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Abstract—This paper proposes a new, conceptually simple
and effective forensic method to address both the generality
and the fine-grained tampering localization problems of image
forensics. Corresponding to each kind of image operation, a
rich GMM (Gaussian Mixture Model) is learned as the image
statistical model for small image patches. Thereafter, the binary
classification problem, whether a given image block has been pre-
viously processed, can be solved by comparing the average patch
log-likelihood values calculated on overlapping image patches
under different GMMs of original and processed images. With
comparisons to a powerful steganalytic feature, experimental
results demonstrate the efficiency of the proposed method, for
multiple image operations, on whole images and small blocks.

Index Terms—General-purpose image forensics, fine-grained
tampering localization, natural image statistics, Gaussian mixture
model, patch likelihood

I. INTRODUCTION

During the last a few years, image forensics has become a

commonly acknowledged image authentication tool to expose

doctored images in a blind and passive way. Since image

forgery creation usually involves various image processing

techniques, lots of efforts in the image forensics community

have been put to tracing image processing history. Conse-

quently, a large number of forensic algorithms were proposed

to reveal different image operations, here to mention a few,

e.g., JPEG compression [1], median filtering [2], and resam-

pling [3]. Most of these techniques target at identifying a

specific image operation, and are indeed powerful at detecting

images processed by the image operation under investigation.

They in literature are labelled as targeted (ad hoc) schemes,

which however are known to be lack of generality. For exam-

ple, a powerful forensic feature designed for identifying JPEG

compression may not be effective enough to build a median

filtering detector. In order to overcome the generality limitation

of targeted forensics, general-purpose image forensics has

recently emerged to cope with multiple image operations.

Though general-purpose image forensics appears to be a

more practical (also more challenging-to-design) technique

than targeted forensics, its development is still at a very

early stage. Probably the only existing work addressing the

generality issue of image forensics is the paper of Qiu et al.’s

[4]. In their forensic strategy, steganography is regarded as

a kind of image processing. Therefore, powerful steganalytic

features, such as SPAM (Subtractive Pixel Adjacency Matrix)

[5], SRM (Spatial-domain Rich Model) [6], and LBP (Local

Binary Patterns) [7], are used to build forensic detectors expos-

ing different image operations. In fact, adopting steganalytic

features for image forensic purposes is not completely new.

Kirchner et al. [8] have previously showed the effectiveness of

the SPAM feature [5] to serve for median filtering forensics.

For JPEG forensic purposes, Li et al. [9] also borrowed a

feature [10] from steganalysis.

Modern image steganalysis has been developing to suc-

cessfully detect stego-images with low-rate embedded data by

powerful steganography methods. This is realized by the de-

sign of complex high-dimensional steganalytic features and the

adoption of machine learning methods, such as the ensemble

classifier [11] and the SVM (Support Vector Machine) [12].

It is well demonstrated in [4] that these steganalytic features

successfully capture the image statistical change caused by

different image operations, which actually produce a much

higher image modification rate than steganography. The image

forensic methods based on steganalytic features [4], [8], [9]

as well as a lot of other image forensic algorithms only

report, indeed with a very high accuracy, whether a given

image of big size has been processed by a certain image

operation. However, no results have been provided in [4],

[8], [9] concerning the forensic effectiveness of steganalytic

features on small image blocks1, which can be taken as an

equivalence to image tampering localization.

Though a simple binary answer may be considered sufficient

for steganalysis (linked to Simmons’ prisoner problem [13]),

it may not be informative enough for image forensics to help

people grasp a deep understanding of the image tampering

locations and semantics. In this paper, we are particularly

interested in exposing the image operation locally in the image.

This is due to the common practice of using cut-and-paste or

copy-move to create image forgeries with modified semantics.

In this case, it frequently happens that only certain local

image areas rather than the whole image have undergone a

particular image processing. For revealing the semantics of

the tampered image, image forensics should be able to expose

image processing on small image blocks.

Based on the above discussion, we would like to emphasize

1In this paper, we use two similar words “block” and “patch” with subtle
difference. Unless otherwise addressed, “block” is used to referred to a
relatively big image area, rectangle but not necessarily square, and “blocks”
do not overlap. However, “patch” is usually a small square image area, and
“patches” can overlap.



the importance of both the generality and the ability to perform

fine-grained tampering localization for image forensics. With

these two goals in mind and following a very different strategy

than that of the general-purpose image forensic method [4]

inherited from steganalysis, in this paper, we propose a new,

conceptually simple and effective way to conduct image foren-

sics based on likelihood comparison under parametric image

statistical models. The underlying intuition of the proposed

method is reflected by answering the following question: given

an image block, is it more like a natural, original block

or a processed one? In order to answer this question, for

each image operation in consideration (or no processing at

all), we learn an image statistical model using the GMM

(Gaussian Mixture Model) on small image patches. Thereafter,

we are able to measure how likely a new given image block

has been previously processed by a certain image operation,

by calculating its average patch log-likelihood value under

the corresponding GMM. Meanwhile, the “naturalness” of

an image block can be measured similarly under the GMM,

which is learned on natural, original image patches. Therefore,

general-purpose image forensics with good performance of

fine-grained tampering localization is thereafter achieved by

comparison of the two average patch log-likelihood values.

The main advantages of the proposed method over the state-

of-the-art image forensics are summarized in the following:

• The forensic methodology of the proposed method is

very different from, and conceptually much simpler than

the state-of-the-art image forensic methods. It does not

need to extract hand-crafted features as almost all current

forensic methods do.

• The proposed forensic method is general-purpose, which

means it is able to cope with different image operations

under the same likelihood comparison framework. It is

also easy to be extended when a new image operation

is taken into account. The single necessary step is to

learn another GMM on image patches, processed by the

considered new image operation.

• Since the image statistical models are constructed on

small image patches, calculating the average patch log-

likelihood value on a small image block is easy. Then, it is

straightforward to perform fine-grained image tampering

localization using the proposed method.

The remainder of the paper is organized as follows. Sec. II

presents the proposed general-purpose image forensic frame-

work, with analysis of the suitability of the GMM for image

forensic purposes. Experimental results are reported in Sec. III,

with comparisons to a steganalytic feature SPAM [5], on

both whole images and small image blocks for fine-grained

tampering localization. Finally, we draw the conclusion in

Sec. IV.

II. PROPOSED METHOD

A. Motivation

As discussed in Sec. I, we hope to devise an image forensic

method which is able to perform fine-grained tampering local-

ization. Therefore, rather than analyzing a whole image, we

are motivated to work on small image patches. In this paper,

we consider the binary classification problem2 whether a given

image block has been processed. To this end, we aspire to find

a way to measure the “naturalness” of small image patches.

Between the two options “natural” and “processed”, if we are

able to tell which one is the more likely case for a given image

patch, then the classification is straightforward. To do so, it

would be ideal if we are able to find a good distribution for

natural, unprocessed patches, and that for the processed ones.

As known, the distribution of natural images is very compli-

cated. In the research field of natural image statistics, various

attempts have appeared in order to find a good natural image

statistical model in the spatial, transformed or filtered domain

[14], which is the core of various computer vision problems as

well as of image forensics and anti-forensics [15], [16]. Zoran

and Weiss [17] firstly proposed to use the GMM for natural

image patches. Serving as an excellent image prior model, it

is proven to perform very well for various low-level computer

vision problems such as denoising, deblurring, inpainting [17],

and for JPEG image enhancement [18].

Compared with low-level computer vision problems where

the GMM performs excellently as an image prior, image

forensics is a very different problem. We are curious about

whether the GMM is able to capture the statistical difference

between natural, unprocessed images and the processed ones,

that the human naked eyes fail to distinguish. To this end,

we analyze the GMMs (see Sec. II-B for more details) with

200 components learned on 8 × 8 image patches extracted

from the original images, JPEG images with quality factor 90,

and sharpened images with filter parameter 0.5 (see Table I),

respectively. If the GMM covariance matrices are able to

successfully capture very different image statistics for different

image operations, then the GMM will be a good choice for

our image forensic task.

For the above mentioned 3 GMMs, the eigenvectors of

covariance matrices with size 64×64 of the 4 leading compo-

nents with the biggest mixing weights are shown in Fig. 1. The

first GMM components mainly capture the contrast variability

of image patches, whereas the following components reveal

the textures and boundaries of objects [19]. However, even

in the first 4 components, different patterns can be observed

from different GMMs. Compared with Fig. 1-(a)-(d) obtained

from the original images, we can see that JPEG compression is

well exposed in (e)-(h), where the horizontal and vertical lines

shown in the eigenvectors with relatively small eigenvalues

actually depict the blocking artifacts present in the JPEG

image. Compared with the JPEG images, the eigenvectors

obtained from the sharpened images, well reflecting the detail

enhancement effect, are even more different from those of the

original images.

2The image forensic work presented in this paper only considers binary
classification, e.g., discriminating between the original and processed image
blocks. The generality of image forensics is however embodied by the
ability to cope with multiple image operations under the same forensic
framework, though respectively considering different binary classification
problems. Currently, we do not consider multi-class classification, which we
plan to work on in the future.
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Fig. 1. Eigenvectors of covariance matrices of the first 4 GMM components with the biggest mixing weights. In each subfigure, from the top left to the
bottom right, the eigenvectors are sorted according to the descending order of the corresponding eigenvalues. (a)-(d) are obtained from the original images;
(e)-(h) are obtained from the JPEG compressed images; and (i)-(l) are obtained from the processed images using the unsharp masking. The GMMs are learned
on image dataset GFTR (see Sec. III-A). Different patterns appear in eigenvectors of covariance matrices of GMMs learned on different kinds of images.

Based on the above natural image statistics investigation and

experimental analysis of different GMMs learned on different

kinds of images, we adopt the GMM as the image statistical

model in the proposed forensic method. Under this model,

we are able to measure the “naturalness” of a given image

patch by likelihood calculation. By further average patch log-

likelihood comparison of a given image block, we can there-

after conduct forensic classification. Besides the simplicity and

being very expressive for small image patches processed by

different operations (as shown in Fig. 1), we also notice that

the GMM may also bring generality to the proposed image

forensic framework. This is because we can easily integrate

a new image processing operation, as long as we are able to

correspondingly learn a distinctive GMM.

B. Forensic Analysis Using Image Statistical Models

Based on the discussion and analysis in Sec. II-A, we adopt

the GMM to model the distribution of small image patches.

Given a generic image patch x (in vectorized form, its original

size is b× b before stacking), its likelihood under a GMM is

computed by:

L(θ|x) = p(x|θ) =
K
∑

k=1

πkN (x|µk,Ck), (1)

where πk, µk and Ck are respectively the mixing weight,

mean and covariance matrix for the k-th (k = 1, · · · ,K)

GMM component. For sake of brevity, θ = {πk,µk,Ck|k =
1, · · · ,K} denotes the parameters describing the GMM. The

calculated likelihood value L(θ|x) indicates how likely x

follows the GMM distribution parametrized by θ.

From the patches extracted from images processed by a

certain image operation (or no processing at all), the param-

eters θ of the GMM can be learned using the standard EM

(Expectation Maximization) algorithm3. Therefore, we build

a parametric image statistical model for image patches corre-

sponding to each kind of image operation in consideration.

For the binary classification of our image forensic prob-

lem, we are given a generic image (block) X with size

3In practice, we use the unoptimized Matlab code which can
be downloaded from: http://www.mathworks.com/matlabcentral/fileexchange/
26184-em-algorithm-for-gaussian-mixture-model.



H × W (H,W ≥ b), and we are to give a binary decision

about its processing history. From X, we can extract a set of

N = (H − b+ 1) × (W − b+ 1) overlapping image patches

of size b × b: {xi|i = 1, · · · , N}. Therefore, the average

patch log-likelihood (also called expected patch log-likelihood

in [17]) of X can be calculated as 1

N

∑

N

i=1
log L(θ|xi). We

assume that X is original under the null hypothesis H0, and is

processed by a certain image operation under the alternative

hypothesis H1. Under H0, the patches are assumed to follow

the GMM parametrized by θ0; while under H1, the patches are

assumed to follow the GMM parametrized by θ1, whose value

varies across different image operations. Therefore, the binary

classification problem of whether X has been processed, can

be formulated as a simple hypothesis testing problem, and we

propose the following test on the difference of two average

patch log-likelihood values:

Λ(X) =
1

N

N
∑

i=1

log L(θ0|xi)−
1

N

N
∑

i=1

log L(θ1|xi) ≷ η. (2)

The decision rule of the test is as follows:
{

reject H0 if Λ(X) ≤ η

do not reject H0 if Λ(X) > η.
(3)

For image forensic classification, if Λ(X) ≤ η, we classify

the image block X as processed, otherwise as original.

III. EXPERIMENTAL RESULTS

A. Experimental Setting

In this paper, we consider 6 different image operations4 as

summarized in Table I and listed below:

• Gaussian filtering is often used for image smoothing, in

order to remove noise or to reduce details;

• JPEG is one of the most widely used image compression

formats today, which is a popular choice of image forgers;

• Median filtering is a commonly used image smoothing

technique, which is particularly effective for removing

impulsive noise. It can also be used to hide artifacts of

JPEG compression [20] and resampling [21]5;

• Resampling is often involved in creating composite image

forgeries, where the size or angle of one source image

needs to be adjusted;

• Unsharp masking is a popular image sharpening tech-

nique, to create less blurry, enhanced image than the

original;

• White Gaussian noise addition, despite of its rare use in

conventional image processing, yet one can find its ap-

plications in disguising traces of other image operations,

e.g., for JPEG deblocking purposes [20].

For the sake of brevity, the abbreviations in Table I are used

to refer to different image operations.

4Currently, we only consider one parameter setting for each image opera-
tion. We will consider multiple parameter settings and include more kinds of
image operations in the follow-up work.

5Indeed, we consider median filtering or to-be-described white Gaussian
noise addition as an image operation motivated by certain image anti-forensic
methods. Currently, we however do not test against anti-forensics, which is
left as a future effort.

TABLE I
DIFFERENT IMAGE OPERATIONS CONSIDERED IN THIS PAPER.

ORI no image processing

GF
Gaussian filtering with window size 3 × 3, and standard
deviation 0.5 to generate the filter kernel

JPG JPEG compression with quality factor 90

MF median filtering with window size 3× 3

RS
resampling with bicubic interpolation to scale the image to 80%

of its original size

USM
unsharp masking with window size 3 × 3, and parameter 0.5

for the Laplacian filter to generate the sharpening filter kernel

WGN white Gaussian noise addition with standard deviation 2

The natural image datasets used in this paper are created

from 545 never resampled, non-compressed TIFF images6,

with various indoor and outdoor scenes. They were taken by

4 cameras of different makes and models, and have been

used for image resampling forensics [3] and double JPEG

compression forensics [22]. These images are randomly di-

vided into two sets, which respectively include 273 images

for training and 272 images for testing. From each original

high-resolution TIFF image, we crop 9 adjacent subimages of

size 512× 512 from its center. Without loss of generality, we

only consider grayscale images in this paper. Therefore, we

convert the cropped TIFF images into 8-bit grayscale images

using the Matlab function rgb2gray. In the end, we have

273×9 = 2457 images in the training dataset GFTR (General-

purpose Forensic TRaining), and 272 × 9 = 2448 images in

the testing dataset GFTE (General-purpose Forensic TEsting).

In order to evaluate the forensic performance of the pro-

posed method on exposing image processing operation on

whole images as well as on small image blocks, we consider

3 image (block) sizes H×W : 512×512, 32×32, and 16×16.

B. Forensic Performance

For experimental comparison, we construct forensic de-

tectors based on the well-known 686-dimensional 2nd-order

SPAM feature [5], which was initially designed for steganaly-

sis. Its effectiveness in both steganalysis and general-purpose

image forensics has been well demonstrated in literature [4],

[8]. Moreover, we choose to compare with the steganalytic

feature SPAM instead of the SRM (34671-dimensional) [6]

and LBP (22153-dimensional) [7] features, partly because of

its relatively low dimensionality. We are interested in fine-

grained tampering localization and the performance of forensic

detectors on small image blocks (down to 16× 16 block size

with only 256 pixels in our experimental setting). Not only are

the feature extraction and detector training of SRM and LBP

computationally demanding, but the obtained features from

small image blocks may also contain lots of redundancies.

For each image (block) size H × W and each image

operation, a SPAM-based detector is trained using the SVM

[12] on the original and the corresponding processed image(s)

6Downloaded from: ftp://firewall.teleco.uvigo.es:27244/DS 01 UTFI.zip
and ftp://lesc.dinfo.unifi.it/pub/Public/JPEGloc/dataset/.
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Fig. 2. Example results of fine-grained image tampering localization to reveal forgery semantics, with block size 16× 16. Forgery (c) is created by splicing
the original image (a) and the church image area extracted from the JPEG image (b) with quality factor 90. (d) points out the JPEG compressed image blocks
using the proposed method, and (e) reports the results obtained by the SPAM-based detector [5]. Forgery (g) is created by scaling the dog image area of the
original image (f) to 80% of its original size and insert it back to the same image (f). (h) shows the image blocks detected as resampled using the proposed
method, whereas (i) presents the results obtained using the SPAM-based detector [5]. Images (a), (f), and the corresponding non-compressed image of (b) are
from the GFTE dataset. Results obtained on these two image forgeries indicate the proposed method achieves a better forensic performance on fine-grained
tampering localization, because of its high detection accuracy on small 16× 16 image blocks.

(blocks) from the GFTR dataset7. For learning the GMMs

for the proposed method, we consider a patch size of 8 × 8
(namely b = 8), which well balances the richness of the

model and the complexity of the learning. We perform the

learning procedure on 2457 × 500 ≈ 1.2 million 8 × 8
image patches extracted from dataset GFTR, with pixel values

scaled to [0, 1] and DC component removed. In the end,

we obtain 200 components for each GMM. We have two

strategies to set the threshold η in Eq. (3), in order to build

the proposed forensic detectors. The straightforward setting is

η = 0, meaning that X is classified as processed when the test

measurement Λ(X) indicates that its extracted patches are on

average more likely to be under the GMM of the processed

image patches. The more sophisticated setting of η can be

implemented according to the detector’s performance on the

GFTR dataset, by maximizing the detection accuracy.

For forensic testing, we use the 2448 images in GFTE

dataset for the size 512× 512; whereas for the sizes 32× 32
and 16×16, 10 blocks are randomly sampled from each (pro-

cessed) GFTE image, resulting in 24480 blocks corresponding

to each kind of image operation.

Table II reports the detection accuracy for different bi-

nary classification problems between the original and the

processed image(s) (blocks). Here, “SPAM-based” indicates

7For image block size 32 × 32 and 16 × 16, one block is randomly
sampled from each GFTR image, for training the SPAM-based detectors.
In practice, they have been proven to perform slightly better (around 2%

detection accuracy improvement) on image blocks with the corresponding
size than SPAM-based detectors trained on 512× 512 images.

TABLE II
CLASSIFICATION ACCURACY (%) COMPARISON WHEN TESTED ON

DIFFERENT SIZES OF IMAGE (BLOCK). THE SPAM-BASED DETECTORS

AND THE GMMS ARE TRAINED ON DATASET GFTR. RESULTS ARE

OBTAINED BY TESTS ON DATASET GFTE.

GF JPG MF RS USM WGN

512× 512

SPAM-based 99.86 98.20 99.94 96.45 99.73 98.53

Proposed-S 99.10 97.28 95.69 92.61 99.73 99.45

Proposed-T 99.82 99.49 99.31 92.67 99.73 99.80

32× 32

SPAM-based 99.35 94.18 99.43 89.23 98.76 95.04

Proposed-S 97.69 95.83 93.81 90.96 99.22 95.50

Proposed-T 97.73 96.04 93.99 90.96 99.21 97.55

16× 16

SPAM-based 98.38 88.00 99.26 78.21 97.82 91.20

Proposed-S 97.27 94.27 92.88 89.70 98.59 95.58

Proposed-T 97.37 94.68 93.01 89.72 98.59 95.66

the results achieved by the SPAM-based detectors [5]; whereas

“Proposed-S” and “Proposed-T” show results achieved by

the proposed detectors by using η = 0 and the trained

η values from the GFTR dataset, respectively. In order to

save some computation cost for the proposed method, for

the 512 × 512 image, not all the overlapping b × b patches

are taken into account. Instead, the non-overlapping patches

of the image and those of the corresponding image cropped

by 4 pixels horizontally and vertically are used. In practice,

this simplification strategy does not harm the forensic perfor-

mance of the proposed method, and can largely reduce the

computation cost. We can see from Table II, the proposed

detectors are able to achieve comparable performance with



respect to the SPAM-based ones, when tested on 512 × 512
images. The proposed method is especially advantageous when

tested on small image blocks, especially for the size 16× 16.

In particular, for resampling, the proposed method obtains

11.5% gain of detection accuracy over the SPAM feature.

Even though the proposed method does not outperform the

SPAM feature for median filtering, its detection accuracy is

still around 93%. Moreover, the forensic performance of the

SPAM feature drops, especially for JPG and RS, when the

size of testing image blocks decreases, while ours stays rather

stable for all the processing operations in consideration.

The good performance of the proposed method for ex-

posing image processing operation on small image blocks

demonstrates its potential for fine-grained image tampering

localization. Besides the large-scale test results shown in

Table II, here we test on two image forgeries where JPEG

compression and resampling are involved. As shown in Fig. 2-

(c), it is a composite image forgery by inserting the church

image area of the JPEG image shown in -(b) into the original

image -(a). The small dog on the upper right of Fig. 2-

(g) is actually a copy of the dog image area on the bottom

left after resizing it. The two forgeries are divided into non-

overlapping 16×16 blocks and are thereafter fed to the forensic

detectors for block-wise binary classification. The small red

boxes in Fig. 2-(d) and -(h) show the detection results using

the proposed method for JPEG compression and resampling,

respectively. Compared with results shown in Fig. 2-(e) and

-(i) obtained by the SPAM-based detectors [5], we can see that

our method successfully reveals, with a higher accuracy, the

tampered image areas at a fine-grained level.

IV. CONCLUSION

Driven by the question whether a given image block is

more like a natural, original block or a processed one, this

paper adopts the GMM to model the statistics of images

processed by different image operations. Given an image

block, by comparing the average patch log-likelihood values

calculated under two GMMs learned from the original and

processed images, we are able to perform binary classification

for forensic purposes. Very different from the existing image

forensic methods, the proposed method is conceptually simple

in methodology, does not need complex feature extraction

nor the adoption of the ensemble classifier or the SVM, is

easy to be extended for new image operations, and is able to

perform fine-grained tampering localization. It is especially

advantageous in tracing image processing history on small

image blocks, and is able to achieve comparable performance

on 512 × 512 images, compared with the 2nd-order SPAM

feature [5].

Future research shall be devoted to investigation of richer

image statistical models, multi-class forensic classification,

integration of more image operations as well as more of

their parameter settings, comparison with detectors based on

steganalytic features SRM [6] and LBP [7], and tests against

image anti-forensic methods.
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