp. 189—198.
vol. 43, no. 4, pp. 26:1-26:42, 2011.



