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Abstract—Image colorization achieves more and more real-
istic results with the increasing power of recent deep learning
techniques. It becomes more difficult to identify the synthetic
colorized images by human eyes. In the literature, handcrafted-
feature-based and convolutional neural network (CNN)-based
forensic methods are proposed to distinguish between natural
images (NIs) and colorized images (CIs). Although a recent
CNN-based method achieves very good detection performance, an
important issue (i.e., the blind detection problem) still remains
and is not thoroughly studied. In this work, we focus on this
challenging scenario of blind detection, i.e., no training sample
is available from “unknown” colorization algorithm that we
may encounter during the testing phase. This blind detection
performance can be regarded as the generalization capability of
a forensic detector. In this paper, we propose to first automatically
construct negative samples through linear interpolation of paired
natural and colorized images. Then, we progressively insert these
negative samples into the original training dataset and continue
to train the network. Experimental results demonstrate that our
enhanced training can significantly improve the generalization
performance of different CNN models.

Index Terms—Image forensics, natural image, colorized image,
convolutional neural network, generalization, negative samples

I. INTRODUCTION

With the increasing popularity and sophistication of image
editing technologies, it is now relatively easy to create edited
images that are visually very plausible. For example, current
advanced colorization algorithms, more or less leveraging the
powerful capacity of deep neural networks, can automatically
colorize a grayscale image to obtain a high-quality color
image. Fig. 1 shows a group of images, the left-most one
is the original color image, and the remaining three are col-
orized images produced by three state-of-the-art colorization
algorithms (respectively with the name Ma [1], Mb [2] and
Mc [3] from left to right), which take the grayscale version of
the left-most image as input. It is indeed difficult to distinguish
which images are colorized by naked human eyes. Although
this technique brings convenience to people’s live in fields
like digital entertainment, it may also be maliciously used and
potentially lead to security issues, such as confounding object
recognition or scene understanding [4]. Therefore, distinguish-
ing between natural images (NIs) and colorized images (CIs)
has become an important research problem in image forensics.

Recently, Guo et al. [4] first considered and studied this
new forensic problem. On the basis of the statistical differ-
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Fig. 1. From left to right: a natural image taken from ImageNet [5]; three
colorized images generated by the colorization method proposed in [1], [2],
and [3], respectively.

ence between NIs and CIs in the hue, saturation, dark, and
bright channels, two methods, namely, histogram-based and
Fisher-encoding-based, were designed to catch the forensic
difference between NIs and CIs. After having obtained the
feature vectors, they trained the support vector machine (SVM)
classifiers to identify fake colorized images. Zhuo et al. [6]
greatly improved the detection performance using a CNN-
based color image steganalyzer WISERNet (WIder SEparate-
then-Reunion Network) [7]. However, in the challenging sce-
nario of blind detection, i.e., no training sample is available
from “unknown” colorization methods that we may encounter
during the testing phase of forensic detectors, the performance
of both CNN-based [6] and handcrafted-feature-based [4]
methods in general decreases. Hereafter, we call this blind
detection performance as generalization performance. Take
Fig. 1 as an example, the second and fourth images (produced
by Ma and Mc) are misclassified as NI by a CNN model
trained on NIs and CIs generated by Mb. In the meanwhile,
although not being very rigorous, we choose to use the term
“classification accuracy/performance” to indicate the detection
performance on testing data in which CIs are generated by a
same colorization method known by the training procedure.

In order to cope with the challenging scenario of blind
detection, in this paper we introduce a simple yet effective
method. We construct negative samples via linear interpola-
tion of paired natural and colorized images available in the
training dataset, and iteratively add them into the original
training dataset for additional and enhanced CNN training.
This procedure is fully automatic, and can allow us to obtain
stable and high generalization performance of the CNN.

The rest of this paper is organized as follows. Section II
presents the technical details of the proposed method. Sec-



tion III reports the performance evaluations for our method.
Section IV draws the conclusions and proposes some future
working directions.

II. PROPOSED FRAMEWORK

A. Motivation

To the best of our knowledge, there is no existing work
that considers the generalization capability yet for CNN-based
image forensics. In fact, this is a highly challenging scenario
because no training samples of the “unknown” colorization
algorithms are available. In other words, we want the trained
network to be able to successfully detect colorized images
generated by new colorization methods that remain unknown
during the training of CNN. This is a very realistic situa-
tion which can be commonly encountered after deploying a
forensic detector in practical applications. We solve this chal-
lenging generalization problem through a simple yet effective
approach, i.e., inserting additional negative samples that are
automatically constructed from available training samples, in
order to carry out an enhanced training of CNN and thus to
obtain an appropriate decision boundary for this classification
problem. Besides considering the CNN model proposed in the
very recent work of [6], in this paper, we also construct a
different CNN model so as to validate and show that our
enhanced training can work well on different networks.

B. Architecture of Networks

In this subsection, we describe the architecture of considered
networks. The first layer (with so-called SRM, Spatial Rich
Model, kernels [8]) of WISERNet is untrainable, while all
weights of our designed network are trainable and thus we call
it as AutoNet (Automatic Network). Let Ck(M or A) denote
a Convolution-BatchNorm-ReLU(-MaxPool or -AveragePool)
layer with k filters. Fk(R) denotes a fully-connected layer
with k neurons (and with ReLU). The architecture of Au-
toNet is C32-C64M-C128M-C256M-C256M-C512M-C512M-
C512-F2. All convolutional kernel sizes in AutoNet are 3×3.
For layers 1-7, each convolutional layer (conv) is with the
zero-padding of 1, and all max-pooling layers in AutoNet have
the same kernel size of 3× 3 and a stride of 2. For conv1, we
use TanH as activation. Here we also give the architecture
of WISERNet and more details can be found in [6]. The
architecture of WISERNet is SRM-C72A-C288A-C1152A-
F800R-F400R-F200R-F2, where SRM refers to channel-wise
convolution where the convolutional kernels are fixed as the
thirty 5× 5 SRM filters borrowed from [8].

C. Negative Sample Insertion

According to our observation, there is a certain degree
of performance decrease in the challenging blind detection
scenario, not only for traditional handcrafted-feature-based
methods [4], but also for CNN-based approaches (AutoNet and
WISERNet [6]), although the latter has better performance.
In details, for a traditional or CNN-based model trained on
dataset constructed by one specific colorization algorithm, the
test performance on datasets constructed by other colorization

algorithms is sometimes limited for colorized images. The
possible reason of this performance drop is that colorized
images produced by a specific colorization algorithm tend
to be equipped with a particular internal property, but CIs
of different colorization algorithms are very likely to have
different properties.

To clearly illustrate the encountered problem with an ex-
ample, we train the AutoNet on the dataset constructed
by colorization method Mb [2], and test on the datasets
constructed by Ma [1] and Mc [3], respectively. It should
be noted that Ma and Mc are the “unknown” colorization
algorithms, and thus the corresponding samples of Ma and
Mc are not used in the training process. We use t-distributed
stochastic neighbor embedding (t-SNE) [9] to project the high-
dimensional deep features (the output of conv8 of AutoNet,
and its dimension is 512) of testing data constructed by above
three colorization methods onto the two-dimensional map, and
detailed visualization results are shown in Fig. 2. Comparing
Fig. 2(a), (b) and (c), we find that the distributions of NIs
(red squares) are relatively stable with a rather high intra-class
variation, which is somehow expected; in the meanwhile, CIs
(blue symbols) are more tightly clustered for each colorization
algorithm but their locations change a lot for different methods
[please compare the CIs in (a), (b) and (c), which correspond
to Mb, Ma and Mc, respectively]. This is reasonable because
the different colorization methods tend to have not exactly the
same internal characteristics and hence the corresponding CIs
have different locations in the feature space. When the features
of CIs produced by “unknown” colorization algorithms (here
Ma and Mc whose samples are not used for training) are
near the decision boundary of the CNN (which is trained
by using NIs and CIs produced by a “known” colorization
algorithm, here Mb), and at the same time the decision
boundary is relatively close to colorized images, there are high
probabilities to misclassify the “unknown” CIs. For instance,
many CIs in Fig. 2(b) (blue circles with red + in the figure)
are wrongly predicted as NIs.

We would like to find a simple yet effective method to
solve the encountered problem. The idea is that we make use
of the available training samples (and only these samples) to
construct an appropriate decision boundary which can lead
to better generalization performance. A feasible and intuitive
solution is to add negative samples (with same labels as
CIs) near the initial decision boundary of the CNN, so as
to make the CNN be more “strict” about the predictions of
CIs and somehow push the classification boundary towards
NIs. As such, it is expected that the “unknown” CIs located
close to the initial decision boundary [e.g., those shown in
Fig. 2(b)] have more chance to be correctly classified with the
new classification boundary which would be closer to NIs.
More precisely, we construct negative sample through linear
interpolation between paired NI and CI which share the same
grayscale version and only differ in chrominance components.
The corresponding formulation is shown below:

INS = α · IN + (1− α) · IC , (1)
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Fig. 2. The deep feature visualization with t-SNE [9]. The model is trained on the original dataset where CIs are generated by Mb. “C” means colorized
images and “N” means natural images. “C-X” means the colorized images produced by X colorization method, for example, “C-Ma” corresponds to CIs
generated by Ma colorization algorithm. “Y-pred” means that the predicted label of CNN is Y. We randomly select 900 natural images from validation dataset
splitting them into three equal subsets of 300 images, and then we construct corresponding colorized images using Mb, Ma, and Mc for every 300 images.
The deep feature is the output of conv8 of AutoNet, and the dimension is 512. (d) is the combination of (a) [Mb], (b) [Ma], and (c) [Mc].

where INS is the negative sample, IN is the natural im-
age, IC is the corresponding colorized image, and α ∈
{0.1, 0.2, 0.3, 0.4} is the interpolation factor. This actually
makes sense, as negative samples are in fact forensically
negative (i.e., considered as CIs), especially for our chosen
weight values among {0.1, 0.2, 0.3, 0.4} (i.e., negative samples
are closer to CIs than NIs). When α increases, the negative
samples are progressively getting closer to the natural images
and it is expected that the decision boundary is further moving
towards NIs after enhanced training.

As analyzed above, adding negative samples and conduct-
ing additional training will push the classification boundary
towards NIs. Thus, the classification accuracy on the NIs will
gradually decrease as more and more negative samples are
inserted. The classification accuracy of network on validation
dataset also slightly decreases because the “known” CIs are
almost all correctly classified and this accuracy mainly de-
pends on the classification accuracy on the NIs. However, in
the meanwhile the CIs constructed by “unknown” colorization
algorithms are expected to be classified more correctly, im-
plying a better generalization capability. Obviously, there is a
trade-off between the classification accuracy (on data similar to
the training samples) and generalization performance (mainly
on “unknown” CIs) for the network. Therefore, without being
able to directly measure the generalization during training of
network, we consider the classification accuracy on NIs (on

the so-called natural validation dataset V) as a measure to
select the final model in the process of additional training with
negative sample insertion. In our work, we design a threshold-
based model selection criterion. This threshold (θ) essentially
determines the degree of final classification accuracy that can
be accepted by user or current task. Generally speaking, larger
θ means that the selected model has less high classification
accuracy, but better generalization performance. Basically, we
set θ = β · error rate, where β is a user defined parameter
and error rate is the classification error rate (in %, measured
on natural validation dataset V) of the CNN model trained
with the original training dataset D before negative sample
insertion. This criterion simply defines the maximum tolerable
value of the relative increase of error rate on V induced by
enhanced training. In our experiments, we set β = 2. One
exception is that when error rate is very small (less than
1%), we set θ = 2%, meaning that we can slightly relax the
constraint on classification error rate to obtain relatively large
improvement of generalization performance.

Algorithm 1 illustrates the training process with negative
sample insertion. It is worth noting that we only use CIs of a
“known” colorization method but in a better way to construct
a more appropriate decision boundary. In our experiments, this
insertion is an iterative process with four iterations, i.e., the α
is increased from 0.1 to 0.4 with step of 0.1. Given a CNN
modelM trained by using original dataset D, and some basic



Algorithm 1 Enhanced training of CNN model with negative
sample insertion
Input: M, lr0, S, V , D and the set of corresponding natural and
colorized image pairs P constructed from D.
Output: final model after enhanced training.
Initialization: current learning rate lr = lr0, set of negative samples
N = ∅, set of error rates on V of candidate CNN models R =
∅.

1: compute error rate of M.
2: compute θ.
3: for all α ∈ {0.1, 0.2, 0.3, 0.4} do
4: construct negative samples from P using Eq. (1) and insert

them into N .
5: update training dataset: D = D ∪N .
6: update the parameters of M for S epochs. In the second half

of training process, compute error rate on V for each model,
and insert this value at the end of R.

7: for all INS ∈ N do
8: if INS is misclassified then
9: remove corresponding pair from P .

10: end if
11: end for
12: set N = ∅.
13: update current learning rate: lr = lr · 0.1.
14: end for
15: select i-th model which satisfies max

i
{ri|ri ∈ R, ri < θ}.

settings for CNN training, such as initial learning rate lr0 and
S epochs for each insertion, we first compute error rate on
V and then the threshold θ, which is used for final model
selection. For each round of negative sample insertion, we
construct negative samples and insert them into the dataset
D. Then, we update the parameters of model M using new
training dataset, and compute the error rate on V starting from
the second half of training process (i.e., from

⌈
S
2

⌉
-th epoch

for each insertion, where
⌈
.
⌉

is the integer ceiling operator),
because from that time the model becomes relatively stable.
After each insertion, we test the negative samples produced
by previous iteration. If a negative sample is misclassified,
i.e., the predicted label is NI and not consistent with its
ground-truth label, then we stop using the corresponding pair
to construct negative sample (i.e., we remove corresponding
pair from P as described in line 9 of Algorithm 1). In fact, this
operation can slightly reduce the amount of negative samples,
and does not weaken the performance of the network. After
four iterations of insertion, we select the final CNN model. It
is worth mentioning that when α > 0.5, the negative samples
will be close to NIs, and this is likely to have more impact
on the classification of NIs. Here we take a conservative and
experimentally effective approach, i.e., stopping the negative
sample insertion process after four iterations.

The complete training process of CNN model includes two
stages: (1) using the original training dataset to train the deep
model from scratch until convergence (normal training); (2)
iteratively adding new negative samples into the original train-
ing dataset and continuing to train the model as summarized
in Algorithm 1 (enhanced training). Fig. 3 shows the error rate
curves of a complete training process of AutoNet. In the first

(a) V (b) Mb

(c) Ma (d) Mc

Fig. 3. Error rate curves of a complete training of AutoNet. The network
is trained on Mb [2], and tested on Ma [1] and Mc [3]. The error rates
(in %) on CIs produced by these three methods are shown in (b), (c), and
(d), respectively. The error rate on V is shown in (a). Black dotted line
separates the two stages of normal training (60 epochs) and enhanced training
(4×15=60 epochs). The green circle in (a) stands for the final selected model.

stage, the error rates on V and CIs produced by Mb obviously
decline in the first 20 epochs and the network reaches the
stability after about 50 epochs, as shown in Fig. 3(a) and
(b). With the negative sample insertion, the error rate on
V slightly increases, which can be found from the second
part of Fig. 3(a). However, the generalization performance of
network has a significant improvement on CIs produced by Ma
[Fig. 3(c)] and a small improvement on Mc [Fig. 3(d)]. More
numerical and visual results (including t-SNE visualization
after enhanced training) are given in Section III.

III. EXPERIMENTAL RESULTS

A. Implementation Details

All the experiments are implemented with PyTorch
0.3.1 [10]. The GPU version is GeForce® GTX 1080Ti of
NVIDIA® corporation. All images in our experiments are
resized to 256× 256 using bicubic interpolation, and for each
image, we convert its pixel values to [−1, 1] (we first rescale
the pixel values from the range [0, 255] to the range [0.0, 1.0],
and then subtract these values by 0.5 and divide by 0.5).
Stochastic gradient descent (SGD) with a minibatch of 20 is
used to train AutoNet. Each minibatch contains 10 natural
images and 10 colorized images. We randomly shuffle the
order of training dataset after each epoch. For SGD optimizer,
the momentum is 0.9 and the weight decay is 1e-4. The base
learning rate is initialized to 1e-4. For the normal training
(only using original training dataset) of AutoNet, we divide
the learning rate by 10 every 20 epochs, and the training
procedure stops after 60 epochs. For the normal training of
WISERNet, we follow the setting described in [6]. As shown
in line 13 of Algorithm 1, for the enhanced training of AutoNet
and WISERNet, we adopt the same strategy about learning



rate: the learning rate is divided by 10 every 15 epochs (it
is enough to guarantee the convergence after new negative
sample insertion), and the training procedure stops after 60
epochs, i.e., 4 iterations of negative sample insertion.

Following [4] and [6], we also employ the half total error
rate (HTER) to evaluate the performance of the proposed
method. The HTER is defined as the average of misclassi-
fication rates (in %) of NIs and CIs. In this work, all reported
results are the average of 7 runs.

B. Effect of Negative Sample Insertion

Before evaluating the proposed method, we provide the
details of datasets used in our experiments. Following [4]
and [6], three state-of-the-art colorization algorithms, Ma [1],
Mb [2], and Mc [3] are adopted for producing CIs. NIs come
from ImageNet dataset [5]. We use 10,000 natural images
from ImageNet validation dataset to construct training dataset
and validation dataset, and the ratio is 4:1. The exact indexes
of these images are shared by the authors of [1]. Then,
we remove the 899 grayscale images and 1 CMYK (cyan,
magenta, yellow, and black) image from the remaining 40,000
images of ImageNet validation dataset (the total number of
images in this dataset is 50,000), and obtain 39,100 natural
images to construct testing dataset. Note that, the magnitude
of testing dataset is far larger than the settings reported in [4]
and [6]. We employ the three colorization methods mentioned
above to produce the corresponding colorized images.

In this paper, we propose negative sample insertion to im-
prove the generalization performance of CNN-based detectors.
As described in Section II-C, this enhanced training uses
natural validation dataset V to select the final model, and we
randomly select 20,000 NIs from ImageNet test dataset [5] to
construct V . Table I reports the performance of AutoNet and
WISERNet before (i.e., the rows of “AutoNet” and “WISER-
Net”) and after (i.e., the rows of “AutoNet-i” and “WISERNet-
i”) negative sample insertion. We do not present the results
of handcrafted-feature-based methods proposed in [4] because
as shown in [6] and also verified by our experiments, CNN-
based method has significantly better performance in terms
of both accuracy and generalization. The difference between
the results of the row of “WISERNet” and those reported
in [6] is probably due to the differences in the generation of
experimental data and the number of testing images (we use
much more testing data). It is worth mentioning that here we
focus on the generalization improvement after applying our
proposed enhanced training for the two networks (i.e., Au-
toNet and WISERNet), rather than the performance difference
between them. We leave the architecture comparison and the
design of CNN of better generalization as a future work. From
Table I, we can see that the effect of negative sample insertion,
i.e., improving the generalization of network, is consistently
stable for these two networks (except for one case, trained on
Mc and tested on Mb for WISERNet, but with a very low
final error rate of 1.08%). The negative sample insertion leads
to slight decrease of the classification accuracy, however, the
generalization performance of network usually has apparent

TABLE I
THE PERFORMANCE (HTER, IN %, LOWER IS BETTER) OF THE TWO

CNN-BASED METHODS (AUTONET AND WISERNET [6]) ON IMAGENET
VALIDATION DATASET [5]. FOR THE SAKE OF CLARITY, THE

GENERALIZATION PERFORMANCE RESULTS ARE PRESENTED IN ITALICS.

Method Ma Mb Mc

Ma Mb Mc Ma Mb Mc Ma Mb Mc
AutoNet 0.56 10.57 10.62 31.65 0.19 6.16 13.93 1.91 0.72

AutoNet-i 1.02 6.94 5.12 5.13 0.94 1.92 3.33 1.75 1.14
AutoNet-mixup 0.89 12.45 15.35 20.68 0.34 10.04 8.42 2.25 0.76

WISERNet 0.29 2.21 10.74 33.30 0.16 7.88 5.80 0.59 0.36
WISERNet-i 0.98 1.22 2.29 4.74 0.94 2.04 2.46 1.08 0.98

improvement. For example, the initial generalization error of
WISERNet trained on Mb and tested on Ma is 33.30%, and
then reduces to 4.74% after enhanced training using negative
samples, with a slight increase of classification error from
0.16% to 0.94%. This is also consistent with previous analysis
(Section II-C) that there is a compromise between the accuracy
and the generalization performance, and our negative sample
insertion method can achieve a satisfying trade-off.

Very lately, we became aware of a recently proposed
“mixup” learning principle [11] which regularizes the neural
network and encourages the trained model to behave linearly
in-between training examples. Although the linear interpola-
tion is also used, there is an essential difference: “mixup”
results in the linearly-transitioned decision boundary, while
our method pushes the decision boundary towards NI. Based
on the respective standing point, for the linear interpolation
itself, [11] uses the interpolation factor in the range of [0, 1]
to combine pair of raw inputs and their labels, whereas our
method uses that of {0.1, 0.2, 0.3, 0.4} (forensically negative)
and sets the label of new generated image as CI (the so-
called negative sample). In addition, “mixup” is a form of
data augmentation that implicitly affects the generalization
of network, whereas our enhanced training explicitly controls
the decision boundary and then improves the generalization
of CNN-based detectors. In order to compare the “mixup”
and our method, we train the model with “mixup” where
the learning rate schedule is exactly the same as the normal
training of AutoNet and the results are shown in Table I
(the row of “AutoNet-mixup”). We set the “mixup” hyper-
parameter α = 0.4 as recommended in [11]. Obviously, the
generalization of our enhanced training based on negative sam-
ple insertion is significantly better than that of “mixup”, only
with a slight decrease of the classification performance (please
compare the rows of “AutoNet-i” and “AutoNet-mixup”).

At last, we visualize deep features of AutoNet-i using t-
SNE [9], and the results are shown in Fig. 4. Here, deep
features are the output of conv8 of AutoNet-i, and its dimen-
sion is 512. The corresponding visualizations of the model
before negative sample insertion are shown in Fig. 2. The
testing data is also the same in Fig. 4 and Fig. 2. By
comparing the border of correctly classified CIs, i.e., blue
symbols with a blue + inside, in Fig. 2(d) and Fig. 4(d),
we can find that the latter has fewer misclassified CIs, and
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Fig. 4. The deep feature visualization of AutoNet-i with t-SNE [9]. The model is obtained through enhanced training of the previously trained model (used in
Fig. 2). The meaning of symbols is same as that of Fig. 2. It is worth noting that in t-SNE the transformation used for dimension reduction and the obtained
visualization depend on the input data. Therefore, transformation and visualization in this figure are different from those of Fig. 2.

the classification boundary is pushed towards NIs. The CIs
generated by “unknown” colorization algorithms, especially
Ma [1], are in consequence less misclassified, and this can
be clearly observed by comparing Fig. 2(b) with Fig. 4(b).
This confirms that our negative sample insertion scheme can
push the decision boundary towards NIs to some extent and
accordingly improve the generalization performance.

IV. CONCLUDING REMARKS

In this paper, we considered the challenging blind detection
scenario and proposed an effective method based on negative
sample insertion to improve the generalization capability of
CNN-based models. The generalization performance is notice-
ably and consistently improved, with a very slight decrease
of the classification accuracy. Our source code is available at
https://github.com/weizequan/NIvsCI.

In the future, we are interested in employing the proposed
enhanced training to improve the generalization performance
of other kinds of forensic methods whenever applicable. We
would like to explore other approaches to understanding and
enhancing the generalization capability of neural networks.
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