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ABSTRACT 

 
An original hierarchical watermarking scheme for three-
dimensional triangular meshes is proposed in this paper. A 
geometrically robust watermark and a high-capacity watermark are 
inserted in different resolution levels of the wavelet decomposition 
of a semi-regular mesh by modifying the norms of wavelet 
coefficients. Both watermarks are blind and invariant to similarity 
transformations. The robustness of the first watermark is achieved 
by synchronizing and quantizing watermark primitives according 
to edges lengths of the coarsest level, which are quite insensible to 
geometrical attacks. The high capacity of the second watermark is 
obtained by considering the permutation of the norms of a group of 
wavelet coefficients. Experiments have proven the high robustness 
of the first watermark under common geometrical attacks. To our 
knowledge, the capacity of the second method, which can attain 
the factorial of the candidate coefficients number, is the highest for 
3D meshes in the literature. 

 

1. INTRODUCTION 
 
Digital watermarking has been considered as a potential efficient 
solution for copyright protection of various multimedia contents. 
This technique carefully hides some secret information in the 
functional part of the cover content. Compared with traditional 
cryptography, digital watermarking technique is able to protect 
digital works after the transmission phase and the legal access. 

In computer graphics, a 3D object is usually represented by a 
polygon mesh, which is a collection of polygonal facets targeting 
to approximate the real shape of the 3D object. With the increasing 
capability of capturing, processing and visualizing 3D data, the 
intellectual property protection of 3D meshes has attracted more 
and more attention. However, there still exist few watermarking 
methods for 3D meshes, in contrast with the relative maturity of 
the theory and practices of image, audio and video watermarking. 
This situation is mainly caused by the difficulties encountered 
while handling the arbitrary topology and irregular sampling of 3D 
meshes, and the complex possible geometrical and topological 
attacks on watermarked meshes. 

Existing techniques concerning 3D meshes can be classified 
in two main categories, depending on whether the watermark is 
embedded in the spatial domain (by modifying the geometry or the 
connectivity) or in the spectral domain (by modifying a certain 
kind of spectral-like coefficients). Most early methods fall into the 
first category, authors attempted to insert watermarks in different 
spatial primitives. These primitives include the distance from a 
vertex to the gravity center of the mesh [13], the average normal 
direction of a group of facets [1], the projection of a vertex on its 

opposite edge [4], the ratio between triangle height and opposite 
edge length [9], the local triangulation density [9], the relative 
position of a vertex to its 1-ring neighbors [3], and so on. Usually, 
this kind of methods is sensitive to connectivity attacks, such as 
simplification and remeshing. To overcome this drawback, some 
algorithms proposed a resampling stage on the input mesh of the 
watermark extraction to recover the same connectivity as the 
original cover mesh, but this inevitably makes the method non-
blind. The second category of algorithms firstly decomposes the 
mesh in a transformed spectral domain, and then the watermark is 
inserted whether at the low, median or high frequency part [6, 10-
12]. These methods usually provide better imperceptibility and 
better robustness to geometrical attacks, whereas the connectivity 
issue is still a problem. For example, the Laplacian spectral 
analysis of 3D meshes is sensible to connectivity change [10]; the 
edge decimation technique to establish a multiresolution 
representation is also dependant to the mesh connectivity [11]; and 
most wavelet analysis tools require the input as semi-regular mesh, 
in which most vertices are of valence six [6]. 

In this paper, an original hierarchical watermarking scheme is 
proposed for semi-regular meshes. A robust watermark and a high-
capacity watermark co-exist in the mesh for copyright protection 
and content labeling purposes, respectively. The remainder of this 
paper is organized as follows. Section 2 presents the principles of 
wavelet analysis of 3D meshes and the overview of our global 
blind hierarchical watermarking method for semi-regular meshes. 
In section 3, the insertion and extraction of the geometrically 
robust blind watermark is described. Section 4 introduces a 
watermark whose capacity increases rapidly with the number of 
insertion primitives. The proposed hierarchical scheme is validated 
by some experimental results in section 5. Finally, we conclude 
and point out several future working directions in section 6. 
 
2. OVERVIEW OF THE PROPOSED FRAMEWORK 

 
The objective is to build a robust and blind 3D mesh watermarking 
scheme. First of all, the mesh (possibly irregular) is remeshed to 
generate a corresponding semi-regular mesh with a similar 
geometrical shape. Then multiple watermarks are inserted in this 
semi-regular mesh. For extraction, we suppose that a mesh with the 
same semi-regular connectivity can be reconstructed. Here, the 
connectivity issue is supposed to be solved. The key point lies in 
elaborating a remeshing scheme which is insensitive to 
connectivity change. So the research on hierarchical watermarking 
of semi-regular meshes in this paper can be considered as a basic 
block of this framework and doesn’t lose generality. Furthermore, 
a semi-regular mesh normally has a negligible geometrical 
distortion compared to the original one and is more favorable for 
compression thanks to its simple connectivity [7]. 



The watermarking algorithm for semi-regular meshes 
presented in this paper is based on wavelet analysis. The 
mathematical formulation of the wavelet analysis and synthesis of 
3D meshes was introduced by Lounsbery et al. [8]. Such an 
analysis provides a coarse mesh which represents the basic shape 
(low frequencies) and a set of wavelet coefficients which stands for 
details information at each resolution level (median and high 
frequencies). Fig. 1 illustrates one iteration of the lazy wavelet 
decomposition mechanism. A group of four triangles is merged in 
one and three of the six initial vertices are conserved in the lower 
resolution. The wavelet coefficients are calculated as the prediction 
errors for all the deleted vertices and they are 3D vectors 
associated with each edge of the coarser mesh. One straightforward 
prediction is the midpoint of two conserved vertices having been 
incident to the deleted vertex. Note that this kind of wavelet 
analysis is applicable only on semi-regular triangular meshes 
having 4-1 subdivision connectivity. In our algorithms, the 
watermarks are inserted by modifying the coefficients norms. 

 
Fig. 1. Illustration of 3D triangular mesh wavelet analysis 

 
Fig. 2. Hierarchical watermarking of a semi-regular mesh 

 
Multiresolution analysis is a very suitable tool for hierarchical 

watermarking since there is no inter-infection between different 
watermarks if they are inserted in different levels. In our method, 
the robust watermark is in the coarsest level ensuring copyright 
protection, and the high-capacity watermark is in a denser level 
according to the expected number of bits to hide (capacity), as 
illustrated in Fig. 2. Since the connectivity attacks are assumed to 
be solved by the remeshing step, it is sufficient for the watermarks 
in the semi-regular mesh to be robust to geometrical attacks. 
 

3. ROBUST AND BLIND WATERMARKING 
 
One critical problem of blind watermarking schemes is their 
relatively weak robustness. Generally speaking, the synchronizing 
mechanism is often more fragile than the real watermark 
modulation scheme. In fact, during the extraction, it is difficult to 
successfully find out the locations and indexes of the watermark 
bits. In the case of 3D meshes, the situation is even worse, because 
there isn’t any robust intuitive ordering for the basic elements of 

the mesh (vertices, edges and facets), which often constitute the 
watermarking primitives. Our proposal is to utilize some robust 
aspect to locate and index the embedded bits. Practically, the sort 
order of the edges in the coarsest level, established on their lengths, 
is experimentally very robust to geometrical attacks. The 
watermark bits are inserted one by one in the wavelet coefficients 
norms associated with the ordered edges. Moreover, in this way, 
the synchronizing mechanism and the watermarking primitives are 
separated, so the causality problem is avoided. 

 
Fig. 3. Three quantization examples of coefficient norms 

 
The watermarking scheme of the wavelet coefficients norms 

is quite simple. The real number axe is divided into subintervals by 
a quantization step, and each subinterval is designated to associate 
with a certain bit (0 or 1). This designation could be determined by 
a secret key, but here we simply adopt the interleaving bit string of 
0 and 1. All the norms are altered to locate in the middle of the 
nearest correct subinterval according to the subsequent bit to be 
inserted, while the coefficients directions are kept unchanged. Fig. 
3 shows three quantization examples: we want to encode “0 1 1” in 
the coefficients associated with three longest edges, ||v1|| is already 
in the correct subinterval, so it is moved to the middle of this 
subinterval; ||v2|| and ||v3|| have to be displaced to the middle of the 
nearest correct subinterval in order to introduce less distortion. 

The quantization step is determined by the average length of 
the edges mentioned before. In fact, in this method, the real 
watermarking primitive is the ratio between the norm of a 
coefficient and the average length of all the edges in the coarsest 
level. This kind of primitive is proven to be invariant to similarity 
transformations including translation, rotation and uniform scaling. 
Algorithm 1 presents the whole watermark insertion flow. ε1 is a 
control parameter to achieve an expected trade-off between 
robustness and imperceptibility. If the edges number is greater than 
the watermark bits number, a redundant embedding will be done to 
enhance the robustness. Knowing the parameter ε1, which can 
also be hard-cored in the program, the extraction is blind and quite 
simple. It is sufficient to reestablish the edges order, calculate the 
quantization step, and find out the designated bit of each 
coefficient under this quantization step. 
 
Algorithm 1: Robust and blind watermarking method 
1. Do wavelet analysis until the coarsest level 
2. Do descending sort of all the edges in this level by their lengths 
3. Calculate the average length lav of the edges and fix the 
quantization step as lav/ε1 
Repeat for each edge in the descending sort 

4. Calculate the norm of its associated wavelet coefficient 
5. Quantize this norm according to the next watermark bit 

value using the above mechanism 
End repeat 



6. Reconstruct the densest semi-regular mesh with the modified 
wavelet coefficients 
 

4. HIGH-CAPACITY BLIND WATERMARKING 
 
Under some circumstances, a high-capacity watermark is needed, 
to carry more information such as the description of a multimedia 
file, the patient information of a CT scan, or the screen information 
of a digital photo. In the literature, the highest capacity for 3D 
meshes is nearly one bit per triangle [2, 9]. In this section, a new 
scheme with a much higher capacity is introduced. In this scheme, 
the watermark is no longer inserted bit by bit, but globally. 

For a given mesh at a certain level of the wavelet 
decomposition, we suppose that its n wavelet coefficients are 
indexed according to the lengths of their associated edges, as in the 
last section. For instance, the coefficient indexed by i is associated 
with the ith longest edge in the coarser level. Then we combine 
each coefficient with another number denoted by ordero(i), which 
is the order of its norm among all the wavelet coefficients in the 
same level. These numbers are listed successively as ordero(1), 
ordero(2), … , ordero(n). In fact, this sequence is a permutation of 
the n numbers ranging from 1 to n and thus has n! possibilities. 
Each permutation can represent a watermark of floor(log2 n!) bits, 
where floor(x) is a function that returns the largest integer less than 
or equal to x (so practically some permutations have no 
corresponding watermarks). It seems natural to modify this original 
permutation into a particular one by modifying the norms to insert 
a designated watermark. Actually, to achieve a better 
imperceptibility, we sort and modify the residues of the norms 
modulo a control parameter p, instead of the norms themselves. 
Same to the robust watermark, this control parameter is fixed to p 
= lav/ε2 and is also determined by the average length of the edges 
(but at a different level). The modified norm is determined by 
equation (1), where order(i) is the new expected norm order of the 
coefficient that is associated with the ith edge. Table 1 gives the 
watermarking procedure for a simple example of 4 edges, where p 
= 1. The correspondence between permutations and watermark bit 
strings will be explained later on. 
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Table 1. Example of high-capacity watermark embedding steps 

Edges lengths 12 10 9.2 8.5 
Edges order / coefs. index (i) 1 2 3 4 

Associated wavelet coefficients 
norms 2.3 1.5 1.8 2.1 

Residues of norms modulo p 0.3 0.5 0.8 0.1 
Original coefs. order (ordero(i)) 2 3 4 1 

Expected order (order(i)) 1 4 3 2 
Modified residues 0.2 0.8 0.6 0.4 
Modified norms 2.2 1.8 1.6 2.4 

 
In practice, the n edges can be divided into several groups of 

m edges (in each group are inserted floor(log2 m!) bits) in order to 
make the watermark less fragile and to avoid the possible floating 
number calculation errors. So the practical capacity of this method 
is floor(n/m) * floor(log2 m!) bits. Fig. 4 graphically compares the 
capacities of different high-capacity methods of the state of the art 
(without any robustness consideration): Cayre’s method (1 
bit/vertex) [4], Benedens’ method (1 bit/triangle) [2], Ohbuchi’s 
method (≈ 1.2 bits/triangle, not presented in the figure, almost 
superposes the curve of the Benedens’ method) [9], and the ours 

(m = n and m = 40). It is assumed that for a manifold triangular 
mesh, we usually have e = 1.5f and f ≈ 2v, where v, e, and f are the 
numbers of vertices, edges, and facets of the dense mesh, 
respectively. In our algorithm, we consider not the dense mesh (e 
edges) but the direct low-level coarser mesh (e/4 edges), of which 
the associated wavelet coefficients are watermarked. 

Capacity comparison of different methods
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Fig. 4. Capacity comparison of different methods 

 
A correspondence between watermarks (bit strings) and 

possible norms orders (permutations) has to be established. The 
basic rule adopted is that for two permutations, the one with a 
bigger first number (from left) represents a bigger bit string. And if 
the first number is the same, we compare the second, and so on. 
Under this rule, the permutation 1, 2, 3, … , n-1, n represents the 
smallest bit string 0, 0, … , 0, 0, and the permutation  1, 2, 3, … , 
n, n-1 designates the bit string 0, 0, … , 0, 1. 

If the control parameter p here is equal to the quantization 
step in section 3, the norm distortion in the worst situation is 
almost the same for these two watermarking algorithms. However, 
the high-capacity watermark relies on the relationship between 
norms of different coefficients, so even a little norm attack much 
smaller than p could seriously disrupt the original order. That is the 
principal reason for the relative fragility of this watermark. 
 

5. EXPERIMENTAL RESULTS 
 
We have tested our hierarchical algorithm on different objects. The 
robust watermark has to be inserted before the high-capacity 
watermark so as not to disturb the edges order used by the latter. 
The execution time varies along with the complexity of the input 
semi-regular mesh. For the rabbit mesh illustrated in Fig. 5.a 
having about 70K vertices, the whole insertion procedure takes less 
than 10 seconds on a computer with a 1.7 GHz Intel® Pentium® 
mobile processor and 512 MB RAM. At present, the semi-regular 
meshes are obtained by the algorithm proposed in [5]. 

Fig. 5.b shows the watermarked rabbit mesh with zooms at 
the nose and neck. The parameter ε1 is fixed in the experiments at 
35, and a robust watermark of 64 bits is repeatedly inserted with 
chip rate c = 3 in the coarsest level (five decompositions from the 
initial dense mesh) which has 207 edges. The high-capacity 
watermark is inserted at level 4 which has 828 edges. Taking m = 
40, the real capacity is about 3.2K bits. The parameter ε2  is fixed 
at 25. There are no visible geometrical distortions between these 
two meshes, and their mean distance, calculated on the two meshes 
centered and scaled in unit cube, is quite small (DL1 = 0.003013). 



To validate the robust watermarking scheme, we have 
attacked the watermarked rabbit mesh by random additive noises, 
average smoothing, enhancement, and vertices coordinate 
quantization operations. Fig. 6 illustrates four attacked 
watermarked meshes, and Table 2 presents the experimental 
results, where the robustness is measured by bit error rate (BER) 
and correlation between the extracted watermark and the inserted 
one. The intensities of the additive noises are relative to the 
average length from vertices to the gravity center. We can 
conclude that the robust watermark well resist to majority of the 
common geometrical attacks. The high-capacity watermark is 
invariant to similarity transformations, but is fragile to strong 
geometrical operations (it resists until 0.01% noise). The main 
reason is given at the end of section 4. However, if inserted in the 
coarsest level, it can survive until 0.03% noise with a capacity of 
about 800 bits. 

 
Fig. 5. Hierarchical watermarking example: (a) original semi-

regular rabbit mesh; (b) watermarked rabbit mesh. 

 
Fig. 6. Four attacked watermarked meshes: (a) 0.4% additive 

noise; (b) 6 average smoothing; (c) enhancement; (d) 7-bit 
quantization. 

 
Table 2. Results of robustness experiments 

Robust watermark 
Attacks 

BER Correlation 
High-capacity 

watermark 
Similarity Trans. 0 1 Exist 
0.01% noise 0 1 Exist 
0.03% noise 0 1 Exist* 
0.25% noise 0.046875 0.901319** Lost 
0.40% noise 0.109375 0.769015 Lost 
6 smoothing 0.03125 0.933333 Lost 
Enhancement 0.0625 0.866667 Lost 
8-bit quantization 0.03125 0.933333 Lost 
7-bit quantization 0.17875 0.630608 Lost 

* If inserted in the coarsest level; ** 0.92 in Yu’s non-blind method [13]. 
 

6. CONCLUSIONS AND FUTURE WORK 
 
In this paper, we have reported a new and effective blind 
hierarchical watermarking framework for semi-regular meshes, 
which modifies the wavelet coefficients norms. Both watermarks 
are blind and invariant to similarity transformations. The use of 

robust aspects of the carrier to synchronize the watermark and the 
separation of the synchronization mechanism from watermark 
primitives may be a good start point to elaborate robust and blind 
watermarking methods. Furthermore, although the high-capacity 
watermark is somewhat fragile, it is useful for steganography and 
content labeling. Future work includes improvement of the robust 
watermark to stand against local deformations and cropping, and 
the study on remeshing techniques that are insensitive to 
connectivity changes. Meanwhile, improving the high-capacity 
watermark robustness and taking account of mesh local 
geometrical properties for watermarking are also of interest. 
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