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Abstract. Convolutional Neural Networks (CNNs) have become an ef-
fective tool to detect image manipulation operations, e.g., noise addition,
median filtering and JPEG compression. In this paper, we propose a sim-
ple and practical method for adjusting the CNN’s first layer, based on a
proper scaling of first-layer filters with a data-dependent approach. The
key idea is to keep the stability of the variance of data flow in a CNN.
We also present studies on the output variance for convolutional filter,
which are the basis of our proposed scaling. The proposed method can
cope well with different first-layer initialization algorithms and different
CNN architectures. The experiments are performed with two challenging
forensic problems, i.e., a multi-class classification problem of a group of
manipulation operations and a binary detection problem of JPEG com-
pression with high quality factor, both on relatively small image patches.
Experimental results show the utility of our method with a noticeable
and consistent performance improvement after scaling.

Keywords: Image forensics · convolutional neural network · first-layer
convolutional filter · image manipulation detection · stability of variance.

1 Introduction

Rapid technology development of cameras to capture digital images comes to-
gether with a big suite of software to modify an image. Now changes on an image
can be so subtle that noticing them for the naked eye is a difficult task. At the
same time, the development of techniques that analyze intrinsic fingerprints in
image data, i.e., the image forensics research, is one of the most effective ways
to solve challenges related to the authenticity of images. The utility of these
techniques has taken more importance in recent years because tampered images
can now have serious consequences on our modern society, e.g., misleading the
public opinion with fake images and presenting falsified images as proof in court.

Basic image manipulation operations such as median filtering, resampling
and noise addition are commonly used during the creation of tampered images.
Our objective is to detect traces left by these manipulation operations in an
image. It is not a surprise that the current trend is to use Convolutional Neural
Network (CNN) to detect image manipulations because of its very good forensic
performance. In the meanwhile, image forensics researchers in general agree that
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specific design is required in order to build successful CNNs for forensic tasks. In
particular, the CNN’s first layer needs to be carefully designed so as to extract
useful information relevant to the forensic task at hand [4,1,9]. Such relevant
information is often believed to be in the so-called image residuals, roughly
speaking, in the high-frequency components of the image.

Accordingly, for image manipulation detection, a common choice for the
CNN’s first layer is high-pass filters. Although satisfying results can be achieved,
one important aspect, i.e., the stability of the amplitude of the data flow in CNN,
has often been ignored or has not been carefully studied. We have the intuition
that after the image data passes through a first layer of high-pass filters, the
filters’ output becomes a weak signal. This would be detrimental to the training
of CNN because the data flow shrinks. In this paper, we show that this signal
shrinking indeed exists for first-layer filters generated by several popular ini-
tialization algorithms that have been used for detecting image manipulations. In
addition, with a proper formulation of the first-layer’s convolution operation and
based on natural image statistics, we provide an intuitive explanation regard-
ing the signal shrinking and subsequently propose a simple scaling method to
enhance the output signal. Experimental results, with different first-layer initial-
izations, CNN architectures and classification problems, show that the proposed
scaling method leads to consistent improvement of forensic performance.

The remainder of this paper is organized as follows. In Section 2, we briefly
review the related work, focusing on the first-layer initialization of CNNs used
to detect image manipulations. In Section 3 we present an experimental study,
as well as an intuitive theoretical explanation, regarding the variance of the
output signal of first-layer filters of different initializations. Our proposed data-
dependent scaling method is described in Section 4. Experimental results are
presented in Section 5. Finally, conclusions are drawn in Section 6.

2 Related Work

Early methods for detecting basic image manipulation operations were based
on feature extraction and classifier training. Different handcrafted features were
proposed to detect specific and targeted manipulation operation, e.g., median fil-
tering, resampling and JPEG compression. Afterwards, researchers focus on the
more challenging problem of developing a universal method for image manip-
ulation detection. Various methods have been proposed, based on steganalysis
features, image statistical model and more recently deep learning.

During the last decade, deep learning methods, including CNNs, have gained
outstanding success in a wide range of research problems in the computer vision
field. CNNs can learn themselves useful features from given data, effectively re-
placing the difficult task of handcrafted feature design for human experts. In the
recent years, CNNs have also been used to solve image forensic problems. Re-
searchers have noticed a fundamental difference between computer vision tasks
and image forensics tasks. The former focuses on the semantic content of im-
ages, while the latter often looks for a weak signal representing the difference
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between authentic and manipulated images. Accordingly, image forensics re-
searchers found that directly applying CNN initialization borrowed from the
computer vision field, e.g., the popular Xavier initialization [7], results in rather
limited performance in detecting image manipulation operations [4,1]. Different
customized CNN initialization algorithms have been proposed to cope better
with forensic tasks. The basic idea of these methods are more or less similar,
i.e., generating or using a kind of high-pass filters at the CNN’s first layer.

SRM (Spatial Rich Model) filters are one popular and effective way to initial-
ize the first layer of CNNs that are used to solve image forensic problems, e.g.,
the detection of manipulation operations [3], of splicing and copy-move forgeries
[10], and of inpainted images [9]. SRM filters, a group of handcrafted high-pass
filters originally designed for steganalysis [5], are put at CNN’s first layer as
initialization and this often leads to very good forensic performances. Indeed, as
shown later in this paper, in many cases that we tested, SRM filters outperform
other kinds of first-layer filters, especially after the proposed scaling.

Bayar and Stamm [1] proposed a new type of constrained filters for the first
layer of a CNN designed to detect image manipulation operations. The idea is
to constrain the network’s first layer to learn a group of high-pass filters. This is
realized by normalizing the filters before each forward pass of the CNN training.
The normalization consists of two steps: firstly, the center element of filter is
reset as −1; secondly, all the non-center elements are scaled so that they sum
up to 1. In this way the sum of all filter elements is 0, and the constrained first-
layer filter behaves like a high-pass one which is effective in suppressing image
content. Recently, Castillo Camacho and Wang [2] proposed an alternative way of
initializing CNN’s first layer for image manipulation detection. This is essentially
an adaptation of the conventional Xavier initialization [7] to the situations where
it is required to generate high-pass filters after initialization. This method can
generate a set of random high-pass filters to be put at CNN’s first layer.

In this paper, we consider four different algorithms for first-layer initialization
of CNNs with the application to image manipulation detection: the conventional
Xavier initialization from the computer vision community [7], the initialization
with SRM filters [5], Bayar and Stamm’s constrained filters [1], and Castillo
Camacho and Wang’s high-pass filter initialization [2]. We show that all the
four methods can produce filters which shrink the input signal at their output,
and that our proposed data-dependent scaling can noticeably and consistently
improve the forensic performance for all the four initialization algorithms when
tested on different CNN architectures and forensic problems.

3 Variance of Output of Convolutional Filter

It is demonstrated that the stability of the data flow in CNN, as reflected by the
variance of the signal in and out a layer, is beneficial for the training of CNN
[7,8]. Ideally, the variance of input and output of a layer should be equal to each
other. In this section, we first show that we can predict the variance of the output
of a convolutional filter by using statistics of input signal and elements of the
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filter. Then, we present observations and understandings regarding the output
variance for the four initialization algorithms of convolutional filter which are
mentioned in the last section. For the sake of brevity, the four algorithms are
hereafter called Xavier [7], SRM [5], Bayar [1], and Castillo [2].

3.1 Formulation

Motivation. We observe potential limitations of the four initialization algo-
rithms and have the intuition that the variance of output of a convolutional
filter initialized by them may change substantially compared to the input. SRM
[5] and Bayar [1] do not take into account the output variance during the ini-
tialization, because the two algorithms put directly third-party SRM filters or
normalized high-pass filters at first layer without modelling the relation between
input and output. Xavier [7] and Castillo [2] consider the input-output relation
and generate pseudo-random filters. These two initialization algorithms are based
on a statistical point of view and realized by drawing pseudo-random samples,
so in practice properties of initialized filters may differ for different realizations.
Therefore, it is interesting and important to experimentally and theoretically
study the actual output variance for each realization of initialized filter.

Formulation for computing output variance. A convolutional layer used
in CNN contains a set of learnable filters (also called kernels) [8]. During the
forward pass, the kernel moves in a sliding-window manner across the input and
computes a weighted sum of the local input data and the kernel. This procedure
results in a so-called activation map comprising all the local results computed
at every sliding movement of the kernel. Now assume that the kernel contains
N scalars denoted by W = (w1, w2, ..., wN ), then the local input data involved
in the computation also contains N scalars, denoted by X = (x1, x2, ..., xN ). It
is easy to see that the local output y is simply the dot product of W and X, as:

y = 〈W,X〉 =

N∑
i=1

wi.xi. (1)

In Xavier [7] and Castillo [2], both wi and xi are assumed as independent
random variables. In this paper, we take a new and more practical point of view.
Since we focus on a proper scaling of a given kernel, we assume that the kernel
elements wi are known constants, which can be generated by any initialization
algorithm. In addition, we do not consider xi as independent; instead, we con-
sider them as mutually correlated random variables reflecting the natural image
statistics [11]. With these assumptions and based on the property of variance of
weighted sum of variables, we can compute the variance of the output y as

Var(y) = Var

(
N∑
i=1

wi.xi

)
=

N∑
i=1

N∑
j=1

wiwjCov(xi, xj)

=

N∑
i=1

w2
i Var(xi) + 2

∑
1≤i

∑
<j≤N

wiwjCov(xi, xj).

(2)
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Table 1. Considered manipulation operations and their parameters.

Median filtering FilterSize = 3

Gaussian blurring StandardDeviation = 0.5, FilterSize = 3

Additive Gaussian noise StandardDeviation = 1.1

Resampling ScalingFactor ∈ {0.9, 1.1}
JPEG compression QualityFactor ∈ {90, 91, ..., 100}

The last expression just divides all the relevant terms into two groups: variance
terms and covariance terms of the input signal components (x1, x2, ..., xN ).

Furthermore, it is well-known that natural images have approximate transla-
tion invariance [11], implying that Var(xi), i = 1, 2, ..., N are almost identical. In
addition, the neighboring pixels are usually highly-correlated [11], which means
that Cov(xi, xj) is close to Var(xi). We approximate Var(xi) by Var(x), the
overall variance of input. Then we have the following approximation of Eq. (2):

Var(y) ≈ Var(x)

 N∑
i=1

w2
i + 2

∑
1≤i

∑
<j≤N

wiwjCij

 , (3)

with Cij = Cov(xi, xj)/Var(x) which are in practice smaller than but very close
to 1 for small natural image patches due to high correlation of neighboring pixels.
Experimentally the above equation approximates very well the output variance.
It also helps us to understand the output variance of popular initialized filters
used for manipulation detection, as presented in the remaining of this section.

3.2 Convolutional filter initialized with high-pass filter

We first consider convolutional filter initialized as each of the 30 SRM filters1 of
shape 5×5 (so here N = 25). In order to test on real data for convolutional filter,
we take as input 64 × 64 grayscale image patches generated from the Dresden
database [6]. The image manipulation operations that we want to detect are
listed in Table 1. We then compute the variance of output of each SRM filter
by two different methods: the first one with Eq. (3) and the second one with
actual convolution between the input and the filter. Hereafter, we call the first
as covariance-based method because Eq. (3) is mainly based on the covariance
terms Cov(xi, xj) of the input signal components (x1, x2, ..., xN ), and we call
the second one as convolution-based method. For the first method, the covariance
terms are estimated from 5 × 5 small patches (same size as SRM filters) which
are randomly extracted from the aforementioned 64×64 Dresden image patches.

The results of Var(y)/Var(x), i.e., the ratio of output and input variance,
are shown in Fig. 1. We can see that the amplitude of Var(y)/Var(x) is very
small for all 30 SRM filters, which lies basically in a range from 0 to 0.016 with

1 The 30 SRM filters can be found in the class of SrmFiller, starting from line 347
of this webpage https://github.com/tansq/WISERNet/blob/master/filler.hpp

https://github.com/tansq/WISERNet/blob/master/filler.hpp
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Fig. 1. The value of Var(y)/Var(x) for each of the 30 SRM filters obtained by using
the covariance-based method of Eq. (3) and the convolution-based method.

a mean of about 0.005. The output of majority of SRM filters has a variance
smaller than 1% of input variance, reflecting the signal shrinkage. It can also be
observed that the two methods to obtain output variance give very close results
of Var(y)/Var(x), implying the coherence of the prediction by Eq. (3) with the
practical convolution results.

In order to understand the small output variance for SRM filters, we start
from one important property of these high-pass filters. Like many high-pass
filters, e.g., Laplacian filter, the sum of all filter elements is equal to 0 for all 30
SRM filters of shape 5×5 (i.e., N = 25), which means that we have

∑N
i=1 wi = 0

(cf., link in footnote 1). It is then easy to deduce that
∑N

j=1 wj .
∑N

i=1 wi =∑N
i=1

∑N
j=1 wi.wj = 0. By dividing the wi.wj terms into two groups, we obtain

N∑
i=1

w2
i + 2

∑
1≤i

∑
<j≤N

wiwj = 0. (4)

The left-hand side of the above equation is almost same as the term in the
bracket of Eq. (3), except that in the above Eq. (4) we replace Cij by 1. As
mentioned earlier, for small natural image patches, we have the property that
Cij are usually smaller than but very close to 1. This is verified by experiments
on Dresden database where the minimum Cij value is 0.9573 for 5 × 5 small
patches. Not surprisingly, this minimum Cij value is attained between two pixel
positions which are the farthest from each other within the 5 × 5 small patch.
From the above analysis we can see that the term in the bracket of Eq. (3) is
close to 0, which results in a small value of output variance Var(y) for 30 SRM
filters. This intuitively explains the small Var(y)/Var(x) values shown in Fig. 1.

Regarding the high-pass filter initialized by Bayar [1] and Castillo [2], we
simulated 10, 000 filters with both algorithms and calculated the variance of
output of simulated filters. We also observe very small values of the ratio of
output-input variance, with 0.005 and 0.006 as mean value of Var(y)/Var(x),
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Fig. 2. Two histograms of occurrences of output-input variance ratio Var(y)/Var(x)
for 10, 000 Xavier filters. Please refer to main text for detailed explanation.

respectively for Bayar and Castillo. Due to space limit, we do not show detailed
results, but these small mean values further confirm the behaviour that high-pass
filters result in small output variance with significant signal shrinkage.

3.3 Convolutional filter with Xavier initialization

With curiosity, we also carry out studies for Xavier [7] which generates 5×5 filters
filled with pseudo-random samples drawn from a zero-mean uniform distribution.
We created 10, 000 Xavier filters using PyTorch and Fig. 2 shows two histograms
of occurrences of output-input variance ratio, i.e., Var(y)/Var(x): the left one
is for the range of 0 to 3 with a bin width of 0.02, while the right one shows
detailed occurrences for the first bin of the left histogram for the range of 0 to
0.02 with a bin width of 0.001. We computed the mean value of Var(y)/Var(x)
for the 10, 000 simulations of Xavier and found that the mean is close to 1
(desired value of Xavier); this is because of a long tail of big values that we do
not completely show in Fig. 2. The left histogram of Fig. 2 does not have a peak
around 1; instead, the highest occurrences occur near 0. This is a little surprising
yet understandable according to Eq. (3). In fact, the elements of Xavier filter
are drawn from a zero-mean distribution, so the bracket term in Eq. (3) tends
to have a small value. However, due to numerical sampling and in particular
considering the relatively low number of 25 pseudo-random samples (for 5 × 5
filter), it is possible for the bracket term to take big values in certain simulations.
Experimentally this bracket term of Eq. (3) can be as big as 13 for some Xavier
filters. In addition, from the right histogram of Fig. 2, for Xavier the occurrences
of Var(y)/Var(x) being very small values, i.e., less than 0.01, is very low: 109
out of 10, 000 simulations (i.e., around 1% probability). In contrast, the majority
of this variance ratio is less than 0.01 for high-pass filters as presented in last
subsection. We guess that it is still related to the numerical sampling of Xavier
because it can be rare to have 25 pseudo-random samples which sum up to a
value extremely close to 0.
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4 Scaling of Convolutional Filter

From results and analysis in Section 3, we can see that the variance of output of
convolutional filter initialized by popular algorithms can be significantly smaller
than the variance of input. This is particularly true for high-pass filter: the ratio
of output-input variance Var(y)/Var(x) is usually smaller than 0.01. The output
signal after convolution operation substantially shrinks. This can be detrimental
to the training of CNN, and as shown later in Section 5 the CNN training
sometimes fails in such situations.

Using a data-dependent approach (i.e., dependent on input data), we propose
a simple yet effective scaling of the first-layer convolutional filter. The idea is
to keep the variance stable after scaling for the input and output of any given
filter generated by popular initialization algorithms. Corresponding to the two
methods to compute output variance in Section 3, we propose two different ways
to calculate the scaling factor s, as presented below. After obtaining the scaling
factor, the elements of the given filter W = (w1, w2, ..., wN ) are properly scaled

as W̃ = s.W. We then initialize the first-layer filter with the scaled version W̃.

Covariance-based method. From Eq. (3), it can be seen that in order to make
Var(y) and Var(x) approximately equal to each other, we need to compensate
for the effect of the term in the bracket. So the scaling factor is computed as:

s =

√√√√√1

/ N∑
i=1

w2
i + 2

∑
1≤i

∑
<j≤N

wiwjCij

. (5)

In practice, we take random small patches of the same shape of the convolutional
filter to be scaled (e.g., 5×5) from a small portion of the training data. We then
estimate the variance and covariance terms on these small patches to obtain the
values of Cij = Cov(xi, xj)/Var(x). Afterwards the scaling factor s is computed

by using Eq. (5), and at last we obtain the scaled version W̃ of any given filter
W from the considered four initialization algorithms.

Convolution-based method. This is a straightforward approach. The output
ŷ is computed, for a small portion of the training data x̂ as input, by carrying
out the convolution operation. The scaling factor is simply calculated as

s =
√

Var(x̂)/Var(ŷ). (6)

From a practical point of view, the covariance-based method might be a
slightly better option than the convolution-based method mainly because of its
higher flexibility. In fact, for the covariance-based method, the computation of
the variance and covariance terms of the input can be performed only once for
any number of filters for which we want to scale. By contrast, the convolution-
based method has to be rerun every time we have a new filter to analyze. Nev-
ertheless, it is worth mentioning that both methods are experimentally quick
enough to be used in CNN initialization. The running time is about several
seconds, as presented in the next paragraph.
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According to our experiments, for a training set of about 100, 000 images of
64×64 pixels from all classes, taking 10% of the training data for the convolution-
base method and 10 small patches (e.g., of 5 × 5 pixels) per image of the 10%
training data for the covariance-based method, we achieve a good trade-off be-
tween computation time and stability of the result. Using more training data has
very small impact on the obtained scaling factor. Even using 100% of the training
set results in a change smaller than 0.1%. The amount of time to calculate the
scaling factor is less than 3 seconds per first-layer filter for both methods, on a
desktop with Intel R© Xeon E5-2640 CPU and Nvidia R© 1080 Ti GPU (covariance-
based method on CPU and convolution-based method on GPU). This is run for
one time before the CNN training. The computation time increases very slowly
when having more filters for the covariance-based method, because as mentioned
above the variance and covariance terms can be reused. We believe that the com-
putation time of scaling factor is negligible when compared to the typical time
required to train a CNN model.

5 Experimental Results

Several experiments are performed in order to test and show the efficiency of
our proposed scaling. These experiments consider the four filter initialization al-
gorithms mentioned earlier, two CNN architectures (CNN of Bayar and Stamm
[1] and a smaller CNN without fully-connected layer designed by ourselves), and
two forensic problems (a multi-class problem of detecting a group of manipula-
tion operations and a binary problem of detecting JPEG compression of high
quality factor). For the multi-class problem, we also consider a different number
of filters used in the first layer of the CNN of Bayar and Stamm [1]. The imple-
mentation and experiments were conducted using PyTorch v1.4.0 with Nvidia R©

1080 Ti GPU. The experimental data was created from the Dresden database
[6]. Full-resolution Dresden images are split for training, validation and testing
with ratio of 3:1:1 and converted to grayscale. Patches of 64×64 pixels were ran-
domly extracted from full-resolution grayscale Dresden images. This relatively
small size of image patches makes the forensic problems more challenging.

5.1 Multi-class problem with CNN of Bayar and Stamm [1]

We first consider the multi-class problem of classifying six different kinds of
image patches: the original patches and the five classes of manipulated patches as
explained in Table 1. The parameters for the resampling and JPEG compression
manipulations are taken randomly from the specified sets in Table 1. The total
number of patches in training set is 100, 000 (≈ 16, 667 patches per class), while
the number of patches in testing set is 32, 000 (≈ 5, 333 patches per class). The
number of training and testing samples is same as in [1]. It is worth mentioning
that the manipulations and their parameters in this paper are borrowed from [2]
and more challenging than those in [1]. The patch size is also smaller than [1]:
our patches are of 64× 64 pixels, while [1] mainly considers 256× 256 patches.
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Table 2. Test accuracy for the multi-class forensic problem (in %, average of 5 runs).
The experiments were performed with four initialization algorithms and their scaled
versions for first-layer filters of the CNN of Bayar and Stamm [1]. In parentheses is the
improvement of scaled version compared to the corresponding original version.

Initialization
Original
version

Convolution-based
scaling

Covariance-based
scaling

Bayar [1] A.
94.19

96.04 (+1.85) 96.02 (+1.83)
Bayar [1] B. 96.15 (+1.96) 96.22 (+2.03)

Castillo [2] 93.71 96.45 (+2.74) 96.42 (+2.71)

SRM [5] 94.39 96.54 (+2.15) 96.55 (+2.16)

Xavier [7] 93.48 94.61 (+1.13) 94.71 (+1.23)

We use the successful CNN architecture of Bayar and Stamm [1] in this set
of experiments and initialize the three filters in the CNN’s first layer with four
different algorithms: Bayar [1], SRM [5], Castillo [2], and Xavier [7]. We carry out
5 runs for each algorithm and the corresponding two scaled versions. For SRM,
for each run we randomly select 3 filters from the pool of 30 SRM filters. We
compare each original initialization algorithm with their scaled versions obtained
with the covariance-based method and the convolution-based method presented
in Section 4. For fair comparisons, we make sure that for each run the scaled
versions share the same “base filters” of the original version before performing
scaling. We follow exactly the same training procedure described in [1], including
number of epochs, optimization algorithm, learning rate schedule, etc.

For Bayar algorithm [1], we have tested two variants of the scaling of the first-
layer filters. The first one (“Bayar A.”) follows closely the idea of Bayar’s original
constrained training strategy: we carry out scaling of the normalized high-pass
filter at the beginning of each forward pass (please refer to the second last
paragraph of Section 2 for detail of the normalization procedure proposed in [1]).
The second variant (“Bayar B.”) is computationally cheaper and less complex:
the scaling of normalized high-pass filter is only performed in the initialization,
and we no longer impose normalization constraint during training. Our intuition
behind the second variant is that with a proper scaling of initialized filters even
a free training without the constraint of [1] may provide satisfying performance.

The detection performances in terms of test accuracy (i.e., classification ac-
curacy on testing set) for this multi-class problem are presented in Table 2. The
reported results are average of 5 runs with randomness, e.g., different first-layer
“base filters”. However, for each run, the “base filters” are the same for the orig-
inal and scaled versions: original version direct uses these filters, while scaled
versions apply proper scaling on the “base filters” and then use the scaled ones.

We can see from Table 2 that the test accuracy of all the initialization al-
gorithms is consistently and noticeably improved after scaling. Improvement of
at least 1.13% and as high as 2.74% is obtained. We also observe that the re-
sults of the two scaling methods are very close to each other. We checked the
computed scaling factors and found that they are indeed almost identical for
the two methods. Furthermore, for the two scaling variants of Bayar [1], vari-
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Fig. 3. Curves of test accuracy (average of 5 runs) for the multi-class forensic problem,
during the whole 60 training epochs of the CNN of [1]. The curves are for SRM and
Xavier, original version and scaled version by the covariance-based method.

ant B gives slightly better results, which is also computationally cheaper as it
only performs scaling in initialization without enforcing any constraint during
CNN training. This implies that with a good initialization after proper scaling,
it might not be necessary to impose training constraint. It is worth mentioning
that the results of Bayar in Table 2 are in general lower than those reported
in [1] because we now consider a more challenging forensic problem with more
difficult manipulations and on smaller patches. The results of Castillo in Table
2 are better than those presented in [2]. This may be due to the differences in
the number of training epochs (we follow [1] and train with more epochs) and
in the adopted optimization algorithm and learning schedule. In addition, the
three kinds of high-pass filters (especially SRM) indeed outperform Xavier, be-
fore and after scaling. This demonstrates the difference between forensics and
computer vision tasks. Nevertheless, the performance of Xavier is also improved
after scaling because as analyzed in Section 3.3 Xavier can also result in small
variance of output. In fact, for Xavier the probability to have Var(y) smaller
than half of Var(x) is about 52.20% in our 10, 000 simulations.

We also observe that the proposed scaling helps to have quicker increase
of forensic performance during CNN training. We show in Fig. 3 curves of test
accuracy of SRM and Xavier (average of 5 runs), before and after the covariance-
based scaling. It can be observed that the convergence speed is considerably
improved for SRM. For both algorithms, the curve of scaled version is always
above that of original version during the whole 60 epochs. It is also interesting
to notice that the scaled Xavier performs slightly better than the original SRM.

With 30 filters at first layer. Next, we present results for the same multi-class
problem while changing the number of filters in the first layer of the CNN of [1]
to 30. We make this change for two reasons: first, to test our approach with a
different number of filters in the first layer; and second, to use all the 30 SRM
filters which is a common practice in image forensics, e.g., for detecting splicing
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Table 3. Test accuracy for the multi-class forensic problem (in %, average of 5 runs).
We still use the CNN of [1] but change the number of first-layer filters from 3 to 30.

Initialization
Original
version

Convolution-based
scaling

Covariance-based
scaling

Bayar [1] B. 94.91 96.11 (+1.20) 96.04 (+1.13)

Castillo [2] 94.11 96.31 (+2.20) 96.32 (+2.21)

SRM [5] 94.37 96.51 (+2.14) 96.49 (+2.12)

Xavier [7] 91.80 96.03 (+4.23) 96.02 (+4.22)

and copy-move forgeries [10]. For this scenario we still test the four initialization
algorithms but only use variant B for scaled Bayar as it proved to obtain slightly
better results while being computationally cheaper. The results are presented in
Table 3. Again, we observe that scaling the filters with any of the two methods
leads to consistently better test accuracy, with an improvement ranging from
1.13% to 4.23%. We notice from Tables 2 and 3 that after increasing the number
of first-layer filters, 1) the original version of high-pass initialization (Bayar,
Castillo and SRM) has slightly improved or comparable performance while the
accuracy of Xavier decreases; and 2) the scaled version of Bayar, Castillo and
SRM has comparable performance with the case of 3 filters while Xavier has
noticeable improvement. We guess the reason for the good performance of scaled
Xavier may be that with 30 filters there is more chance to have a very good filter
which after scaling can improve the result. Understanding these observations is
not the focus of our paper, and we plan to conduct further analysis in the future.

5.2 JPEG binary problem with CNN of Bayar and Stamm [1]

We notice in the multi-class problem that JPEG compression is the most difficult
manipulation to detect. In this section we consider the binary classification be-
tween original patches and JPEG compressed patches with parameters in Table
1 (i.e., very high quality factor between 90 and 100). This allows us to test the
proposed scaling on a different challenging forensic problem. We use the CNN
of Bayar and Stamm [1]. The number of training and testing patches per class
is the same as in last subsection. All CNN training settings are kept unchanged.

For this binary problem, we consider two initialization algorithms of Bayar
[1] and SRM [5], original and scaled versions (variant B for scaled Bayar). Table
4 presents the obtained results (average of 5 runs). This challenging problem
makes the original version of both Bayar and SRM struggle to achieve a good
performance. Especially, training of SRM can occasionally fail, leading to accu-
racy close to random guess. Much better average test accuracy is achieved by
scaled versions. For SRM [5], a boost of more than 14% is obtained with scaling.

We show in Fig. 4 some curves of test accuracy for scaled (covariance-based)
and original SRM [5]. The curve of scaled version shows the maximum and min-
imum test accuracy together with the average at each epoch among the 5 runs.
For the original version of SRM we can have very different results. Therefore,
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Table 4. Test accuracy for the binary JPEG forensic problem (in %, average of 5 runs).
The experiments were performed with Bayar and SRM, original and scaled versions
(variant B for scaled Bayar), on the CNN of [1].

Initialization
Original
version

Convolution-based
scaling

Covariance-based
scaling

Bayar [1] B. 88.27 90.80 (+2.53) 90.80 (+2.53)

SRM [5] 78.24 92.33 (+14.09) 92.44 (+14.20)

Fig. 4. Curves of test accuracy for the JPEG binary forensic problem: scaled version of
SRM (average of 5 runs) with bars of maximum and minimum accuracy at each epoch
among 5 runs; and the best run and the worst run of original version of SRM.

we show the best and the worst curves of test accuracy among all the 5 runs. As
we can see the worst case does not improve during the whole procedure and the
test accuracy remains close to 50%. The difference may come from the randomly
selected three first-layer SRM filters in each run (certain SRM filters perform
worse than others according to our observation). We would like to mention that
for each run, although we select randomly different SRM filters, the same se-
lected filters are used to carry out comparisons between the original and scaled
versions. Therefore, even for filters that result in bad performance for the original
version, we can obtain a much better performance after scaling them.

5.3 Multi-class and binary problems on a different smaller CNN

We then test both the multi-class and JPEG binary problems on a different
CNN designed by ourselves. We first describe the architecture of this smaller
network. Let Ck(M or A) denote a Convolutional-BatchNorm-Tanh(-MaxPool
or -AveragePool) layer with k filters. For the first layer we use Hk which denotes
a Convolutional layer with k filters. The architecture of our smaller CNN is H3-
C40M-C25M-C20M-C15M-C6A. The first four layers have a kernel size of 5× 5
while for the last two layers the kernel size is 1×1. All convolutional stride size is
1. The first layer and the last two layers do not have zero-padding, for the other
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Table 5. Test accuracy for the multi-class and binary problems with our proposed
smaller CNN without fully-connected layer (in %, average of 5 runs). The columns of
“Bayar” and “SRM” present results of original version. “Scaling-conv” and “Scaling-
cov” represent respectively convolution-based and covariance-based scaling method.

Problem Bayar Scaling-conv Scaling-cov SRM Scaling-conv Scaling-cov

Multi-class 95.24 96.17(+0.93) 96.18(+0.94) 95.72 97.06(+1.34) 97.09(+1.37)

Binary 90.56 93.72(+3.16) 93.74(+3.18) 89.85 95.11(+5.26) 95.12(+5.27)

layers the padding size is 2. This is a network without fully-connected layer. To
compare with, the architecture proposed by Bayar and Stamm [1] is H3-C96M-
C64M-C64M-C128A-F200-F200-F6, where Fk denotes a fully-connected layer
with k neurons and Tanh. The number of learnable parameters of the CNN of
[1] is about 337K, while our smaller CNN has about 41K parameters.

Using our smaller CNN, we test both the multi-class and the binary problems
on a different CNN architecture. All the data preparation and experimental
setting are the same as those described in Sections 5.1 and 5.2. For this set of
experiments, we compare the original and scaled versions of Bayar [1] and SRM
[5] (variant B for scaled Bayar). Table 5 presents the obtained results. We can
see that in all cases the scaled version leads to improved performance compared
to the original version. The improvement of test accuracy goes from 0.93% for
multi-class problem with Bayar, to 5.27% for binary problem with SRM.

Our objective in this subsection is to show that with a different CNN, our pro-
posed scaling can still reliably improve the performance for different initialization
algorithms and forensic problems. Meanwhile, it can be noticed that performance
is better with our smaller CNN when compared to the network of [1]. The un-
derstanding of this point is beyond the scope of this paper. Our guess is that
the forensic problems and/or the amount of data cope better with the smaller
CNN’s size (less parameters) and architecture (only comprising convolutional
layers without fully-connected layer). The thorough analysis and understanding
of the relationships between these factors is one part of our future work.

6 Conclusion

We propose a new and effective scaling approach for adjusting first-layer filters
of CNNs used for image manipulation detection. The proposed scaling is com-
putationally efficient and data-dependent (i.e., scaling factor dependent on the
input). We also present theoretical and experimental studies which help to under-
stand why the ratio of output-input variance for first-layer convolutional filter
can be a (very) small value. Experimental results, with different CNNs, filter
initialization algorithms and forensic problems, show that our proposed scaling
can consistently improve performance of CNN-based image manipulation detec-
tion. Although practically and intuitively we can understand the effectiveness
of the proposed filter scaling operation, a rigorous theoretical analysis would be
necessary to explain the observed performance improvement. We would like to
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conduct research on a possible scaling of deeper layers and to extend experiments
to more CNNs (e.g., XceptionNet and ResNet), training settings and multimedia
security problems. It is also interesting to study the impact of amount of training
data and CNN architecture on the forensic performance. One limitation of our
work is that we only consider image manipulation detection under ideal labora-
tory conditions. We plan to carry out relevant studies for more challenging and
practical forensic problems, e.g., the detection of malicious and realistic image
forgeries and image forensics with mismatch between training and testing data.
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