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ABSTRACT

In this paper, we present a new blind and robust 3-D mesh water-
marking scheme that makes use of the recently proposed manifold
harmonics analysis. The mesh spectrum coefficient amplitudes ob-
tained by using this analysis are quite robust against various attacks,
including connectivity changes. A blind 16-bit watermark is em-
bedded through an iterative scalar Costa quantization of the low fre-
quency coefficient amplitudes. The imperceptibility of the water-
mark is ensured since the human visual system has been proved in-
sensitive to the mesh low frequency components modification. The
embedded watermark is experimentally robust against both geome-
try and connectivity attacks. Comparison results with two state-of-
the-art methods are provided.

Index Terms— Mesh watermarking, blind, manifold harmonics

1. INTRODUCTION

The robust and blind watermarking technique seems an efficient so-
lution to the emerging problem of intellectual property protection of
3-D meshes. Such watermarking methods do not need the original
cover mesh for the watermark extraction and are resistant against
various attacks on the stego model. In general, devising a robust and
blind mesh watermarking scheme is a difficult task, mainly due to the
mesh’s irregular representation and the existence of many intractable
attacks [1]. Some spatial methods [2, 3] use statistical mesh shape
descriptors as watermarking primitives and achieve both robustness
and blindness. For example, in [3], the distribution of the mesh ver-
tex norms is modified to hide a multi-bit watermark. This approach
has been considered as the most robust blind scheme proposed so far.
Watermarking in the mesh spectral domain has the advantages of be-
ing more secure and more imperceptible mainly due to the spreading
effect of the embedded watermark in all the spatial parts of the stego
model. However, most existing spectral methods are non-blind [4,5]
since they use combinatorial Laplacian spectral analysis [6] which
is not robust against connectivity changes. Blindness in the spec-
tral domain was first exploited in [7]. Two recently proposed blind
spectral methods [8,9] have achieved a better robustness, especially
against connectivity attacks (e.g. surface simplification and remesh-
ing). In [8], the robustness relies on the stability of the constraints
embedded in sets of high frequency coefficients. Unlike the other
spectral schemes, the method of Liu ef al. [9] makes use of a new
mesh spectrum decomposition tool, namely the manifold harmon-
ics analysis [10]. The manifold harmonics spectrum coefficients are
quite robust, even after connectivity alterations. In Liu’s method, the
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low frequency part of the mesh spectrum is split into 5 slots. One
bit is inserted in each slot by modifying the relative relationship be-
tween the magnitude of a certain selected coefficient and the average
magnitude of the other coefficients in the slot.

Our objective in this paper is to use the quantization-based data
hiding technique to embed a blind and robust watermark in the man-
ifold harmonics spectral domain of a 3-D mesh. We would like to
improve the achievable watermarking capacity in this promising do-
main (currently 5 bits as in the scheme of Liu et al. [9]), while pre-
serving as well as possible the other performance metrics (i.e. se-
curity, robustness and imperceptibility). In our scheme, a multi-bit
watermark is embedded through an iterative quantization of the low
frequency coefficients obtained by means of the manifold harmonics
analysis. The security is enhanced since the watermark is spread to
all the spatial parts of the stego mesh, with a low possibility to intro-
duce predictable spatial patterns on the mesh surface. Therefore, it
is even difficult to notice its existence. A satisfactory robustness can
be achieved because the low frequency information is perceptually
important, and thus is less likely to be changed under attacks. It has
also been shown that the human visual system is not sensitive to the
low frequency component modifications of a 3-D mesh [11]. This
means that we can also achieve a good watermark imperceptibility.

The remainder of this paper is organized as follows: the man-
ifold harmonics analysis is introduced in Section 2; the proposed
watermark embedding and extraction algorithms are detailed in Sec-
tion 3; in Section 4, some experimental results are presented, with
comparisons with the methods of Cho et al. [3] and Liu et al. [9]; we
draw the conclusions in Section 5.

2. MANIFOLD HARMONICS ANALYSIS

In this section, we briefly introduce the manifold harmonics analysis.
Readers could refer to [10] for more details. Similar to the Laplace
operator in Euclidean space, the Laplace-Beltrami operator A is de-
fined as the divergence of the gradient for functions defined over a
manifold . with metric tensor g:

0
A = divgrad = Zf@&( lglg™? 05) (€))

where |g| denotes the determinant of g, and g% are the components
of the inverse of g. The eigenfunction and eigenvalue pairs (H LD k)
of the operator A on . satisfy the following relationship:

—AHY = A\ H”. ©)

The above eigen-problem is then discretized and simplified within
the finite element modeling framework on the n vertices v; i—1,2,....n
of the surface .. This yields the following matrix formulation:

—Qh" = )\, Dh*, A3)
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where h* = {H{“, HE .., HS]T, the n X n matrix D is diagonal
and called the lumped mass matrix with D; ; = (ZteNt(i) |t\) /3,
and @ is also of size n x n and called the stiffness matrix with

{Qm’ = (Cot(ﬂi,j) + COt(ﬁ;,j)) /2,
Qii=—22;Qij-

In the above expressions, NV; () denotes the set of triangles incident
to vertex v, |.| gives the area of a triangle, and f; ;, ﬁé,j are the two
angles opposite to the edge that connects v; and v;. The eigenvec-
tors solutions of Eq. (3) are the manifold harmonics bases, while the
eigenvalues represent their associated frequencies. The bases are or-
thogonal with regard to the functional inner product. We then sort the
bases according to the ascending order of their associated frequen-
cies and also scale them so that they have unit norms. The spectral
coefficients are calculated as the functional inner product between
the geometry x (resp. y, z) and the sorted and orthonormal bases:

“)

= (x.0") =S @D Hl. 5)
i=1
Finally, the k-th spectral coefficient amplitude is defined as:
ee = /(@) + (@3)° + ()", ©)

The object can be exactly reconstructed by using the inverse man-
ifold harmonics transform. For geometry x (resp. y,z), we have

zo= Yy FHY. @)
k=1

The first few low frequency coefficients can be efficiently cal-
culated by using the band-by-band algorithm combined with an ef-
ficient eigen-solver such as TAUCS or SuperLU [10]. For instance,
the first 100 coefficients of the Rabbit mesh having about 33.5K ver-
tices can be obtained in less than 40 seconds on an ordinary PC.

3. WATERMARK EMBEDDING AND EXTRACTION

Our watermark embedding method is composed of three main steps:
(a) carry out the mesh spectrum decomposition by using Eq. (5) with
the mesh’s manifold harmonics bases; (b) quantize the amplitudes
of some low frequency coefficients cj to hide a 16-bit watermark
Wj j=1,2,...,16, by using the 2-symbol scalar Costa scheme [12]; (c)
reconstruct the watermarked mesh with the modified coefficients us-
ing Eq. (7).
In step (b), for each c; that is to be watermarked, a structured
pseudo-random codebook is given by:
' 5
Uey te, :U{u:zS+l§+tckS7u20}7 (8)
1=0
where z is an integer, S is the quantization step, [ € {0,1} is the
watermark bit from the codeword u, and t., is a pseudo-random
sequence generated by using a secret key K. As an example, .,
can be uniformly distributed in [f%, é] The dither signal t., S is
introduced to further enhance the watermarking security. Note that
the codewords in Ue,, ¢, represent bits of 0 and 1 in an interleaved
manner. In order to insert a watermark bit w* in ¢, we first find the
nearest codeword ., to cy in the codebook that correctly represents
w*. This means w* should be equal to value [ in the derivation of

U, given in Eq. (8). Then, the quantized value c; is calculated as:

c =ck + a(Ue, —ck), &)

where « € [0, 1] represents the distortion compensation factor. The
proposed bit embedding procedure consists in pushing c¢; towards
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Uc,,, to within the interval (uc, — 2, uc, + %), which is the de-
coding area of u., under the nearest neighbor criterion. Finally, the
modified spectral coefficients i’;c (resp. g;, 21;) can be obtained as:

i = iy (10)

The quantization mechanism is quite simple, but there are still
some important details about the whole watermark embedding algo-
rithm. Actually, two issues have to be carefully taken into account
during its design: the causality problem and the invariance to simi-
larity transformation.

First, it can be noticed that once we modify the spectral coeffi-
cients of a model from Z, Yi, Zi to 5:;, Q;C, 2; and reconstruct the
deformed object, the manifold harmonics bases of the reconstructed
object are different from those of the original model. It means that
after the re-decomposition of the deformed object, the obtained coef-

ficients, denoted by 5:; , ;Q;: , 2;: are different from the desired values

QE;C, g};, 2,;. One way to solve this causality problem is to repetitively
perform the quantization, in a similar way to [9]. The previously wa-
termarked mesh is input to the watermark embedding system with
its spectrum coefficients re-quantized. This process is carried out
for several iterations, until all the bits are correctly embedded. In
order to reduce the number of iterations, we take the following mea-
sures. First, we do not quantize the first 20 coefficients. Experi-
mentally, modifying them will also cause noticeable alterations of
the subsequent coefficients and thus increase the processing time.
Second, starting from c21, we quantize every 3 out of 4 amplitudes.
This creates some “buffering space” between watermarking primi-
tives, which can effectively alleviate the causality problem. Even
after taking the above two measures, sometimes we still need a large
number of iterations until all the 16 primitive amplitudes are cor-
rectly quantized. Therefore, we introduce the third measure: trying
to repetitively embed the 16 bits for 3 times. This repetition is capa-
ble of reducing the processing time even though we now have more
amplitudes to quantize. Actually, the 16 bits are considered suc-
cessfully embedded as long as the majority voting results from the
corresponding repetitively embedded bits are correct. The iterative
procedure can then be terminated earlier, even when there still exist
embedding errors on certain “difficult” amplitudes.

Similarity transformation includes translation, rotation and uni-
form scaling. It can be deduced that under translation, only the first
manifold harmonics base h' is altered. Since the first spectral am-
plitude c; is not involved in watermarking, our method is immune to
translation. Meanwhile, the manifold harmonics bases are kept un-
changed under isometric transformation; thus, a rotation in the spa-
tial domain x, y, z yields the same rotation in the spectral domain
Tk, Uk, 2k, Without any influence on the coefficient amplitudes cy. It
can be proved that under a uniform scaling with a factor s, all the
spectral coefficients will be scaled by s®. In order to be immune to
scaling, we determine the quantization step of ¢ as S = [ca, with
[ a constant. In this way, the codewords in Eq. (8) change propor-
tionally with ¢, under uniform scaling so the invariance is ensured.
Experimentally, 3 can be fixed as 0.0015 for all the objects without
seriously affecting the algorithm’s performance.

Algorithm 1 summarizes the whole watermark embedding pro-
cedure. The first 15 steps constitute the watermark extraction algo-
rithm. If the embedding algorithm is terminated within few itera-
tions, the procedure can be further continued while neglecting the
stop criterion at step 16, in order to get another one or two stego-
models, which probably have smaller errs value (see step 15 for
its calculation) but higher induced distortion. Then, we can select
one from them as the final watermarked model according to the re-



quired trade-off between the distortion and the robustness. Normally,
a model with a smaller erry value possesses a stronger robustness.

Algorithm 1 Watermark embedding algorithm.

1: Calculate the first 84 spectral coefficients and their amplitudes
¢y, of the input mesh by using the manifold harmonics analysis;

2: Record the difference part of the mesh geometry as
Ti =T — 224:1 2L HE (tesp. §i, Zi);

3: Initialization: £k = 21,5 = 1;

4: while £k < 84 do

5 if k%4 # 0 (not being “buffering space”) then

6 Construct the codebook U, ¢, for ¢ according to Eq.

(8) with the quantization step S = [ca;

7: Find the nearest codeword ., in U to ¢y, and record

kote
the embedded bit of u,, as w;; *
8: j—J+1
9: end if

100 k<« k+1;

11: end while

12: for j = 1to 16 do

13:  Deduce the extracted bit w; through majority voting between

Wy, Wj+16, Wj+323

14: end for

15: Compare with wj j=12,..16 and its periodic extension
Wj,j=1,2,...,48 (for j > 16 we have w; = w(;%16)), count the bit
error number of W; j—1,2,...,16 as erry and the bit error number
of Wj j=1,2,... 48 as erra;

16: if (err1 == 0) AND (errz < 6) then

17:  Stop iterations, take the current mesh as watermarked model;

18: else

19:  Initialization: k = 21,5 = 1;

20: while £ < 84 do

21: if k%4 # 0 then

22: Deduce the to-be-embedded bit of ¢y as w(;%16):

23: Calculate the quantized value c;v by using the 2-symbol
scalar Costa scheme with quantization step S = fca;

24: Obtain the modified spectral coefficients i:;e, g],;, 2,; by
using Eq. (10);

25: j—J7+1

26: end if

27: k+ k+1;

28:  end while

29: end if

30: Reconstruct the deformed mesh geometry with
’ _ 84 ' 7
T =Ti+ D, kaf (resp. y;, z;);
31: Return to step 1 with the reconstructed model as input.

4. EXPERIMENTAL RESULTS

The proposed method has been tested on several meshes such as:
Rabbit (33520 vertices), Horse (36043 vertices) and Venus (67173
vertices). Table 1 details some statistics about the watermark em-
bedding and extraction. These values represent averages of 5 trials
with 5 different watermark codes. In the parentheses are the corre-
sponding results of the Method I of Cho er al. [3] with the strength
factor equal to 0.025 and with the same capacity 16 bits. All the tests
were carried out on a Pentium IV 2.0GHz processor with 2GB mem-
ory. It can be seen that our approach can be successfully applied on
relatively large datasets with acceptable embedding and extraction
times. The objective distortion between the watermarked and orig-
inal meshes is measured by Metro [13] in terms of maximum root
mean square error (MRMS). A “perceptual” distance between them
is evaluated by the mesh structural distortion measure (MSDM) pro-
posed in [14] (radius equal to 0.005). Its value tends towards 1 (the-
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Table 1. Baseline evaluations of the proposed method (16 bits ca-
pacity, in the parentheses are the results of Cho’s method).

Model Rabbit Horse Venus
Iteration number 12.2 13.4 8.6
Embedding time (s) 316.6 (1.5) 278.0 (1.6) 521.0 (2.4)
Extraction time (s) 23.5(<1.0) | 20.1(<1.0) | 52.9(<1.0)
MRMS by WM (10~3) | 2.37 (2.14) 2.37 (1.57) 1.95 (1.19)
MSDM by WM 0.17 (0.20) 0.13(0.21) 0.13 (0.21)

Table 2. Robustness evaluation results in terms of BDR (16 bits
capacity, in the parentheses are the results of Cho’s method).

Noise 0.10% 0.20% 0.30% 0.40% 0.50%
Rabbit 1(1) 0.99 (1) 0.99 (0.96) | 0.93(0.94) | 0.81(0.93)
Horse 0.98 (1) 0.96 (0.98) 0.89 (1) 0.80 (0.99) | 0.74 (0.96)
Venus 1(1) 0.99 (0.93) | 0.96(0.91) | 0.79 (0.88) | 0.79 (0.84)
Smooth. 10-itera. 20-itera. 30-itera. 40-itera. 50-itera.
Rabbit 0.98 (0.98) | 0.94(0.96) | 0.91(0.93) | 0.93 (0.90) | 0.88 (0.90)
Horse 0.90 (1) 0.81(0.99) | 0.70 (0.99) | 0.63(0.98) | 0.59 (0.94)
Venus 0.99 (0.96) | 0.95(0.89) | 0.89(0.83) | 0.83(0.79) | 0.79 (0.71)
Simplif. 10% 30% 50% 70% 90%
Rabbit 1(0.98) 0.99 (0.90) | 0.94(0.76) | 0.90(0.71) | 0.68 (0.64)
Horse 0.99 (0.91) | 0.93(0.48) | 0.84(0.81) | 0.58 (0.63) | 0.53 (0.71)
Venus 1(0.91) 0.98 (0.90) | 0.99 (0.88) | 0.81(0.79) | 0.51 (0.64)

oretical limit) when the measured objects are visually very different
and is equal to O for identical ones. One advantage of our method
is that it can introduce relatively high-amplitude deformation while
keeping it imperceptible. This point has also been confirmed in Fig.
1, where the original and watermarked Horses are illustrated. We
can hardly observe any visual difference between them.

The robustness of both schemes has been tested under noise ad-
dition, Laplacian smoothing (deformation factor equal to 0.03) and
surface simplification through vertex reduction. The robustness is
evaluated in terms of watermark bit detection ratio (BDR), defined as
the ratio of the correctly extracted bits. Table 2 presents the robust-
ness evaluation results of both methods (those of Cho’s method are
in parentheses), which are also the averages of 5 trials. Our method
is quite robust against various attacks, as long as they do not signif-
icantly modify the shape of the mesh. However, the results are not
that good on Horse. For this object we guess that the manifold har-
monics bases may be sensitive to the deformation of the obtrusive
parts of this model (e.g. the ears and the feet) under attacks.

Under the current parameter setting, the two methods show
comparable robustness against various attacks, except for extremely
strong ones, against which Cho’s method is more resistant. More
precisely, it seems that our method works better for mesh simplifi-
cation while Cho’s method performs better for noise addition and
smoothing. Under this comparable robustness precondition, the wa-
termarked models of Cho’s method have lower objective distortion,
while ours have a higher visual quality. Actually, Cho’s method is
prone to introduce some ring-like high-frequency distortions to the
watermarked meshes, especially on smooth parts like the cheek of
Venus (see Fig. 2.(a)). Contrarily, the distortion induced by our

(a) (b)
Fig. 1. (a) Original Horse; (b) Watermarked Horse by our method.



Fig. 2. Watermark imperceptibility comparison: (a) Venus water-
marked by Cho’s method; (b) Venus watermarked by our method.

Table 3. Baseline evaluations of the proposed method (5 bits capac-
ity, in the parentheses are the results of Liu’s method).

Model Rabbit Horse Venus
Iteration number 7.3 (6.0) 6.7 (8.3) 4.7 (5.7)
Embedding time (s) 139.6 (116.6) | 107.6 (140.0) | 208.7 (250.6)
Extraction time (s) 18.2 (18.9) 15.4 (16.1) 43.2 (43.4)
MRMS by WM (10~3) 1.50 (3.32) 1.43 (4.42) 1.14 (2.72)
MSDM by WM 0.11 (0.20) 0.09 (0.20) 0.09 (0.12)

method is of low frequency and it is difficult for the human eyes
to perceive it (see Fig. 2.(b)). In all, we can conclude that the bet-
ter imperceptibility of our spectral method compensates the higher
computational demand when compared to Cho’s spatial method.

In the following, we compare the proposed method with the
scheme of Liu ef al. [9], which is also based on the manifold har-
monics analysis but with a capacity of 5 bits. In order to perform a
fair comparison between the two schemes, we have slightly modified
our method so as to ensure the premise of a same watermarking ca-
pacity. More precisely, 5 bits are embedded repetitively for 5 times
from the 21st to the 70th spectral amplitudes (therefore we quantize
every one out of two amplitudes). Meanwhile, in Liu’s algorithm,
the 21st to the 70th amplitudes are divided into 5 slots and one bit
is embedded in each slot. The parameters of these two algorithms
are chosen so that they have roughly a comparable overall robust-
ness performance. For Liu’s method, we use the option of normal
slot combined with non-aggressive embedding so as to introduce less
distortion (the parameter s in their algorithm is fixed as 0.20).

Table 3 presents the comparison results concerning the execution
times and the induced distortion, and Table 4 presents the robustness
evaluation results of the two algorithms, also in terms of BDR. In
both tables, the results of Liu’s method are presented in parentheses
and all the values are the averages of 3 trials. It can be seen that
with a roughly comparable robustness level, our method introduces
lower geometric and perceptual distortions than Liu’s method. This
implies that our watermarking scheme has a better trade-off between
the robustness and the induced distortion.

5. CONCLUSION AND FUTURE WORK

A new blind and robust spectral mesh watermarking method has
been proposed in this paper. A multi-bit watermark is embedded

Table 4. Robustness evaluation results in terms of BDR (5 bits ca-
pacity, in the parentheses are the results of Liu’s method).

Noise 0.10% 0.20% 0.30% 0.40% 0.50%
Rabbit 1(1) 1(1) 0.93(0.93) | 0.87(0.87) | 0.93(0.93)
Horse 1(1) 0.93 (0.87) | 0.93(0.93) | 0.93(0.93) | 0.73 (0.73)
Venus 1(1) 0.93(0.93) | 0.87(0.87) | 0.73 (0.80) | 0.80 (0.80)
Smooth. 10-itera. 20-itera. 30-itera. 40-itera. 50-itera.
Rabbit 1 (0.80) 1 (0.73) 1 (0.67) 1 (0.60) 0.93 (0.60)
Horse 1(0.93) | 0.93(0.87) | 0.73 (0.80) | 0.67 (0.80) | 0.63 (0.80)
Venus 1 (0.80) 1 (0.80) 1 (0.80) 0.87 (0.80) | 0.73 (0.73)
Simplif. 10% 30% 50% 70% 90%
Rabbit 1(1) 1(1) 1 (0.93) 1 (0.87) 0.73 (0.67)
Horse 1(1) 1 (0.80) 0.93 (0.73) | 0.93(0.73) | 0.40 (0.73)
Venus 1(1) 1 (1) 1(1) 1(0.93) 0.93 (0.73)
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in a mesh by iteratively quantizing its low frequency spectral am-
plitudes obtained after a manifold harmonics transform. The main
features of our method are its high imperceptibility and security, its
good robustness against connectivity attacks as well as its applica-
bility on relatively large meshes. However, our method may fail for
certain objects: either the model’s manifold harmonics spectral co-
efficients are not that robust, or it is impossible to correctly embed
the watermark, even after many iterations. It would be interesting to
investigate the reasons for these two shortcomings. We are also in-
terested in improving the watermark robustness and capacity, and in
devising an efficient and elegant way to solve the causality problem.
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