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Abstract

It is now extremely easy to recapture high-resolution and high-quality images

from LCD (Liquid Crystal Display) screens. Recaptured image detection is an

important digital forensic problem, as image recapture is often involved in the

creation of a fake image in an attempt to increase its visual plausibility. State-

of-the-art image recapture forensic methods make use of strong prior knowledge

about the recapturing process and are based on either the combination of a group

of ad-hoc features or a specific and somehow complicated dictionary learning

procedure. By contrast, we propose a conceptually simple yet effective method

for recaptured image detection which is built upon simple image statistics and a

very loose assumption about the recapturing process. The adopted features are

pixel-wise correlation coefficients in image differential domains. Experimental

results on two large databases of high-resolution, high-quality recaptured images

and comparisons with existing methods demonstrate the forensic accuracy and

the computational efficiency of the proposed method.
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1. Introduction

With the increasing popularity and quality of customer digital cameras (es-

pecially those equipped on smart phones) and the consistently improved sophis-

tication of image editing software tools, capturing and editing high-resolution

and high-quality digital images has become an easy task. While photo editing5

can be used to further improve the visual or aesthetic quality, it can also be

intentionally used for creating falsified images. In general, falsified images do

not reflect what happens in the reality and may have big negative impact on

the society. For example, a suspect can fabricate a doctored image, attempt-

ing to disclose an alibi defence. Another example is that during an election10

campaign a candidate may anonymously spread an image of his/her opponent

showing up in a disadvantageous but fake scenario, so as to ruin the opponent’s

reputation. Therefore, nowadays people often have doubt on the credibility of

the content described by digital photographs. Accordingly, in order to expose

doctored images and recover people’s trust on authenticity of digital images,15

the research on digital image forensics has received more and more attention

during the last decade. Image forensic techniques attempt to computationally

assess the authenticity and/or find the origin of a given digital image based on

trustworthy scientific methods and appropriate mathematical tools, see (Stamm

et al., 2013; Piva, 2013) for two surveys on this quickly evolving topic.20

One particular image forensic problem is to distinguish between single cap-

tured images (i.e., real-world scenes captured by a digital camera) and recaptured

images from LCD screens (i.e., a single captured image, potentially after being

tampered with, is displayed on an LCD screen and then recaptured by a digi-

tal camera). This forensic problem has high utility in practical image forensic25

scenarios. The fact that a given image is a recaptured one is on its own very

suspicious. Serious questions arise concerning the motivation of recapturing an

image displayed on an LCD screen and even about the authenticity of the dis-

played image. Indeed, as discussed below and pointed out by other researchers

(Cao and Kot, 2010; Thongkamwitoon et al., 2015), image recapturing is often30
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involved in the creation of a fake image.

When fabricating a fake image, the creator usually seeks a high visual plausi-

bility, i.e., the fake image should look like a genuine one and be able to pass the

human visual inspection. Although with current photo editing software tools

people can easily create a visually convincing fake image, it is not uncommon to35

further increase its plausibility by intentionally displaying the tampered image

on an LCD screen and then recapturing the displayed image (Cao and Kot,

2010; Thongkamwitoon et al., 2015). There are two main motivations for this

additional step of image recapturing. First, the final fake image will be in the

form of a “real” photo taken by a digital camera, instead of a potentially edited40

image saved by using photo editing software. This will make the origin of the

fake image look more convincing and also has a very big chance to deceive any

forensic detectors that examine the traces of photo editing software left in the

image’s metadata or in the image itself. Second, the recapturing process is often

capable of increasing the visual plausibility of a fake image. It appears that the45

combined effect of LCD display and camera recapturing would make the image

visually smooth and quite natural. This, for instance, can be useful to hide the

sharp and unnatural transition at the border of two spliced subimages (Cao and

Kot, 2010). The top row of Fig. 1 shows three recaptured fake images which are

visually very convincing. However, reliable image recapture forensic methods,50

such as the one proposed in this manuscript, can assert that these are actually

recaptured images from LCD screens whose authenticity is very questionable.

A number of image recapture detection methods have been proposed in the

literature. Nearly all of the existing methods are based on strong assumptions

about the recapture process, e.g., the recapturing introduces aliasing-like distor-55

tions, changes image’s color and edge sharpness, or even further increases lossy

compression artifacts. By contrast, in this manuscript, we make a very loose as-

sumption about the consequence of recapturing high-resolution and high-quality

images from LCD screens and rely on a simple yet discriminative image statistics

feature. More precisely, we assume that the recapturing process introduces sub-60

tle but detectable statistical difference to a digital image, reflected and captured
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Figure 1: In the top row are three recaptured tampered images from the ROSE database

(Cao and Kot, 2010; Cao, 2010), which are visually very plausible and convincing. The

corresponding genuine image are shown in the bottom row. In the three tampered images

(from left to right), color alteration, object removal and object insertion have been respectively

used for creating the fake image.

by features consisting of simple pixel-wise correlation coefficients (CC) in image

differential domains. We validate the proposed method on two large databases

comprising high-resolution and high-quality recaptured images, and one of the

two databases includes recaptured tampered images of high visual plausibility65

(some examples are shown in the top row of Fig. 1). Experimental results and

comparisons with state-of-the-art algorithms demonstrate the forensic accuracy

and the computational efficiency of our method.

The remainder of this manuscript is organized as follows. Section 2 reviews

existing methods for detecting recaptured images from LCD screens and the70

common data sets for testing and evaluating such methods. In Section 3, we

present the technical details of the proposed forensic method, in particular the

design of the adopted image statistics feature. Experimental results are reported

in Section 4. We conclude the manuscript and suggest several future working

directions in Section 5.75
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2. Related Work

Nearly all the review of prior work as given in relevant published papers pro-

vides an overview of this research field in a method-by-method manner. Here

we summarize existing methods in a different way, classifying them as those

utilizing strong prior knowledge about the alterations that may exist in a re-80

captured image and those making a weak assumption about the consequence of

image recapturing. At the end of this section, we will also mention the main

data sets on which researchers test and compare their methods for recaptured

image detection.

2.1. Methods based on detection of specific alterations85

The first group of methods is based on strong prior knowledge about the

alterations that can be found in a recaptured image when compared to a single

captured one. It is worth mentioning that despite the computational difference

between a pair of single captured and recaptured images, according to two

subjective studies reported by Cao and Kot (2010) and Mahdian et al. (2015),90

human observers are not good at recognizing recaptured images in a single-

stimulus experimental setting, i.e., during subjective studies images are shown

one-by-one, as in real-world scenarios, but not in pair of corresponding single

captured and recaptured images.

One of the most important alterations is the blurriness. In general, the re-95

captured image looks smoother than the corresponding single captured image.

This is in part due to the limited spatial resolution of the LCD screen (i.e.,

content of a recaptured image), in contrast to the intrinsic continuous nature

of the physical world (i.e., content of a single captured image). However, this

blurriness remains rather natural and largely unnoticeable for human observers100

especially in a single-stimulus setting, as shown in the subjective studies men-

tioned above. Researchers have designed specific and distinctive features for

detecting blurriness alteration. Popular features include descriptors of high-

frequency coefficients in a transformed domain (Cao and Kot, 2010), a blind
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image smoothness measure borrowed from image quality assessment literature105

(Gao et al., 2010), histogram of image local difference (Ke et al., 2013), and

a feature combining edge spread width and the approximation error difference

of edge profiles under two sparse dictionaries learned from training samples of

single captured and recaptured images (Thongkamwitoon et al., 2015).

Another important alteration is the aliasing-like distortion. It is not un-110

common to introduce aliasing-like patterns into a recaptured image, especially

when the recapturing parameters are not carefully controlled. The main reasons

for this aliasing-like alteration include the periodicity of LCD cells, some rele-

vant properties such as the LCD polarity inversion and the periodic recharging,

as well as the interplay between the periodicity of LCD cells and that of the115

image sensor (Cao and Kot, 2010; Thongkamwitoon et al., 2015). One of the

popular features used to detect aliasing-like alterations is the well-known Local

Binary Pattern (LBP) descriptor originally propose by Ojala et al. (2002) for

texture classification. It has been demonstrated in (Cao and Kot, 2010) that

LBP is capable of capturing the subtle difference in fine local textures between120

single captured and recaptured images, and this difference is mainly due to the

aliasing-like patterns. Following this observation, Ke et al. (2013) make use of

a variant of LBP, the so-called Center-Symmetric Local Binary Pattern (CS-

LBP) (Heikkilä et al., 2009), for recaptured image detection. The aliasing-like

alteration can also be detected by using the cyclostationarity theory for which125

the basic idea is to check whether a signal has a high correlation with one of

its translated versions in the spectral domain (Mahdian et al., 2015), or by ex-

tracting discriminative features after applying a specific aliasing enhancement

algorithm (Li et al., 2015).

According to Thongkamwitoon et al. (2015), blurriness and aliasing are the130

two most important alterations that remain least dependent on the image con-

tent. In the same paper, the authors also show that if the recapturing param-

eters are properly chosen, the aliasing distortion can be largely decreased to a

nearly invisible level. This is actually the main motivation of their image recap-

ture detection method based on an edge sharpness feature to assess blurriness.135
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Other alterations can be introduced into a recaptured image. The first is

color alteration, which is mainly due to the specific and often limited color range

of LCD screens and to the different ambient lighting conditions when taking the

single captured and recaptured images. For recaptured image detection, dif-

ferent color descriptors have been considered, including color histograms (Gao140

et al., 2010), color moments (Cao and Kot, 2010; Ke et al., 2013; Ni et al., 2015),

color energy ratios (Cao and Kot, 2010), and chromaticity covariance matrix

(Gao et al., 2010). Second, researchers also make assumptions that single cap-

tured and recaptured images have different noise characteristics. Here the noise

mainly consists of display and camera noises, but in a general sense also includes145

the aforementioned aliasing-like distortion. Noise features for recaptured image

detection are typically derived from an estimate of the image noise (Yin and

Fang, 2012; Ke et al., 2013). Finally, an even stronger assumption is that sin-

gle captured and recaptured images exhibit different JPEG (Joint Photographic

Experts Group) compression artifacts (Yin and Fang, 2012; Ni et al., 2015; Li150

et al., 2015). However, this assumption is only occasionally valid, for example

when all images in a recapture forensics application are saved in JPEG format,

so in this case single captured images are compressed once, while recaptured

images can be considered as being compressed twice. When this assumption is

valid, researchers derive specific features of JPEG compression artifacts to iden-155

tify recaptured images (Li et al., 2015), or directly borrow features from JPEG

forensics literature, e.g., the one proposed in (Li et al., 2008), for detecting

recaptured images (Yin and Fang, 2012; Ni et al., 2015).

2.2. Method based on image statistics

The second kind of method is based on image statistics and makes a weak160

assumption about the consequence of image recapture. Such methods do not

aim at detecting specific and well targeted alterations that can be found in a

recaptured image, but they only assume that the recapturing process introduces

a subtle yet detectable deviation from the statistics of normal images. In a

general sense, the only requirement is that the adopted image statistics should be165
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discriminative enough to reflect the statistical difference between single captured

and recaptured images. For example, we can try the statistical models and

features described in the monograph of Hyvärinen et al. (2009).

However, in practice, generally it is not an easy task to find a strong im-

age statistical model that is suitable for image forensic tasks (Ng and Chang,170

2013). To our knowledge, only one image-statistics-based method, from Lyu

and Farid (2005), has been successfully applied for recaptured image detection.

The adopted statistics features are derived in a wavelet domain. The main fea-

tures are the statistical moments of wavelet coefficient prediction errors, while

the moments of wavelet coefficients, without any prediction, are also included175

in the feature vector. This feature vector leads to relatively satisfying forensic

performance for recaptured image detection, but still inferior to state-of-the-art

methods which aim at detecting specific image recapture alterations, as shown

in (Thongkamwitoon et al., 2015). In this manuscript, we will revisit the idea

of using image statistics for recapture forensics, and we will show that such180

methods, if well designed and even using very simple image statistics, can reach

comparable or slightly better performance than methods which attempt to de-

tect specific image recapture alterations.

2.3. Data sets

To our knowledge, there exist two publicly available, large-scale data sets185

of high-resolution and high-quality recaptured images for testing and compar-

ing methods of image recapture detection. The first data set is the database

constructed by Cao and colleagues at the Nanyang Technological University

(Cao and Kot, 2010; Cao, 2010) (hereafter referred to as ROSE database, with

“ROSE” being the name of the authors’ laboratory). It comprises 2776 recap-190

tured images and 2710 single captured images. Among these single captured

images, 2001 images were acquired by using 5 digital cameras from different

makers including Canon, Casio, Lumix, Nikon and Sony. The other 709 single

captured images consist of 601 high-resolution images downloaded from Inter-

net (e.g., from Flickr) and 108 high-quality tampered images. The comprised195
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recaptured images in ROSE database were acquired by using 3 cameras (Canon

Powershot, Olympus Mju and Olympus E500) shooting displayed single cap-

tured images on 3 LCD screens (Philips 19”, NEC 17” and Acer 17”). Thus

there are in total 9 different camera-LCD combinations for image recapturing.

The camera and environment settings (e.g., camera mode, lighting and camera-200

to-screen distance) were manually and empirically adjusted so as to ensure a

reasonably high quality of recaptured images. One interesting and important

feature of ROSE database is that it includes recaptured tampered images of

very high plausibility (see Fig. 1, top row, for some examples).

The second and more recent data set was constructed by Thongkamwitoon205

et al. (2015) from the Imperial College London (hereafter referred to as ICL

database). It comprises 1035 single captured images and 2520 recaptured im-

ages, but only part of the data is freely available on-line which includes 900

single captured images and 1440 recaptured images. 9 digital cameras from 6

makers (Kodak, Nikon, Panasonic, Canon, Olympus and Sony) were used for210

acquiring the single captured images of diverse indoor and outdoor scenes. Re-

captured images were obtained by using 8 cameras from 5 makers (Panasonic,

Nikon, Canon, Olympus and Sony) which shot displayed single captured images

on an NEC 23” LCD screen. Among these 8 cameras used for image recapture,

5 of them were previously used to acquire single captured images included in215

the same data set. In general, the recaptured images in the ICL database are of

even higher quality when compared to those in the ROSE database. The reason

is that the recapturing parameters (in particular camera-to-screen distance and

camera’s lens aperture) were carefully determined with convincing theoretical

justification, so that aliasing distortions have been largely reduced to a nearly220

invisible level (Thongkamwitoon et al., 2015) (see the original paper for details).

This is also the most striking feature of the ICL database.

We can see that both data sets include a large number of high-resolution and

high-quality single captured and recaptured images for which a variety of digital

cameras from different makers were used as image acquiring devices. The au-225

thors of the ROSE database also used multiple LCD screens from different man-
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ufacturers for image recapturing. The main difference between ICL and ROSE

databases resides in the adopted recapturing technique, which results in quite

different level of aliasing artifact in the recaptured images. Therefore, we can

consider that images comprised in either data set are comprehensive enough to230

represent images acquired by various digital cameras, either in a single captured

or recaptured setting. Furthermore and intuitively, single captured images from

the two data sets should have more or less similar statistical properties; however,

it can be expected that there is noticeable statistical difference between recap-

tured images from the ICL and ROSE databases since the adopted recapturing235

technique differs, which leads to different properties of the induced distortion.

Later in this manuscript, we will test our proposed method on these two popu-

lar databases and conduct comparisons with existing methods including the two

very recent algorithms from Li et al. (2015) and Thongkamwitoon et al. (2015).

The corresponding results, obtained under intra-database, inter-database and240

combined-database settings, demonstrate the effectiveness of our method and

provide us with useful insights for future working directions. More precisely, we

show that the assumption and the basic idea of our method (i.e., image recap-

turing, though possibly with slight technical differences, will introduce subtle

yet detectable image statistical alterations) are valid on the individual ICL and245

ROSE database as well as on a combined version of the two data sets.

3. Proposed Method

In this section, we will begin with a brief presentation of the motivations

and an overview of the proposed method for detecting recaptured images in

Section 3.1. Then, in Section 3.2 we provide the technical details of our method250

and attempt to explain the intuitions behind the design of the adopted image

statistics feature.

3.1. Motivations and overview

We have observed two current trends in the research of recaptured image

detection. The first trend is to combine features for detecting various alterations255
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that may be introduced by image recapture, as in (Ke et al., 2013; Ni et al.,

2015; Li et al., 2015). The combined feature is expected to be able to detect

all the considered alterations and thus has more chance to accurately classify

between single captured and recaptured images. In fact, combining features is

not a new idea, in the first influential work on recaptured image detection of260

Cao and Kot (2010), the authors already combine texture, blurriness and color

descriptors together to form a more powerful feature. The main drawbacks of

such methods are the potentially high computational complexity and the high

dimensionality of the combined feature.

The second trend is to make use of advanced machine learning tools to solve265

this classification problem between single captured and recaptured images, in

the hope of further boosting the forensic performance. The recent work of

Thongkamwitoon et al. (2015) uses sparse dictionary learning to obtain a dis-

tinctive feature of edges in the two kinds of images. This can actually be consid-

ered as an effective representation learning procedure to automatically obtain270

appropriate and distinctive features from single captured and recaptured images.

This dictionary-learning-based method has very good performance for detect-

ing recaptured images in which blurriness is the dominant alteration. However,

the sparse dictionary training is very time consuming according to a personal

communication with the first author of (Thongkamwitoon et al., 2015), even on275

a limited number of training samples. In addition, there are quite a few pa-

rameters whose values are empirically fixed in particular for the edge extraction

algorithm, and this, along with other factors, could lead to performance drop on

certain cases. Indeed, as demonstrated through our experiments presented in

Section 4, the edge profile dictionaries trained on full-sized images appear quite280

sensitive and give poor performance on cropped images from full-sized ones.

It is worth mentioning that all the methods following the two trends aim at

detecting one or several specific alterations due to image recapture. By contrast,

image-statistics-based methods do not make use of such strong prior knowledge

and are based on, to some extent, a rather generic statistics feature. Therefore,285

this kind of methods is expected to be conceptually simple and computationally
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efficient, without any heterogeneous feature combination or complicated learn-

ing procedure. In addition, image-statistics-based methods have more chance to

be capable of producing equally good results on either full-sized or cropped im-

ages, if the adopted image statistics feature is well designed and strong enough to290

describe the intrinsic difference between single captured and recaptured images.

For image-statistics-based methods, it is somehow surprising to see that

researchers focus on relatively complex statistical features in a transformed

wavelet domain (Lyu and Farid, 2005). In this manuscript, we would like to

go back to the origin of the idea of using image statistics for recapture forensics295

and attempt to accomplish this forensic task by using very simple yet well moti-

vated image statistics derived directly in the pixel domain. More precisely, for a

given image, we extract a feature vector consisting of simple pixel-wise correla-

tion coefficients in image differential domains. The extracted feature vector will

be demonstrated later to convey discriminative information for the task of re-300

captured image detection. Figure 2 illustrates the block diagrams of the training

and testing stages of the proposed forensic method. During the off-line training,

first of all, the aforementioned image statistics feature is extracted from a group

of single captured and recaptured images. Then, the extracted feature vectors,

along with the associated image labels (e.g., “0” for single captured ones and305

“1” for recaptured ones), are fed into a Support Vector Machine (SVM) (Cortes

and Vapnik, 1995) for training a recapture forensic detector. During the on-line

testing, for a given image, a feature vector is extracted from it and input to the

trained SVM classifier in order to get the forensic result of whether the given

image is a single captured or a recaptured one. It is worth noting that in our310

method, with a simple and quick feature extraction algorithm, forensic testing

on one image is computationally very efficient and can be done within a few

seconds. In the meanwhile, we can ensure that the off-line training stage can be

accomplished within a reasonable amount of time. These will be demonstrated

in Section 4 through comparative experimental results.315
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Figure 2: Block diagram of (a) the off-line training stage and (b) the on-line testing stage of

the proposed image recapture forensic method.

3.2. Image statistics feature

From the last subsection on the motivations of our work, we can summarize

the guide lines for the design and implementation of the to-be-proposed im-

age statistics feature as follows: The adopted feature should be discriminative

enough to reflect the difference between the two kinds of images under consid-320

eration, but should also be simple enough to be extracted from a given image.

In order to satisfy both constraints, we choose to compute simple statistics in

differential pixel domains, as detailed below.

3.2.1. Working in image differential domains

Concerning the requirement of being discriminative, ideally the feature should325

not be dependent on the content of the individual image, but only sensitive to

the difference between single captured and recaptured images. To this end,

a common strategy is to remove the image’s low-frequency component and in

consequence to make assumption that the discriminative information is hidden

in the high-frequency part of the image. This was actually the strategy fol-330

lowed by Lyu and Farid (2005) who extracted image statistics features from

high-frequency wavelet subbands. Different from their method which works in a

transformed domain, we choose to work directly in the pixel domain. This is in

part motivated by practical observations from the image forensics research, that
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is, when we want to detect an image modification introduced in a certain domain335

(e.g., in the pixel domain or in a transformed domain), it would be safe and

often advantageous to work in the same domain as the modification operation.

For instance, when a forensic analyst intends to detect contrast enhancement

via spatial-domain Gamma correction, it is very effective to work directly in the

pixel domain by studying the pixel value histogram (Stamm and Liu, 2010); by340

contrast, when we want to expose DCT (Discrete Cosine Transform) coefficients

quantization artifacts and even estimate the quantization step, it would be bet-

ter to work in the DCT domain by investigating the DCT coefficients statistics

(Fan and de Queiroz, 2003). In our case, we consider that recapturing digital

images from LCD screens is an operation that introduces alterations essentially345

in the spatial domain; at least it does not explicitly work in a transformed

domain. Therefore, we have the intuition that it would be beneficial to work

directly in the pixel domain when attempting to derive a discriminative image

statistics feature for recapture forensics.

More precisely, for a given image X of size M ×N , we first of all apply low-350

pass filtering on it using two simple filters, then we compute two residue images,

i.e., the difference between X and its low-pass filtered version. Formally, the

two residue images R(i), i ∈ {1, 2} are calculated as follows:

R(i) = trim
(
X−X ∗ f (i)

)
, (1)

where ∗ means mathematical convolution and the function trim(.) removes the

first row and column, as well as the last row and column, from the input image355

(explained later in the next paragraph). The two convolution kernels f (1) and

f (2) are given as

f (1) =


0 0 0

1
2 0 1

2

0 0 0

 , f (2) =


0 1

2 0

0 0 0

0 1
2 0

 . (2)

We can see that for a given pixel xj in X, the corresponding pixel value in

the residue image R(1) (respectively R(2)) measures the difference between the
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value of xj and the average value of its two horizontal (respectively vertical)360

neighboring pixels in X. These operations, to some extent, remove the image’s

low-frequency component that is much dependent on the image’s content but

not discriminative for the task of recapture forensics. From another point of

view, the residue images basically describe the edges and noises in the image,

respectively more or less related to the blurriness and aliasing-like alterations,365

and they might have quite different characteristics for single captured and re-

captured images. Therefore, from the residue images it would be possible to

extract a statistical feature which can expose multiple alterations in a recap-

tured image. One detail related to the boundary condition of the filtering is

that we only consider pixels in X that have complete neighboring pixels as re-370

quired by the filters given in Eq. (2). Therefore, the final residue images will

have two rows and two columns less than the original image, as reflected by the

trim(.) function in Eq. (1). We have attempted to use other filters (e.g., filters

measuring the mean of central pixel’s 4-connected von Neumann neighbors and

its 8-connected Moore neighbors) and have found that the two simple filters f (1)375

and f (2) yield slightly better forensic performance than others. Therefore, we

decided to use the two filters as given in Eq. (2) in the proposed image recap-

ture forensic method. A related discussion on filters, which may open interesting

future working directions, can be found later in Section 4.4.

The bottom row of Fig. 3 illustrates the visual appearance of the residue380

images (after proper post-processing as explained in the figure’s caption) for a

pair of single captured and recaptured images from ICL database. We can see

that the two residue images exhibit very different characteristics. First, in gen-

eral, in textured regions, the residue of a recaptured image has lower-amplitude

pixels than that of a single captured image, mainly due to the blurriness alter-385

ation (see and compare the regions corresponding to the trees and the temple).

Second, although in ICL database the aliasing-like distortion is well controlled

at an invisible level, such distortion can still be exposed in the residue of a re-

captured image (notice the periodic, strip-shaped pattern in the sky part). In

all, Fig. 3 implies that for the purpose of image recapture forensics, it would390
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Figure 3: In the top row we show a pair of single captured and recaptured images from

ICL database. Following Thongkamwitoon et al. (2015), we have converted the original color

images to grayscale before forensic analysis. In the bottom row are the corresponding residue

images R(1) of the two images in the top row. The two residue images have very different

characteristics due to alterations introduced by image recapture. For a better visualization,

we have taken pixel-wise absolute values of the residue images and performed thresholding at

15 (the range of pixel values in unfiltered images is from 0 to 255).

be relevant to derive an effective image statistics feature in pixel differential

domains as given by the residue images.

3.2.2. Pixel-wise correlation coefficient

The statistics feature is computed from R(i), i ∈ {1, 2} and the computation

is exactly the same for the two residue images. We keep in mind the require-395

ments of simplicity and discriminative capability of the feature and the fact

that we often need to find a good trade-off between the two requirements. The

simplest statistics of R(i) is the marginal distribution of residue values at in-

dividual pixels. However, as pointed out in (Ng and Chang, 2013), in general
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such simple marginal statistics is a weak feature and cannot provide satisfying400

forensic performance. Therefore, we need to use and compute a statistics fea-

ture somehow related to the joint distribution of values at different pixels in

a residue image. In this case, it is a natural idea to start with the pixel-wise

correlation coefficient (CC) between the residues.

More precisely, from a residue image R(i), we first of all extract all its over-405

lapping 5×5 patches denoted by P(1),P(2), ...,P(K) with K the total number of

extracted patches.1 The elements in each patch P(k) are denoted by p
(k)
i,j with

i, j ∈ {1, 2, 3, 4, 5} and k ∈ {1, 2, ...,K}. Then, we pick up the residue value with

the same index i, j from each patch and concatenate them together to form a

vector as Vi,j =
[
p
(1)
i,j , p

(2)
i,j , ..., p

(K)
i,j

]
, and in all we have 25 such vectors. Later,410

we compute the correlation coefficient ci,j between the vector corresponding to

the central pixel, i.e., V3,3, and all the 25 vectors. Specifically, we have

ci,j = ρ V3,3,Vi,j
=

∑K
k=1

(
p
(k)
3,3 − ¯p3,3

)(
p
(k)
i,j − ¯pi,j

)
√∑K

k=1

(
p
(k)
3,3 − ¯p3,3

)2√∑K
k=1

(
p
(k)
i,j − ¯pi,j

)2 , (3)

where ¯p3,3 and ¯pi,j are respectively the mean of the elements in V3,3 and Vi,j ,

and we have i, j ∈ {1, 2, 3, 4, 5}.

In practice, for each residue image R(1) and R(2), we can compute 25 cor-415

relation coefficient values and regroup them in a 5 × 5 matrix with i and j as

respectively the row and column index. The CC values for the two residue im-

ages are denoted by c→i,j and c↓i,j indicating that they correspond to respectively

horizontal and vertical residues. These CC values measure how the horizontal

or vertical residues, at different locations within a small local neighborhood of420

size 5× 5, are related to each other through second-order mixed statistical mo-

ments. We expect that the extracted CC values are sensitive to the alterations

1For the sake of simplicity, we drop, in the notation of patches, the index of residue image.

The feature extraction procedure is in fact the same for the two residue images. A brief

discussion on the influence of the patch size can be found later in Section 3.2.3 and some

relevant experimental results can be found in Section 4.1.
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Figure 4: Illustration of the patch extraction and the computation of pixel-wise correlation co-

efficients, taking c1,1 as example. The shaded elements in the matrix of correlation coefficients

are retained elements comprised in the proposed feature vector.

due to image recapture and exhibit different characteristics for single captured

and recaptured images. Figure 4 illustrates the procedure of extracting a matrix

of correlation coefficients from a residue image.425

We show, for ICL database, the average CC value matrix of c→i,j of all the

released 900 single captured images in Eq. (4) and that of 1440 recaptured

images in Eq. (5).

M̄
(ICL)
single =



−0.1697 0.0066 0.3743 0.0021 −0.1688

−0.3104 −0.0327 0.6965 −0.0338 −0.3112

−0.4237 −0.0972 1.0000 −0.0972 −0.4237

−0.3112 −0.0338 0.6965 −0.0327 −0.3105

−0.1688 0.0021 0.3743 0.0066 −0.1697


. (4)

M̄
(ICL)
recapture =



−0.2459 0.2079 0.5853 0.2160 −0.2358

−0.3348 0.2435 0.8129 0.2515 −0.3299

−0.3834 0.2253 1.0000 0.2254 −0.3834

−0.3299 0.2515 0.8129 0.2435 −0.3348

−0.2358 0.2160 0.5853 0.2079 −0.2460


. (5)
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The difference between the mean CC values extracted from the two kinds of im-430

ages implies the strong discriminative capability of the proposed image statistics

feature (see and compare the elements with the same index in the two matrices).

More precisely, the CC values between the central pixel and most neighbors in

the local 5 × 5 patch are noticeably higher for recaptured images than those

for single captured images, in particular for the elements in the second, third435

and fourth columns of the two matrices. This is understandable because c→i,j

are computed from the horizontal residue image R(1), and actually we have

the same observation for elements in the second, third and fourth rows in the

matrices of c↓i,j computed from the vertical residue image R(2) (for the sake of

brevity, here we do not show the results of c↓i,j). This CC value increase in440

recaptured images is probably due to the introduced blurriness effect. Another

interesting observation is that the CC values between the central pixel and dis-

tant neighbors, in particular those at the four corners of the CC value matrix,

in recaptured images are lower than those in single captured images, see and

compare the corner elements in Eqs. (4) and (5). This CC value decrease is445

probably caused by the aliasing-like distortion that is still present, although

invisible, in the recaptured images (see Fig. 3, right column). We think that

in this case the high-frequency aliasing-like distortion can reduce the similarity

between certain pairs of residues at distant pixels.

As shown above from the results on the ICL database in Eqs. (4) and (5),450

we observe a strong symmetry in the extracted matrix of CC values. In order

to remove redundancy and to reduce the negative impact of redundant features

during the SVM training, we only retain the CC values in the upper triangle

of the matrix. In addition, we also remove the central element from the matrix

which is always equal to 1 thus non-discriminative for the forensic classification.455

The retained correlation coefficients are illustrated as shaded elements in the

matrix of correlation coefficients on the bottom right corner of Fig. 4. In

consequence, we can obtain a 14-dimensional feature vector from each of the

two residue images. Therefore, the dimension of the final, concatenated feature

vector is 14× 2 = 28.460
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As mentioned in Section 3.1 and shown in Fig. 2, this 28-dimensional feature

is extracted from a large number of images (with ground-truth labels) for the

purpose of training the SVM-based forensic classifier, and later from one or

several test images (with unknown labels for the trained SVM-based classifier)

before forensic testing. The low dimensionality of the feature vector, along with465

its computational simplicity, allows us to efficiently extract features and perform

large-scale training and testing.

3.2.3. Discussion on technical choices

We choose to compute the correlation coefficient instead of the straight-

forward correlation still for the concern of being independent of the image’s470

content. In fact, it is easy to see that the straightforward correlation value de-

pends on the overall brightness of the image: Two images of the same scene but

of different brightness lead to quite different correlation values between residues.

By contrast, the computation of correlation coefficient incorporates a kind of

divisive normalization procedure, which makes the CC value independent of the475

amplitude of the input vectors.

We have also tried to build forensic detectors using patches of size 3 × 3

and 7 × 7 pixels. It is found that 3 × 3 patches lead to a slight performance

drop compared to 5 × 5 patches, probably due to the decrease of discrimina-

tive capacity caused by a smaller local neighborhood. In the meanwhile, 7 × 7480

patches result in a feature vector of almost twice of the dimensionality of that

of 5×5 patches, but the forensic performance remains more or less comparable.

One exception is the recapture forensics of very high-resolution images (e.g.,

with a width of 4096 pixels), for which 7 × 7 neighborhood has about 0.5%

higher forensic accuracy than 5× 5 neighborhood. This however can be under-485

stood, because in a very high-resolution image, neighboring pixels tend to have

very high similarity and it would be better to consider pixels in a larger local

window for better illustrating the statistical difference between single captured

and recaptured images. Nevertheless, in practice the 7× 7 neighborhood has a

considerable overhead of computational cost for extracting features from 7 × 7490
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patches (especially on very high-resolution images) and for SVM training due

to dimensionality increase. Considering all the above points, we choose 5 × 5

as the size of overlapping patches for feature extraction. Concrete experimental

results regarding different patch sizes will be given in Section 4.1.

More sophisticated statistical features have been considered during algorithm495

design and implementation, including higher-order mixed statistical moments

such as coskewness and cokurtosis, as well as the multiple correlation coefficient

between three or more variables (Abdi, 2007). However, we have observed that

the computation of higher-order statistics is much more time-consuming than

computing correlation coefficient while their inclusion in the feature vector does500

not lead to noticeable performance improvement. We have the same observation

for the multiple correlation coefficient. Hence, in order to keep a good balance

between algorithm simplicity and forensic performance, we only use correlation

coefficients as the image statistics feature in our method.

4. Experimental Results and Discussion505

In this section, we will present the experimental results of the proposed

method on two large databases of high-resolution and high-quality recaptured

images from LCD screens. We will also provide comparison results between our

method and a number of existing methods, including the very recent methods of

Thongkamwitoon et al. (2015) and Li et al. (2015). At the end of this section, we510

will present some discussions on the proposed method, which might inspire new

ideas of more effective methods for recaptured image detection. The proposed

method has been implemented in Matlab R©, and the source code of the statistics

feature extraction is freely shared on-line2.

4.1. Experiments on ICL database515

We will first of all focus on the experimental validation on ICL database

which, compared to ROSE database, is a more recent and more challenging

2Available at http://www.gipsa-lab.fr/~kai.wang/recap_feature_extraction.m
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database and comprises higher-quality recaptured images with almost invisible

aliasing distortions. The experiments were conducted on the released 900 single

captured and 1440 recaptured images. We will mainly compare our method520

with the method of Thongkamwitoon et al. (2015), to our knowledge the most

effective recapture forensic method on this database. In order to ensure a fair

comparison with their method, we have followed as closely as possible the ex-

perimental setting described in their original paper. More precisely, following

(Thongkamwitoon et al., 2015), we first converted the color images comprised in525

the database to grayscale3, and then all the grayscale images were rescaled while

keeping the ratio between height and width unchanged so that the resized ver-

sion has a width of 2048 pixels. Still following (Thongkamwitoon et al., 2015),

we keep the ratio between the number of images in the training set and that in

the testing set as 15:100. In the SVM-based classifier, we chose to use the pop-530

ular and effective RBF (Radial Basis Function) kernel. In addition, following

common guide lines from applied machine learning, the values of SVM hyper-

parameters were determined by using 5-fold cross validation on the training set.

Once the SVM-based forensic classifier is trained by using labeled images in

the training set, we test and report its forensic classification performance on535

the “unseen” images in the testing set. The forensic performance is evaluated

by using the classification accuracy (i.e., the percentage of correctly classified

images) of single captured images, recaptured images and all the images in the

testing set. In order to enhance the statistical significance of the obtained re-

sults, for each test of the proposed method we performed 50 runs, and for each540

run we had a different and randomly partitioned training and testing sets while

always keeping the ratio between the number of training and testing images

unchanged. At the end, we report the classification accuracy as the mean of the

3We use the Matlab R© rgb2gray function for converting color images to grayscale. Other

methods, possibly with different technical details (e.g., using different weighting factors for

three color channels), might be used. However, in order to reproduce results as close as

possible to those shown in this manuscript, we recommend using the rgb2gray function.
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results obtained from the 50 runs.

In the following, we will first of all show experimental results relative to545

different patch sizes considered for the computation of pixel-wise correlation

coefficients. We have tested the forensic accuracies for 3 × 3, 5 × 5 and 7 × 7

patches and the obtained results are presented in Table 1, under different image

resolutions (values in the first column) and along with the dimensionality of the

corresponding feature vector for patches of different sizes (given in parentheses550

of the second column). Here the image resolution means the width of rescaled

images before feature extraction mentioned in the last paragraph, and the con-

sidered values of this width include 2048 (value used by Thongkamwitoon et al.

(2015)), 3072 and 4096 pixels. As mentioned above, the classification accuracy

reported in Table 1 is the mean of the results obtained from 50 runs with random555

partitioning of training and testing sets. The highest forensic accuracies under

different image widths are highlighted in bold. From this table, it can be seen

that 5×5 and 7×7 patches always give very satisfying forensic results with over-

all classification accuracy all higher than 97.5% and sometimes as high as 99%.

A general observation is that when the width increases to 3072 and 4096 pixels,560

the performance decreases for 3 × 3 patches but increases for 5 × 5 and 7 × 7

patches. This is somehow expected because as the width increases neighboring

pixels tend to have an enhanced similarity; therefore in this case, a relatively

large patch size would be beneficial to comprise discriminative statistics features

for distinguishing between single captured and recaptured images.565

In all, it appears that 3 × 3 patches give acceptable results but are not

big enough to incorporate very strong and discriminative features for recapture

forensics, while 5×5 and 7×7 patches both yield very good results under all the

considered width values. When we make a choice between 5×5 and 7×7 patches,

we also consider their computational cost. As mentioned earlier, 7× 7 patches570

result in higher-dimensional features as well as more costly feature extraction

and SVM training. For example, the feature extraction on 7×7 patches is about

two times slower than that on 5× 5 patches. Therefore, in order to have a good

trade-off between forensic accuracy and computational cost, we choose to use
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Table 1: Comparison of feature dimensionality and classification accuracies (on single captured

images, recaptured images and all the testing images in ICL database) of our proposed forensic

detector under different image widths and using different patch sizes. Below, “dim.” stands for

“dimensionality” and “accu.” stands for “accuracy”. The highest accuracy (single, recapture

or overall) under a fixed image width is highlighted in bold.

Image width
Patch size

Accu. single Accu. recapture Overall accu.
(Feature dim.)

2048 pixels

3× 3 (10) 96.96% 97.80% 97.47%

5× 5 (28) 96.27% 98.62% 97.71%

7× 7 (54) 96.23% 98.38% 97.55%

3072 pixels

3× 3 (10) 96.46% 96.94% 96.76%

5× 5 (28) 98.59% 99.08% 98.89%

7× 7 (54) 98.72% 99.33% 99.09%

4096 pixels

3× 3 (10) 93.60% 98.11% 96.37%

5× 5 (28) 98.28% 98.77% 98.58%

7× 7 (54) 98.99% 99.01% 99.01%

5×5 patches in all subsequent experiments. It is worth pointing out that for the575

sake of a fair comparison with the method of Thongkamwitoon et al. (2015), we

will use the image width of 2048 pixels on the ICL database (under this width

5× 5 patches actually give the best overall accuracy of 97.71%), although when

we use a bigger width, our method, with 5 × 5 and 7 × 7 patches, has even

higher overall classification accuracies (all higher than 98.5%). It can also be580

noticed that the overall classification accuracies of all the considered patch sizes

and under the width of 2048 pixels are higher than that of the state-of-the-art

method of Thongkamwitoon et al. (2015) (compare the results given in Tables

1 and 2). This implies the high discriminative capability of the proposed image

statistics feature.585

Then we compare our method with a number of representative existing meth-

ods, including the pioneer method from Lyu and Farid (2005) that is based

on images statistics features extracted from the wavelet domain, the method

from Cao and Kot (2010) which combines multiple features, and the one from
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Thongkamwitoon et al. (2015) which attains until now the highest forensic ac-590

curacy on ICL database. The comparison results are presented in Table 2, from

which we can see that our method gives the best overall classification accuracy,

slightly higher than that of the state-of-the-art method of Thongkamwitoon

et al. (2015). Our method significantly outperforms the method of Lyu and

Farid (2005), which implies that for image recapture forensics it might be more595

suitable to extract image statistics features directly from the spatial domain

rather than from the wavelet domain (also see the discussion in Section 3.2.1).

The feature-combination-based method of Cao and Kot (2010) does not perform

very well on ICL database. As analyzed in (Thongkamwitoon et al., 2015), this

may be due to the fact that one of the features in the method of Cao and Kot600

(2010) is designed specifically for detecting aliasing alterations, while recap-

tured images in ICL database do not have very obvious aliasing-like distortions.

Therefore, in this case, this specific feature might become not that discrimina-

tive and result in a decrease in classification accuracy. At last, when compared

with the method of Thongkamwitoon et al. (2015), our method has a slightly605

lower accuracy on recaptured images but a higher accuracy on single captured

images, leading to a slightly higher overall accuracy than their method (97.71%

vs. 97.44%). This is a quite positive result considering the following two facts:

First, our image-statistics-based method makes a weak assumption on the image

recapture process while the method of Thongkamwitoon et al. (2015) makes use610

of strong prior knowledge of the blurriness effect present in the recaptured im-

ages; Second, our method has other good properties and advantages as detailed

in the following paragraphs.

Besides the slightly higher overall classification accuracy, when compared to

the state-of-the-art method of Thongkamwitoon et al. (2015), our method is also615

computationally more efficient and has better forensic performance on cropped

images from full-sized ones. We will in the first place present the experimental

results concerning the computational efficiency. In practical forensic scenarios, it

is important for a forensic detector to be fast in both the on-line testing stage and

the off-line training stage. The on-line testing stage is typically composed of two620
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Table 2: Classification accuracies of different forensic methods on single captured images,

recaptured images and all the test images in ICL database. Below, “accu.” stands for “accu-

racy”. The highest accuracy in each column is highlighted in bold. The results in the second

to fourth rows are extracted from (Thongkamwitoon et al., 2015).

Method Accu. single Accu. recapture Overall accu.

Lyu and Farid 87.56% 90.04% 89.09%

Cao and Kot 83.67% 92.02% 88.81%

Thongkamwitoon et al. 94.89% 99.03% 97.44%

Ours 96.27% 98.62% 97.71%

steps, i.e., feature extraction and the forensic classification. Table 3 shows, for

our method and the method of Thongkamwitoon et al. (2015), the comparison

results of the execution time of the on-line testing stage. The presented values

in this table are means of results collected from 200 images including 100 single

captured ones and 100 recaptured ones, and the experiments were conducted625

on a laptop equipped with an Intel R© i5 2.27 GHz CPU and 4 GB RAM. The

execution time of the method of Thongkamwitoon et al. (2015) were obtained

by using the authors’ Matlab R© source code shared on the Internet. From Table

3, we can see that our method is significantly faster, with an execution time per

image of about 2.93 seconds versus about 12.74 seconds for their method. It is630

difficult to quantitatively compare the execution time of the training stage as the

dictionary learning code of (Thongkamwitoon et al., 2015) is not available, but

it is safe to say that qualitatively our method is much faster than their method.

More precisely, there are 304 images used for training and for our method the

feature extraction from all these images takes about 15 minutes and the SVM635

training spends about 4 to 5 minutes, which leads to a total training time of

about 20 minutes. By contrast, for the method of Thongkamwitoon et al. (2015),

the feature extraction from 304 training images already takes about 50 minutes,

much longer than the total training time of our method. If we further include the

time-consuming step of dictionary learning, the training time of their method640

would be even longer. In all, it can be seen that our method is computationally
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Table 3: Comparison of the average execution time per image (in seconds) of the on-line

testing stage between our method and the method of Thongkamwitoon et al. (2015).

Method Feature extraction Classification Total

Thongkamwitoon et al. 10.2218 2.5226 12.7444

Ours 2.9303 0.0013 2.9316

much more efficient, and this efficiency is mainly due to the conceptual and

algorithmic simplicity of the proposed feature and its extraction.

Another advantage of our method is its good performance when trained on

full-sized images and later tested on cropped images of full-sized ones. Crop-645

ping is in fact commonly involved in the generation of recaptured tampered

images. For instance, the cropping operation is necessary to remove the LCD

frame (if any) from a recaptured image. It is also possible that creators of

tampered images crop a specific tampered part from a full-sized image, either

to eliminate visual clues present in the removed part that can be telltale of650

the image falsification, or to make the final tampered image more focused and

more plausible. Under this context, it would be beneficial if a forensic detec-

tor, after being trained on full-sized images, can provide reliable forensic results

on cropped testing images. This usually requires a good stability of the fea-

ture under full-sized and cropped images. Our method actually has such a good655

property. Table 4 presents, for our method and the method of Thongkamwitoon

et al. (2015), the testing results on cropped images extracted from the center of

the full-sized testing images in ICL database. We can see that the performance

of our method decreases gradually and gracefully as the cropping size decreases

and remains very satisfying for cropped images of size down to 256×256 pixels,660

which demonstrates the stability and discriminability of our feature. By con-

trast, the method of Thongkamwitoon et al. (2015) is very sensitive to cropping,

probably due to the limited generalization capability of the trained dictionaries

and the specific parameter setting used for edge extraction.
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Table 4: Comparison of the forensic accuracy on cropped images of different sizes between

our method and the method of Thongkamwitoon et al. (2015).

Method
Size of cropped images

1024× 1024 512× 512 256× 256 128× 128

Thongkamwitoon et al. 61.52% 61.89% 62.74% 54.10%

Ours 97.37% 95.97% 93.22% 87.75%

4.2. Experiments on ROSE database665

In this subsection, we briefly present the experimental results obtained on

ROSE database, a larger but seemingly less challenging database than ICL

database. ROSE database comprises 2710 single captured images and 2776

recaptured images. All the included images are of high resolution and high

visual quality, except for the fact that on one part of the recaptured images670

we can observe slightly visible aliasing-like distortions. In general, the aliasing

artifacts in ROSE database is stronger than those in ICL database, which makes

ROSE database somehow less challenging for forensic detection. However, one

striking characteristic of ROSE database is that it comprises a large number of

recaptured tampered images (some examples can be found in the top row of Fig.675

1). In order to convincingly illustrate that image recapture is indeed helpful in

enhancing the plausibility of a tampered image (also refer to explanations given

in Section 1), we show in Fig. 5 close-ups of an authentic image, a falsified

image, and the corresponding recaptured falsified image from an LCD screen.

It can be seen that image recapture is indeed useful to hide the unnatural and680

sharp transition near the border of a spliced subimage.

It is interesting to evaluate the performance of our method on ROSE database,

in order to see whether it can cope well with different kinds of alterations in

recaptured images (e.g., blurriness and weak or strong aliasing) and to check

its potential in practical applications of detecting recaptured falsified images.685

We will compare our method with that of Li et al. (2015), the most recent

method that reports detailed and very good results on ROSE database. Their

method is however based on strong assumptions of increased JPEG compression
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Figure 5: Close-ups of (a) an authentic image, (b) a tampered image in which a street lamp

has been spliced into the authentic image, and (c) the corresponding recaptured tampered

image from an LCD screen. The full-sized image of (c) is shown in Fig. 1, top-right corner.

We can more or less perceive unnatural transition near the border of the street lamp in (b)

while the close-up image in (c) is visually much more plausible. The blurriness effect in (c)

is in fact quite similar to “natural” blurriness, e.g., that introduced by out of focus of the

camera or hand trembling of the photographer when taking the picture.

artifacts and existence of aliasing-like distortions in recaptured images. When

conducting the experiments, we followed the description in (Li et al., 2015) and690

kept the ratio between the number of training and testing images as 5:1. We

have converted the color images in the database to grayscale and resized the

grayscale images to have a fixed width of 3072 pixels (instead of 2048 pixels

for ICL database because a large number of images in ROSE database have

a width very close to 3072 pixels and this technical choice leads to a slightly695

higher overall accuracy). The SVM hyper-parameters were determined by using

10-fold cross validation on training set, and we report mean forensic accuracies

of 10 runs on testing data, with different and randomly portioned training and

testing data sets for each run. Compared to ICL database, we increase the num-

ber of folds and decrease the number of runs mainly because ROSE database700

comprises more images than ICL database. Table 5 presents the experimental

results on ROSE database. In all, our method gives very good classification

accuracy results that are slightly higher than those reported in (Li et al., 2015).

This illustrates the very good discriminability of the proposed statistics feature

on different databases and with regard to different situations of image recap-705
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Table 5: Classification accuracies of the method of Li et al. (2015) and our method on ROSE

database. Below, “accu.” stands for “accuracy”. The results in the second row are extracted

from (Li et al., 2015).

Method Accu. single Accu. recapture Overall accu.

Li et al. 98.63% 99.27% 98.95%

Ours 99.00% 99.35% 99.18%

ture alterations, as well as the practical applicability of our method in detecting

recaptured tampered images.

4.3. Experiments on both databases

In this section, we will present the experimental results of our method

on images from both databases, either in an inter-database setting or in a710

combined-database setting. We first consider the very challenging scenario of

inter-database setting, meaning that we train a recapture forensic detector on

one database and test the performance of the trained detector on the other

database. In this series of experiments, in order to keep consistency, prior to

feature extraction all the images in ICL and ROSE databases are rescaled to715

have a width of 2048 pixels. The second and third rows of Table 6 present the

results of the two specific setups of this series of inter-database experiments, i.e.,

we train a classifier on the ICL database and test it on the ROSE database (sec-

ond row) and vice versa (third row). It can be seen that the performance is in

general poor, with a low overall classification accuracy. The obtained results are720

indeed interesting, with a relatively high accuracy in detecting single captured

images and a very low accuracy for detecting recaptured images. In particular,

when a detector is trained on ROSE database and tested on ICL database, we

can obtain a nearly perfect classification on single captured images and an al-

most 0% classification accuracy on recaptured images. Intuitively, the former725

can be attributed to the fact that the ROSE database comprises a large amount

of diverse single captured images, and these images are involved in the classifier

training and will help the classifier accurately identify this kind of images even
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Table 6: Classification accuracies of our method in inter-database and combined-database

settings. Below, “accu.” stands for “accuracy”. The pattern “databaseA → databaseB”

means that the classifier is trained on “databaseA” and later tested on “databaseB”. Therefore,

the second and third rows present results in the inter-database setting, while the last row

presents results in the combined-database setting.

Experimental setting Accu. single Accu. recapture Overall accu.

ICL → ROSE 80.34% 46.42% 63.18%

ROSE → ICL 99.14% 0.22% 38.26%

ICL+ROSE → ICL+ROSE 96.54% 98.16% 97.41%

on a different data set. The latter can be assumed to be related to the very low

strength of aliasing artifact on recaptured images from ICL database when com-730

pared to ROSE database, so that the forensic detector, which has been trained

on the ROSE database and which might use aliasing artifact as the most im-

portant clue for classification, will misclassify ICL recaptured images as single

captured ones. In addition, in order to well understand the obtained results, we

will in the following check the matrix of average correlation coefficients of the735

horizontal residues from the two databases as given in Eqs. (4) and (5) for ICL

database and in Eqs. (6) and (7) for ROSE database.

M̄
(ROSE)
single =



−0.1186 0.0614 0.3322 0.0705 −0.1159

−0.2502 0.0267 0.6549 0.0390 −0.2488

−0.3566 −0.0565 1.0000 −0.0564 −0.3565

−0.2489 0.0389 0.6549 0.0268 −0.2501

−0.1160 0.0704 0.3322 0.0614 −0.1184


. (6)

M̄
(ROSE)
recapture =



−0.0297 −0.0199 0.4367 −0.0213 −0.0336

−0.0934 −0.0587 0.6563 −0.0623 −0.0929

−0.1210 −0.2149 1.0000 −0.2149 −0.1210

−0.0928 −0.0622 0.6563 −0.0587 −0.0934

−0.0335 −0.0212 0.4367 −0.0200 −0.0298


. (7)

We can observe that CC values of single captured images from the two

databases are close to each other, especially for the elements in the second to740

fourth columns of the matrices (compare elements in Eqs. (4) and (6)), which

31



explains, to some extent, the relatively high classification accuracy on single

captured images even in the very challenging inter-database experiments. How-

ever, the alteration pattern between CC values of single captured and recaptured

images is quite different on the two databases. More precisely, on the ROSE745

database, CC values in the second and fourth columns are lower in recaptured

images than their counterparts in single captured images (compare these matrix

elements in Eqs. (6) and (7)), which is probably induced by the aliasing distor-

tion; meanwhile, elements in the first and fifth columns are higher in recaptured

images and we assume that this is due to the blurriness introduced by image750

recapture. Concerning the alteration pattern of CC values on ICL database,

as analyzed in Section 3.2.2, CC values from the second to fourth columns are

higher in recaptured images mainly due to the dominating blurriness alteration,

and CC values at the four corners are lower in recaptured images which might

be induced by the slight aliasing artifact. We assume that this difference in al-755

teration pattern of CC values is due to the different characteristics of introduced

distortion by quite different image recapturing techniques used to construct the

two databases, in particular the different strength of aliasing artifact. This can,

to some extent, explain the low classification accuracy on recaptured images in

the inter-database setting.760

It is worth mentioning that existing image recapture forensic methods also

fail under this very challenging inter-database setting. For example, the method

of Thongkamwitoon et al. (2015), when trained on ICL database and tested on

ROSE database, gives 66.95%, 26.89% and 46.67% respectively for accuracies

on single captured, recaptured and all images (all lower than the results of765

our method shown in the second row of Table 6). As mentioned above, we

believe that the encountered difficulty is mainly related to the different statistical

properties of recaptured images on the two databases and in a broader sense

related to the problem of a “mismatch” between the distribution of the training

data and that of the testing data, a common and open research problem for770

image forensics and for machine learning in general. This problem will be briefly

discussed in the last paragraph of this subsection.
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As shown and discussed earlier, our method has poor performance under the

inter-database setting because of a “mismatch” between data used for training

and those used for testing. A straightforward solution is to let the forensic775

detector see, during its training, some data similar to those that it will encounter

during testing. This is actually the motivation of conducting experiments under

the combined-database setting in which we use both ICL and ROSE images for

training and testing. In order to control the total time required for 10 runs of

experiments, for each run we randomly select 50% of the images in the combined780

data set for training and the remaining images for testing. The last row of Table

6 presents the classification accuracies under this combined-database setting.

All the three accuracies, respectively on single captured, recaptured and all

images, are very high. This implies that the proposed image statistics feature is

discriminative not only on the individual ICL and ROSE database which have785

different kinds of recapture distortions, but also very effective when we mix the

images in two databases together. In other words, the (loose) assumption and

basic idea of our method, i.e., image recapturing introduces subtle yet detectable

alteration of local image statistics, are valid for images from different sources

and obtained with different recapturing techniques. More precisely, there is790

nearly no overlapping in the feature space for the two kinds of images (i.e.,

single captured or recaptured) even we mix images from different databases,

as reflected by the very high classification accuracies given in the last row of

Table 6. This demonstrates the high discriminability of the proposed statistics

feature. In addition, like many machine-learning-based algorithms, including795

more data from different sources during the training stage is often beneficial

to find an accurate boundary between the decision regions here corresponding

respectively to single captured and recaptured images.

At last, we would like to point out that in fact an elegant and potentially

effective way to obtain improved performance under the inter-database setting800

is to derive and use an appropriate domain adaptation technique, either in

a supervised or in an unsupervised setting. Domain adaptation (Ben-David

et al., 2010) is an active research field in machine learning to solve problems
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encountered when applying a well trained model to perform classification of a

set of testing data which follow a different distribution from that of the data805

used for training of the model. The resolution of such problems in recapture

forensics, or in the field of image forensics in general, is out of the scope of this

manuscript and we would like to leave this interesting and open question, yet

having received little attention among the multimedia security community, as

an important part of future work.810

4.4. Discussion

To our knowledge, our method is the first in the literature that reports

consistently good forensic results on the two existing popular and large-scale

databases of high-resolution and high-quality recaptured images. The proposed

image statistics feature appears to be discriminative enough to be able to well815

detect recaptured images of different properties, e.g., with or without visible

aliasing-like distortions as comprised in the two databases.

If we take a close look at the proposed feature, we will have the intuition

that it is closely related to the multivariate Gaussian model for local image

statistics in the pixel differential domain. In fact, a multivariate Gaussian is820

completely determined by its mean vector and co-variance matrix. As argued

and observed in many references, e.g., in (Hyvärinen et al., 2009), the pixel

means in a differential domain are very close to zero, therefore the co-variance

matrix is the more informative parameter of the multivariate Gaussian model

when using it to describe local image statistics. What we include in our feature825

vector is not exactly the co-variance matrix, but is closely related to it and

can be considered as a simplified version of it. More precisely, if we compute

all the pair-wise co-variances within 5 × 5 patches, we will obtain a 25 × 25

matrix, and to some extent we can say that our feature vector only comprises

14 elements of this matrix (after proper normalization). This simplification830

is reasonable because of the redundancy in the co-variance matrix and some

intrinsic properties of local image statistics (e.g., the approximate translation

invariance). In all, loosely speaking, our forensic method makes an implicit

34



assumption of multivariate Gaussian model for the pixel values’ statistics in the

residue images. Following this research line, it would be interesting to attempt835

to use more sophisticated and more accurate (non-Gaussian) image statistics

models, such as those described in (Hyvärinen et al., 2009), for the purpose of

image recapture forensics.

Another promising research direction, also closely related to image statistics,

is the derivation of a kind of optimal filter(s) used for transforming to image840

differential domain(s). We tried in this work a set of different filters for being

used in Eq. (1) and found that the simple filters in Eq. (2) gave the best

results among the tested candidates (also see discussion in the paragraph below

Eq. (2)). In the literature of natural image statistics research, such filters have

been optimized for maximizing the variances or sparseness of the filtered results845

(Hyvärinen et al., 2009), for example in an attempt to model the functional

mechanism of visual cells in human brain. One interesting question would be

the following: Would it be possible to find one or several optimal filters that

lead to optimal classification accuracy of image recapture forensics? Studies on

this question, along with the use of more sophisticated image statistics models850

as described above, appear to be a very promising future working direction.

5. Conclusion

In this manuscript, we presented an image-statistics-based method for de-

tecting recaptured images. Different from the current trend of developing more

and more sophisticated recapture forensic methods by either combining multiple855

features or using complex machine learning tools, our method is conceptually

simple and computationally efficient. More precisely, we revisited the idea of

using image statistics for recapture forensics and proposed very simple local im-

age statistics of second-order mixed moments in pixel differential domains. The

feature extraction procedure is extremely simple and very fast, and the corre-860

sponding forensic detector can successfully accomplish the task of distinguishing

between single captured and recaptured images on two large databases compris-

35



ing high-resolution and high-quality recaptured images from LCD screens. Our

method achieves slightly higher classification accuracy when compared with

state-of-the-art methods, while remaining very simple, fast and stable.865

Concerning future work, as mentioned in Section 4.4, we would like to use

more advanced and more accurate image statistical models and to optimize

the coefficients in filter kernels for better image recapture forensics. Another

interesting future working direction is to use the proposed recaptured image

detection algorithm in closely related practical applications. In particular, it870

would be interesting to integrate our recapture forensic method in a biometric

authentication system as an important part of the spoofing detection module

(Menotti et al., 2015), e.g., for detecting spoofing attacks in which an attacker

attempts to deceive an iris, face or fingerprint authentication system by showing

to the system a recaptured image of biometric trait of an authorized person.875

Finally, we plan to study the domain adaptation technique in order to facilitate

the practical deployment of image recapture forensic detectors.
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