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SUMMARY

This paper presents a real-time MPC-based tracking strategy for linear systems subject to time-varying
constraints. The framework is quite general because the time-varying constraints can apply both to the state
and to the input. To handle the problem, a polytopic invariant set computed off-line is homogeneously dilated
or contracted on-line to fit the polytopic time-varying constraints. The invariant set is used as an admissible
terminal constraint set so that it guarantees stability and convergence in the tracking task. The on-line cost of
the homothetic invariant set computation is low enough to cope with systems subject to stringent real-time
constraints. Copyright © 2015 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Model predictive control (MPC) has been well-admitted, for the past 50 years, as a suitable solution
to deal with multi-variable constrained control problems and also to deal with robustness in presence
of model uncertainties and noise [1, 2]. Feasibility of the optimization problem and stability of the
control law have been major issues. Regarding the feasibility, the inherent trade-off between finite-
horizon and constraints of MPC-based techniques raises challenging problems [2, 3]. In particular,
when it comes to MPC-based tracking, such a trade-off may prevent the reachability of the reference
due to loss of feasibility of the MPC problem [4]. As far as stability is concerned, several approaches
have been proposed to provide some guarantees. The consideration of invariant sets as terminal
constraint is one of the most popular. Indeed, the strategies based on invariant sets allow to guarantee
convergence towards the origin by implicitly extending the prediction horizon to infinity without
any substantial increasing of the on-line computational cost. The computation of the invariant sets,
which are usually polytopes or ellipsoids, is performed off-line [5–7].

Despite the effervescence of works dealing with MPC, only few ones address the problems under
time-varying constraints. As some exceptions, we can mention the following contributions. Time-
varying constraints that apply to the input and the output have been incorporated in the approach
proposed by Bemporad et al. [8, 9], known under the name explicit model predictive control. How-
ever, the time-varying constraints are required to be fully known a priori. The controlling sequences
must be computed off-line for all the possible variations of the constraints. Hence, the implemen-
tation of the MPC requires a massive storage capacity. Time-varying constraints have also been
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considered in the work [10] wherein an extension of the output feedback model predictive control
is proposed to cope with the time-varying case. This approach is based on a stable state estimator
and a robust tube-based MPC which is solved on-line, unlike the previous aforementioned tech-
nique. However, the existence and the knowledge of a common invariant set satisfying the states and
inputs constraints for all the time instants is required. More recently, Wada et al. [11] addressed the
feasibility and stability issues related to an MPC-based tracking problem for LTI systems with time-
varying constraints, more specifically time-varying input saturation levels. In [11], on-line LMIs
optimization problems are involved in the design of a gain-scheduled feedback control law, that is,
a feedback gain that depends on the time-varying saturation level of the input. However, solving
on-line the LMIs may be unaffordable for real-time applications. Finally, let us stress that some well-
admitted MPC-based tracking formulations can be very effective for time-invariant constraints, but
cannot be suited to cope with time-varying ones. It is precisely the case for the MPC-based tracking
strategy presented in [4], which benefits from a larger domain of attraction than the standard MPC
formulation, but time-varying constraints are not allowed.

All in all, the consideration of time-varying constraints is still challenging when we are concerned
with efficient MPC approaches compatible with real-time applications. This paper contributes to
go further regarding such an issue. The objective is two-fold. It aims at providing a solution to the
tracking problem for LTI systems subject to time-varying constraints. Besides, it aims at designing
a control with low computational cost to allow for real-time applications. To enforce stability, the
standard MPC-based tracking strategy [1, 3, 12] is used with the invariant terminal set constraint
approach. The problem of the standard approach lies in that the computation of the invariant set
becomes intricate when considering time-varying constraints. Indeed, if the constraints change in
time, the invariant set is also time-varying and, so, must be recomputed on-line. And yet, when
real-time applications are sought, it is far from being computationally affordable.

As a clue to tackle this problem, we propose in this paper an approach based on a homothetic
transformation which consists in a contraction/dilatation of a predefined invariant set previously
computed off-line. Such a transformation allows to fit on-line the time-varying constraints. The
invariant set and the time-varying constraints are both admitting polytopic representations. The
resulting parameter-dependent invariant set is an admissible terminal constraint for the MPC
problem and guarantees asymptotic stability. Because the homothetic transformation is merely char-
acterized by the dilating/contracting factor required to fit the constraints, the computational cost for
the on-line procedure boils down to the calculation of such a factor, and thus, the MPC becomes suit-
able for real-time applications despite the time-varying constraints. Let us note that a very particular
case of this approach has been presented in [13] for an application to low-consumption vehicles.

This paper is organized as follows. In Section 2, preliminaries on MPC tracking are recalled
for LTI systems. In Section 3, the time-varying MPC algorithm is detailed and the conditions
to guarantee stability are given. In Section 4, a numerical example is given to clarify the tech-
nical parts. In Section 5, the MPC tracking under time-varying constraints is developed for
a real-time application involving an electric vehicle. Finally, Section 6 draws conclusions and
proposes perspectives.

2. TRACKING MODEL PREDICTIVE CONTROL

2.1. Problem statement

Before addressing the time-varying case, let us recall some background on the issue of MPC-based
tracking for LTI discrete-time systems under time-invariant constraints on the input and the state.
Consider the linear system with state-space description

x.k C 1/ D Ax.k/C Bu.k/; (1)

where x.k/ 2 Rn is the state, u.k/ 2 Rm is the control input, A 2 Rn�n is the dynamical matrix
and B 2 Rm�n is the input matrix. The pair .A;B/ is assumed to be stabilizable, that is, 9K s.t.
.ACBK/ is Schur stable. The state is assumed to be accessible, that is, x.k/ is fully known at each
time k. The system (1) is assumed to be subject to constraints on the input and the state, that is,
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x.k/ 2 X; 8k > 0;
u.k/ 2 U; 8k > 0;

(2)

with X a convex and closed subset of Rn and U a convex and compact subset of Rm.
Define the tracking errors �x.k/ 2 Rn D x.k/ � Nx and �u.k/ 2 Rm D u.k/ � Nu around the

steady-state targets Nx 2 Rn and Nu 2 Rm ( Nx and Nu are solutions of (1), i.e. Nx D A Nx C B Nu). The
dynamics of the tracking error is given by

�x.k C 1/ D A�x.k/C B�u.k/; (3)

with tracking constraints defined 8k > 0 as

�x.k/ 2 X�;

�u.k/ 2 U�;
(4)

where X� is a convex and closed subset of Rn and U� is a convex and compact subset of Rm. Both
subsets are assumed to be polytopic sets containing the origin in their interior, that is, 0 2 int.X�/
and 0 2 int.U�/, hence Nx 2 int.X/ and Nu 2 int.U / (int.�/ denotes the interior of the set. The
polytope X� is described by

X� D ¹�x 2 Rn W HX��x 6 N1º; (5)

which is the hyperplane representation of the polytope X�, with HX� 2 RpX��n and N1 2 RpX�
is the ones vector N1 D Œ1; : : : ; 1�T . The scalar pX� is the number of facets of the polytope X� and
corresponds to the number of rows in HX� . The polytope U� is also represented by a hyperplane
representation as

U� D ¹�u 2 Rm W HU��u 6 N1º; (6)

with HU� 2 RpU��m and N1 2 RpU� . The scalar pU� is the facets number of the polytope
U�. Let us note that polytopic representations are very handy to deal with linear constraints often
encountered in practical applications [7].

The aim of the control law is to reach the steady-state targets Nx and Nu while fulfilling the
constraints (4). That amounts to solving on-line the following open-loop problem:

min
�u.k/;:::;�u.kCNp�1/

Np�1X
iD0

�
�xT .k C i/Q�x.k C i/C�uT .k C i/R�u.k C i/

�
C�xT .k CNp/P�x.k CNp/;

s:t: �x.k C i C 1/ D A�x.k C i/C B�u.k C i/; 8i D 0; : : : ; Np � 1;

�x.k C i/ 2 X�; 8i D 0; : : : ; Np � 1;

�u.k C i/ 2 U�; 8i D 0; : : : ; Np � 1;

�x.k CNp/ 2 Xf ;

(7)

with Np as the prediction horizon and Xf the terminal (closed) set of feasible final states. The
positive semi-definite weighting matrix Q 2 Rn�n and the positive definite weighting matrix R 2
Rm�m define the state and the input tracking costs, respectively. The matrix P 2 Rn�n defines the
terminal cost.

From [1–3], it is well known that to enforce stability and convergence towards the origin, it is
sufficient to set the terminal cost positive definite matrix P as the solution of the Riccati equation
that solves the infinite-horizon LQR problem for the system (1), with weighting matrices Q and
R. In addition, the tracking terminal set Xf must be designed to be a controlled invariant set in
the neighbourhood of the origin, under the Linear-quadratic regulator (LQR) feedback gain denoted
here with K. Indeed, the constraint on the terminal set ensures that, after Np steps, the predicted
state reaches the terminal set. Because such a set is invariant, if the infinite horizon LQR control
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gain is applied, the convergence towards the origin is guaranteed. Actually, the MPC consists in
delivering, at each time k, the input �u.k/, that is, the first sample of the optimal input sequence
resulting from the solution of (7). At time kC1, a new open-loop optimal control problem is solved.
The following subsection recalls some background on the design of the terminal invariant set Xf .

2.2. Invariant terminal set design

The following procedure corresponds to the standard procedure (e.g. [7]) to design the maximal
invariant set but is particularized for the tracking problem (7). This procedure will become handy in
the perspective of the tracking with time-varying constraints as it will be detailed in Section 3.

Let us define the closed-loop system

�x.k C 1/ D .AC BK/�x.k/ (8)

obtained from (3) and the stabilizing feedback control law �u D K�x. The gain K is derived
from P, that is, from the solution of the Riccati equation related to the infinite-horizon stabilization
problem for system (3) with the quadratic cost weighting matrices R and Q involved in (7).

Let us now define the closed-loop constraints for (8) as

X� D ¹�x 2 Rn W �x 2 X�; K�x 2 U�º; (9)

where X� and U� are given as in Subsection 2.1. The constraints (9) can be equivalently
rewritten as

X� D X� \X�u.U�/; (10)

where

X�u.U�/ D ¹�x 2 Rn W K�x 2 U�º: (11)

The tracking constraints X� and U� in (4) are assumed to be polytopic. Hence, the closed-loop
constraints (9) can be expressed as a convex polytopic set containing the origin in its interior. As a
result, X� can be described by a hyperplane representation with complexity-index pX 2 N (i.e. pX
is the number of facets of the polytope in the hyperplane representation):

X� D ¹�x 2 Rn W HX��x 6 N1º; (12)

where

HX� D

�
HX�

HU�K

�
; (13)

with HX� 2 RpX�n and N1 2 RpX being the ones vector N1 D Œ1; : : : ; 1�T . The matrices HX� 2
RpX��n and HU� 2 RpU��m are the matrices of the hyperplane representation of the tracking
constraints X� and U�, respectively, with pX� and pU� as the number of facets in each one.

Now, let us recall the definition of an invariant set for the LTI discrete-time system (8). The
definition is borrowed from the general definition given in [14] or [7] for example.

Definition 1
A closed and convex set � � Rn with 0 2 int.�/ (i.e. � is a C-set) is said to be a positively
invariant set for the system (8) under (tracking) constraints X� given in (9), if for all �x 2 � then
.AC BK/�x 2 �, being � � X�.

Otherwise stated, for all �x.k/ 2 �, that is, for any state �x.k/ which has reached �, it holds
that �x.k C i/ 2 � for all i > 0 or equivalently that the state can no longer escape from �. The
notion of positively refers to the fact that only the future states satisfy x.kCi/ 2 �, that is, to i > 0.
Hereafter, the positively invariant sets will be merely called invariant sets for brevity, because only
the positive invariance will be considered.
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Because X� is a bounded polytope with the origin in its interior and A C BK is Schur stable,
then the maximal invariant set � in X� is also a convex polytope [5]. For convenience, the set � is
considered to be described by its vertex representation

� D

´
�x 2 Rn W �x D V�w;

p�X
iD1

w.i/ D 1; w.i/ > 0; 8i
μ
; (14)

where V� 2 Rn�p� is the matrix whose columns are the vertices of �, w 2 Rp� , and p� is the
complexity index (number of vertices in the vertex representation) of the polytopic invariant set �.
Each i-th column in V� is the i-th vertex of the polytope �.

To determine�, we can resort to the backward iterative algorithm (see [7, 14] for further details).
It is an iterative procedure described by

X��k�1 D ¹�x 2 X� W .AC BK/�x 2 X��k º: (15)

In other words, the pre-images of X� obtained from the inverse dynamics of (8) are successively
backward computed and trimmed to get the largest polytopic invariant set included in X�. To clarify
such an algorithm, let us consider the following example.

Example 1
Consider the system x.k C 1/ D Ax.k/C Bu.k/ with

A D
�
0:9 0:25

�0:25 0:9

�
; B D

�
0:5

2

�
; (16)

and tracking constraints X� and U� given by

HX� D

2
6664
6:6667 0

0 20

�5 0

0 �12:5

3
7775 ; HU� D

�
100

�100

�
: (17)

The constraints X� corresponds to �0:2 6 �x1 6 0:15 and �0:08 6 �x2 6 0:05, and
the constraints U� to �0:01 6 �u 6 0:01. The weighting matrices of the MPC problem
(7) are Q D Œ1 0I 0 1� and R D 30. The solution of the infinite-horizon problem is P D
Œ4:6534; 0:5613I 0:5613; 3:0237� and the corresponding gain is K D Œ�0:0343;�0:1478�. The
matrix HX� defined as in (13), which characterizes the closed-loop system constraints X� given by
(12), reads

HX� D

2
666666664

6:6667 0

0 20

�5 0

0 �12:50

�3:4304 �14:7758

3:4304 14:7758

3
777777775
; (18)

with complexity-index pX D 6. The polytopic constraints X� and X� are depicted on Figure 1.
The figure clearly shows that X� is a subset ofX�, and it is in accordance with (10). The successive
polytopes X��k�1 are depicted in grey dotted lines in Figure 2. The largest invariant set is found
after five steps and is portrayed in solid line in Figure 2. The resulting invariant set � is given by
the following vertex representation, the complexity-index being p� D 12:
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Figure 1. Dashed line, constraints X�; dash-dotted line, constraints X�.

Figure 2. Grey dashed lines, pre-images of X�; solid line, final invariant set �.

V� D

2
666666666666666666666666664

0:1500 0:0329

0:0993 �0:0800

�0:0928 0:0194

0:0531 �0:0800

0:0761 0:0500

�0:0621 0:0500

�0:0785 0:0413

�0:0996 �0:0446

�0:1010 �0:0211

0:1257 �0:0661

0:1485 �0:0311

0:1500 �0:0238

3
777777777777777777777777775

T

: (19)

The calculation of the invariant set can be computationally demanding. However, for time-
invariant constraints, the invariant set is computed only once and off-line [5–7]. On the other hand,
if the constraints vary in time, the invariant terminal set must be recomputed on-line to solve the
MPC problem (7). Let us stress that making such sets to be time varying can be a solution to
cope, for example, with feasibility purposes. Indeed, the larger the sets, the greater the feasibility
region. Nevertheless, the on-line recomputing of the invariant set is often restrictive if hard real-
time constraints must be faced. The aim of the next section is to propose a solution to handle such
a problem.
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3. TIME-VARYING TRACKING MODEL PREDICTIVE CONTROL

3.1. Problem statement

Let us consider the MPC-based optimal tracking problem (7) for the system (1) with tracking time-
varying constraints verifying 8k > 0

�x.k/ 2 X�.k/ � Rn;

�u.k/ 2 U�.k/ � Rm:
(20)

The notation .k/ reflects that the control input and the actual state are constrained within sets which
might be changing in time.

The objective is to steer the tracking error to the origin while fulfilling the constraints (20) with
an MPC-based strategy. The open-loop problem (7) turns into

min
�u.k/;:::;�u.kCNp�1/

Np�1X
iD0

�
�xT .k C i/Q�x.k C i/C�uT .k C i/R�u.k C i/

�
C�xT .k CNp/P�x.k CNp/;

s:t: �x.k C i C 1/ D A�x.k C i/C B�u.k C i/; 8i D 0; : : : ; Np � 1;

�x.k C i/ 2 X�.k/; 8i D 0; : : : ; Np � 1;

�u.k C i/ 2 U�.k/; 8i D 0; : : : ; Np � 1;

�x.k CNp/ 2 Xf .k/;

(21)

with Np;Q;R and P defined as in Subsection 2.1.
To ensure stability, convergence of the tracking error to zero and recursive constraints satisfac-

tion, we propose to define the time-varying terminal (closed) set Xf .k/ of feasible final states as
a parameter-dependent invariant set for the system (8) under time-varying constraints (20). It will
be denoted hereafter N�.k/. Having in mind the real-time efficiency as a main priority, the point is
that simplicity of implementation must be preserved. And yet, as previously shown, obtaining an
invariant set is computationally demanding. Let us note that, in particular, the complexity index
of the polytopic constraints may also vary in time. A method to compute N�.k/ is proposed in the
subsequent discussion and benefits from an ease of real-time implementation while preserving the
stability and convergence properties.

Following (9) for the time-invariant case, the input and the state have to satisfy �u D K�x 2
U�.k/ and �x 2 X�.k/. This is equivalent to �x 2 X�.k/ with

X�.k/ D ¹�x 2 Rn W �x 2 X�.k/; K�x 2 U�.k/º D X�.k/ \X�u.U�.k//; (22)

where X�u.U�.k//, similarly to (11), is given by

X�u.U�.k// D ¹�x 2 Rn W K�x 2 U�.k/º: (23)

The following assumptions will be considered in the sequel.

Assumption 1
The steady-state targets Nx.k/ and Nu.k/ are assumed to be available on-line. Furthermore, the tar-
gets Nx.k/ and Nu.k/ are considered to remain constant within the prediction horizon Np , that is,
Nx.k C i/ D Nx.k/ and Nu.k C i/ D Nu.k/ for i D 0; : : : ; Np .

Remark 1
The assumptions made on the available knowledge of the future constraints can affect substantially
the feasibility of the solution. This work does not focus on the problem of ensuring recursive fea-
sibility. To our opinion, this problem is not solvable for the general case with partial information
of the future behaviour of the constraints. Thereby, we pose the following assumption (Assumption
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2) on the on-line available knowledge. The results could be easily adapted to the cases of different
assumptions on the knowledge of future constraints. Further research efforts might be directed to
the problem of characterizing the conditions under which feasibility can be guaranteed.

Assumption 2
The time-varying constraints sets X�.kC i/ and U�.kC i/ are available on-line for i D 0; : : : ; Np
and are considered to remain constant within the prediction horizon Np .

Assumption 3
The time-varying constraints sets X�.k/ and U�.k/ are assumed to be convex and compact poly-
topes that contain the origin in their interior, for all k. X�.k/ and U�.k/ are represented by
hyperplane representations given by HX�.k/ and HU�.k/, respectively.

As a result, similarly to the time-invariant constraints case, the polytopic constraints X�.k/ are
represented by the following hyperplane representation

X�.k/ D ¹�x 2 Rn W HX�.k/�x 6 N1º; (24)

where HX�.k/ 2 RpX .k/�n; N1 2 RpX .k/; pX .k/ the complexity index of the polytopic constraints
X�.k/ at time k and

HX�.k/ D

�
HX�.k/

HU�.k/K

�
: (25)

3.2. Homothetic transformation of the invariant set

As a clue to tackle the aforementioned problem, we are given off-line a set O� � Rn defined as
an invariant set for the system (8) and admitting a polytopic description. The main idea consists in
defining an on-line homothetic transformation, centred in the origin, to obtain a homothetic copy
of the invariant set O� at each time k. This homothetic transformation is characterized by a factor
˛.k/ 2 R, such as the resulting convex invariant set N�.k/ D ˛.k/ O� � Rn is an invariant set for
the system (8) under convex polytopic constraints X�.k/. Let us stress that, because X�.k/ and O�
are convex sets, the homothetic transformation always exists.

Remark 2
The stability does not depend on the feature of the invariant set O�. It holds for any invariant set for
the system (1). The feature can be chosen to meet specific characteristics all along the homothetic
transformations. In practice, the choice can be made according to some heuristics specifying whether
the invariant set should be centred or not around the origin, symmetric or not, admitting a prescribed
number of vertices and so on. The invariant set O� can be designed from nominal constraints OX� and
OU� conveniently chosen according to those specifications.

Similarly to the vertex representation (14), the set O� is given by

O� D

´
�x 2 Rn W �x D V O�w;

p O�X
iD1

w.i/ D 1; w.i/ > 0; 8i
μ
; (26)

where V O� 2 Rn�p O� is the vertices array

V O� D
h
v1 v2 : : : vp O�

i
; (27)

and each column vj 2 Rn; j D 1; : : : ; p O�, in V O� is the j-th vertex of the polytope O�. Besides,
w 2 Rp O� , and p O� is the complexity index (number of vertices in the polytope) of the invariant
set O�.

Consider Pi .k/ as the i-th hyperplane given by the i-th facet of X�.k/ in (24), that is,

Pi .k/ D ¹�x 2 Rn W Hi .k/�x.k/ D 1º; (28)
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Figure 3. Solid line, polytopic invariant set O�; dashed line, homothetic copy of O� at time k; dash-dotted
line, polytopic constraints X� at time k; ˇ.i;j /vj , homothetic vector of vj (along the dotted vectors) with

factor ˇ.i;j / at time k (time index k not reported).

where Hi .k/ 2 R1�n is the i-th row in HX�.k/, with i D 1; : : : ; pX .k/. Then, given a vertex
vj 2 Rn .j D 1; � � � ; p O�/ in (27), such that the scalar Hi .k/vj is non-zero, there exists a scalar
ˇ 2 R such that ˇvj belongs to the hyperplane Pi .k/ (Figure 3). This non-zero scalar verifies

Hi .k/ˇvj D 1: (29)

Hence, it holds that ˇ is indexed by i; j and k and satisfies

ˇ.i;j;k/ D
1

Hi .k/vj
: (30)

The following remark guarantees the existence of such a quantity.

Remark 3
At each time k, because X�.k/ is assumed to be convex and compact, then for each vj ; j D
1; : : : ; p O�.k/, there exists at least one Hi .k/; i D 1; : : : ; pX .k/, such that ˇ.i;j;k/ is positive.

For the polytopic sets O� and X�.k/, define the following strategy

˛.k/ D min
®
max¹0; ˇ.i;j;k/º; i D 1; : : : ; pX .k/; j D 1; : : : ; p O�

¯
: (31)

Such a strategy delivers at each time k a contracting or a dilating factor, such as the set N�.k/ D
˛.k/ O� � X�.k/ is the largest ‘copy’ of O� contained in X�.k/ up to an homothetic factor ˛.k/.

Proposition 1
The convex polytope ˛.k/ O� under the strategy (31) is an invariant set for the system (8) under
time-varying constraints X�.k/.

Proof
Because O� is an invariant set for (8), then ˛.k/ O� is also an invariant set for (8) the in absence
of constraints, in virtue of the invariance properties for linear systems ([7]). In addition, because
˛.k/ O� � X�.k/, then ˛.k/ O� is also an invariant set for (8) under constraints X�.k/ in virtue of
Definition 1. �

Then, we have the final result.

Corollary 1
The control law given by the solution of (21) with Xf .k/ D ˛.k/ O� and ˛.k/ defined as in (31),
guarantees the convergence and the stability of �x around the origin.
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Proof
It is a straightforward consequence of Proposition 1 which ensures that Xf .k/ D ˛.k/ O� is an
invariant set for (8) under constraints X�.k/. Indeed, such a property is sufficient to guarantee the
stability of �x around the origin. �

4. NUMERICAL EXAMPLE

Let us consider the same discrete-time system (16) as in example 1 given by

A D
�
0:9 0:25

�0:25 0:9

�
; B D

�
0:5

2

�
: (32)

The aim is to calculate a control law in order to track the reference given by

Nx.k/ D

´
Œ0:5I 0�T for k < 100;

Œ0:1I 0:4�T for k > 100;
(33)

subject to the polytopic time-varying tracking constraints X�.k/ and U�.k/ given by

X�.k/ D ¹�x 2 R2 W HX�.k/�x 6 N1º; (34)

with

HX�.k/ D

8̂̂̂
ˆ̂̂<
ˆ̂̂̂̂̂
:

H.1/
X�

for k < 30;

H.2/
X�

for 30 6 k < 90;

H.3/
X�

for 90 6 k < 140;

H.4/
X�

for k > 140;

(35)

where

H.1/
X�
D

2
6664
2:5 0

0 2:5

�2:5 0

0 �2:5

3
7775 ; H.2/

X�
D H.4/

X�
D

2
6664
10 0

0 10

�10 0

0 �10

3
7775 ; H.3/

X�
D

2
6664
3:333 0

0 2:5

�3:333 0

0 �2:5

3
7775 : (36)

Besides,

U�.k/ D ¹�u 2 R W HU�.k/�u 6 N1º; (37)

with

HU�.k/ D

8̂̂̂
ˆ̂̂<
ˆ̂̂̂̂
:̂

H.1/
U�

for k < 30;

H.2/
U�

for 30 6 k < 90;

H.3/
U�

for 90 6 k < 140;

H.4/
U�

for k > 140;

(38)

where

H.1/
U�
D

�
25

�25

�
; H.2/

U�
D H.4/

U�
D

�
100

�100

�
; H.3/

U�
D

�
20

�25

�
: (39)
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Let us choose the feedback gain K as K D Œ�0:0343;�0:1478�, noticing that it does not
depend on the constraints. Then, the time-varying closed-loop constraints X�.k/ are given by the
polytopic representation

X�.k/ D ¹�x 2 R2 W HX�.k/�x 6 N1º; (40)

with

HX�.k/ D

8̂̂̂
ˆ̂<
ˆ̂̂̂̂:

H.1/
X� for k < 30;

H.2/
X� for 30 6 k < 90;

H.3/
X� for 90 6 k < 140;

H.4/
X� for k > 140;

(41)

where

H.1/
X� D

2
666666664

2:5 0

0 2:5

�2:5 0

0 �2:5

�0:86 �3:69

0:86 3:69

3
777777775
;H.2/

X� D H.4/
X� D

2
666666664

10 0

0 10

�10 0

0 �10

�3:43 �14:78

3:43 14:78

3
777777775
;H.3/

X� D

2
666666664

3:33 0

0 2:5

�3:33 0

0 �2:5

�0:69 �2:96

0:69 2:96

3
777777775
:

(42)

4.1. Off-line step: invariant set

According to Remark 2, the choice of the invariant set O� does not impact the stability and must be
made according to some heuristics related to the specificity of the application. Here, as an arbitrary
choice, it is built from the feedback gain K (obtained by solving the LQR problem with weighting
matrices Q D Œ1 0I 0 1�, R D 30 and P D Œ4:6534; 0:5613I 0:5613; 3:0237� of the MPC problem
(21)) and the same constraints (17) as in the time-invariant case. Hence, the resulting invariant O� is
defined as in (19).

4.2. On-line steps: MPC with homothetic transformation

By applying the strategy (31), the following dilating/contracting homothetic factors have
been obtained

˛.k/ D

8̂̂̂
<
ˆ̂̂:

2:67 for k < 30;

0:67 for 30 6 k < 90;
2 for 90 6 k < 140;
0:67 for k > 140:

(43)

The time evolution of ˛.k/ is plotted in Figure 4. The time-varying constraints (36) and (42)
are depicted in Figures 5–7 for each time interval. The nominal invariant set O� and the invariant
sets obtained after the homothetic transformation with factors (43) are depicted in Figures 8–10,
respectively. The figures clearly illustrate that for ˛.k/ > 1 (respectively ˛.k/ < 1), the nominal
invariant set O� dilates (respectively contracts) homogeneously. From the figures, it is clear that the
largest homothethic invariant set is still a subset of X�.k/ as expected. The homothetic dilation and
contraction of the nominal invariant set according to (43) is depicted in Figure 11.

The tracking of the reference (33) with initial conditions x.0/ D Œ0I 0:3�T is depicted for x1.k/
and x2.k/ in Figures 12 and 13, respectively. The tracking errors �x1.k/ and �x2.k/ are depicted
in Figures 14 and 15. The control�u.k/ is the solution of the MPC problem (21), being the terminal
constraint Xf .k/ equal to the time-parameter dependent invariant set ˛.k/ O� as given by (43). It
is depicted in Figure 16. The plots highlight that the tracking is achieved while the time-varying
constraints are fulfilled.
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Figure 4. Behaviour of ˛.k/.

Figure 5. Constraints for k < 30. Dotted line, constraint X�.k/; dash-dotted line, constraint X�.k/.

Figure 6. Constraints for 30 6 k < 90 or k > 140. Dotted line, constraint X�.k/; dash-dotted line,
constraint X�.k/.

Figure 7. Constraints for 90 6 k < 140. Dotted line, constraint X�.k/; dash-dotted line, constraint X�.k/.

Copyright © 2015 John Wiley & Sons, Ltd. Optim. Control Appl. Meth. (2015)
DOI: 10.1002/oca



MPC TRACKING S.T. TIME-VARYING POLYTOPIC CONSTRAINTS

Figure 8. Dotted line, constraint X�.k/; dash-dotted line, constraint X�.k/; dashed line, nominal invariant
set O�; solid line, ˛.k/ O� with ˛.k/ D 2:67.

Figure 9. Dotted line, constraint X�.k/; dash-dotted line, constraint X�.k/; dashed line, nominal invariant
set O�; solid line, ˛.k/ O� with ˛.k/ D 0:67.

Figure 10. Dotted line, constraintX�.k/; dash-dotted line, constraint X�.k/; dashed line, nominal invariant
set O�; solid line, ˛.k/ O� with ˛.k/ D 2.

Figure 11. Solid line, nominal invariant set O�; dashed line, 0:67 O�; dotted line, 2 O�; dash-dotted line, 2:67 O�.
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Figure 12. Solid line, tracking response of x1.k/; dash-dotted line, reference.
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Figure 13. Solid line, tracking response of x2.k/; dash-dotted line, reference.
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Figure 14. Solid line, tracking error �x1.k/; dashed line, time-varying constraints.
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Figure 15. Solid line, tracking error and �x2.k/; dashed line, time-varying constraints.
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Figure 16. Solid line, tracking error �u.k/; dashed line, time-varying constraints.

Table I. Parameters involved in the electric vehicle dynamics.

Coefficients Description Value

m vehicle mass 90 kg
� efficiency of the inverter 0.97
kt motor constant 0:0604 Nm=A
gr transmission gear ratio 8.5
rw radius of the wheels 0:24 m
� air density coefficient 1:225 kg=m3

CdAf aerodynamic drag coefficient � vehicle frontal area 0:1031 m2

g gravity acceleration coefficient 9:81 m=s2

Cr wheels rolling resistance coefficient 8:1549 � 10�4

5. CASE STUDY : VELOCITY TRACKING FOR AN ELECTRIC VEHICLE

This section is devoted to a case study. An electric vehicle is required to follow a minimum con-
sumption velocity profile according to its actual position. The velocity profile, also known as optimal
driving strategy [15, 16], is computed off-line for a prescribed path (succession of straight lines and
curves) and guarantees the minimum energetic consumption to travel the path in a finite time tf .
The real-time MPC controller must ensure that the vehicle velocity tracks the optimal reference.
The actual position and velocity of the vehicle are measured on-line. The tracking task is subject
to time-varying velocity and input constraints as it will be detailed subsequently. The model under
consideration corresponds to the prototype developed by the Research Center for Automatic Con-
trol of Nancy, in France, which is annually involved in the European Shell Eco-Marathon race in the
Plug-in (battery) category.

5.1. Electric vehicle dynamics

In the electric vehicle, the battery provides all the traction power. Therefore, the dynamics of
the electric vehicle can be expressed by means of state-space equations where the battery current
QIbat t .t/ is the control signal, denoted hereafter with Qu.t/. The current delivered by the battery
saturates at Qumax .

The nonlinear discretized dynamics (for a flat road) reads

Lx2.k C 1/ D Lx2.k/C Ts
�ktgr Lu.k/

mrw
�

1

2m
Ts�CdAf Lx2.k/

2 � TsgCr ; (44)

being Lx2.k/ the discretized velocity of the vehicle and Ts the sampling time. The position of the
vehicle, here noted as Lx1.k/, follows Lx1.k C 1/ D Lx1.k/C Ts Lx2.k/. The numerical values of the
parameters involved in the dynamics (44) have been obtained from both physical considerations and
experimental data-based parameter identification. They are reported in Table I.
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Having in mind the design of an optimal control minimizing the consumption of the vehicle, it is
useful for the sequel to derive a linearized model around an average velocity Lx2e . The corresponding
operating point is the pair . Lx2e; Lue/ where Lue 2 Œ0; Lumax D Qumax� is the solution of the steady-state
condition Lx2.k C 1/ D Lx2.k/ in (44), that is,

Lue D
�CdAf rw. Lx2e/

2 C 2mgrwCr

2�ktgr
: (45)

The following linearized discrete-time state-space dynamics is obtained from (44) around the
operating point . Lx2e; Lue/:

x.k C 1/ D Ax.k/C Bu.k/; (46)

where u.k/ D Lu.k/ � Lue and x.k/ D Œx1.k/; x2.k/�
T D Œ Lx1.k/ C Lx2eTs; Lx2.k/ � Lx2e�

T 2 R2.
The matrices A and B are given by

A D

"
1 Ts

0 1 �
Ts�CdAf

m
Lx2e

#
; B D

"
0

Ts�ktgr
mrw

#
: (47)

The output equation is the linearized velocity x2.k/ D Lx2.k/ � Lx2e and reads

y.k/ D Cx.k/ where C D
�
0 1

�
: (48)

The full state is assumed to be accessible, which means that both the position and the velocity
are measurable.

5.2. Optimal driving strategy

Finding a low-consumption strategy amounts to an electrical resource management problem. Indeed,
the energy level of the battery is the bottleneck in the optimization problem and requires an optimal
driving strategy solution [15, 17]. Only the discharging of the battery is taken into account. Disre-
garding the losses, the energy QEs stored in the battery at time t can be merely expressed in terms of
the current flowing through the battery Qu.t/ and the open circuit voltage Voc [17, 18]:

QEs.t/ D QEs.0/ �

Z t

0

Voc Qu.�/ d�; (49)

where QEs.0/ is the initial energy stored in the battery. From the right-hand side of (49), it is clear
that the minimum consumption is achieved if the minimum battery current Qu�.t/ is used to perform
the driving task, the voltage Voc being assumed to be constant during the race.

The open-loop control is obtained off-line by solving the nonlinear optimal control problem for
a flat path of 3.266 km long, a maximum allowed time of tf D 468 s and a maximum allowed of
input Qumax D 7Å. The resulting optimal trajectory and open-loop control are depicted in Figures 17

0 500 1000 1500 2000 2500 3000
0

10

20

30

Figure 17. Optimal velocity profile.
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Figure 18. Optimal battery current profile.

and 18, respectively, with respect to the vehicle position in the path. The driving strategy gives
an expected performance of 474.0826 km/kwh. In the following, it is detailed how an MPC-based
strategy can be used to steer the state towards the optimal open-loop trajectory.

5.3. Time-varying tracking constraints.

Because the vehicle starts at a speed equal to zero, the initial natural strategy is to accelerate as much
as possible to reach the optimal nominal velocity. That precisely corresponds to the optimal solution
as illustrated in Figures 17 and 18. Indeed, the optimal battery current profile is Qu� D Qumax D 7 Å
for a distance less than 300 m. For the distance Qx�1 D 300 m, the optimal velocity Qx�2 is 31.2 km/h.
Analogously, when the vehicle approaches the end of the path, the natural energetically optimal
behaviour consists in switching off the motor propulsion. The switching off is carried out at the
distance of Qx�1 D 2441 m. In the range 300 2441 m, as aforementioned, a control law must be
designed to track the optimal driving strategy. In this range, the optimal velocity is not considered
to have large fluctuations. Thus, it is reasonable to consider the linearized model (46)–(48) with Lx2e
as the average optimal velocity within such a range, that is, 27 km/h.

Our objective is to derive an MPC law which will be applied to the nonlinear dynamics of the
vehicle to guarantee that the nonlinear state remains as close as possible to the optimal one. Because
the MPC is a discrete linear law, the following quantities must be introduced. The states Lx�.k/ D
Œ Lx�1 .k/; Lx

�
2 .k/�

T 2 R2 and the input Lu�.k/ are obtained from the sampling of the optimal trajectory
Qx�.t/ D Œ Qx�1 .t/; Qx

�
2 .t/�

T 2 R2 and the sampling of the optimal input Qu�.t/, respectively, with
sampling period Ts . Besides, we define the error �u.k/ for the system (46) as

�u.k/ D u.k/ � . Lu�.k/ � Lue/; (50)

and the error �x.k/ as

�x.k/ D x.k/ � . Lx�.k/ � Lxe/: (51)

with Lxe D Œ� Lx2eTs; Lx2e�
T . The dynamics of the errors �u.k/ and �x.k/ are nonlinear, but

close enough to the operating point . Lx2e; Lue/, the dynamics can be approximated by the following
linear one

�x.k C 1/ D A�x.k/C B�u.k/: (52)

Now, a bounded set of constraints X�.k/ for every k is imposed. As it turns out, no special con-
straints are required for the position accuracy �x1, because the tracking is only concerned with the
velocity. To this end, in practice, we impose very large constraints as �100 m 6 �x1.k/ 6 100 m
for every k. Regarding the tracking constraints on the velocity, it is worth considering robustness
issues. Indeed, there are unavoidable mismatches between the parameters of the model and the actual
ones. Discrepancies regarding the mass of the vehicle or the frictions will be more critical during the
initial acceleration and the final deceleration. For example, an increasing of the mass will lead to a
slower acceleration. Therefore, the constraints for �x2 must be relaxed at the beginning and at the
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end of the path. Consequently, the constraints for �x2 are time varying. The resulting constraints
X�.k/ are represented by the following polytopic description HX�.k/ as defined in (34):

HX�.k/ D

8̂̂
<̂
ˆ̂̂:

H.1/
X�

for Lx�1 .k/ < 944 m;

H.2/
X�

for 944m 6 Lx�1 .k/ < 2588 m;

H.3/
X�

for Lx�1 .k/ > 2588 m;

(53)

where

H.1/
X�
D

2
664
0:01 0

0 3:6

�0:01 0

0 �0:6

3
775 ; H.2/

X�
D

2
6664
0:01 0

0 3:6

�0:01 0

0 �1:2

3
7775 ; H.3/

X�
D

2
64
0:01 0

0 0:6

�0:1 0

0 �1:8

3
75 : (54)

As far as the input tracking constraints U� are concerned, the battery current Lu.k/ in (44) must be
fulfilled, for all k

0 6 Lu.k/ 6 Lumax : (55)

Then, to avoid the inadmissible values of the input, �u.k/ in (52) has to satisfy the following
constraint

�umin.k/ 6 �u.k/ 6 �umax.k/;
�Lu�.k/ 6 �u.k/ 6 Lumax � Lu�.k/:

(56)

The constraints are time varying, because �u.k/ depends on the optimal control input Lu�.k/
(Figure 18) that may change in time. Additionally, 0 2 int.U�.k// must be satisfied for every k,
and therefore, a small tolerance � D 1 � 10�6 is introduced for the cases where Lu�.k/ D Lumax or
Lu�.k/ D 0. In this way, the constraints U�.k/ on the input, as defined in (37), obey

HU�.k/ D

8̂̂̂
<̂
ˆ̂̂̂:

H.1/
U�

if Lu�.k/ D Lumax;

H.2/
U�

if Lu�.k/ D 0;

H.3/
U�

otherwise,

(57)

where

H.1/
U�
D

"
.�/�1

.�Lumax/
�1

#
; H.2/

U�
D

"
. Lumax/

�1

.��/�1

#
; H.3/

U�
D

"
. Lumax � Lu

�.k//�1

.�Lu�.k//�1

#
: (58)

The time-varying tracking constraints for �u.k/ (56) are depicted in Figure 19 with respect to the
vehicle position.

5.4. Model predictive control

In order to make the tracking task appropriate for real-time implementation despite the time-varying
constraints, the strategy of homothetic transformation of the invariant set is applied. To this end,
a nominal invariant set O� must be precomputed off-line for (52) and then scaled on-line to fit the
time-varying constraints represented by (53) and (57), as seen in Section 3. This invariant set will
act as a terminal set constraint, and then stability and convergence of the state to steady-state values
will be guaranteed by the MPC algorithm.
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Figure 19. Solid line, �umin.k/; dashed line, �umax.k/.

5.4.1. Off-line step: invariant set. Setting Q D Œ0 0I 0 1�, R D 1, P D Œ0 0I 0 139:75� and by
choosing the nominal tracking constraints OX� and OU� as

H OX�
D

2
6664
0:02 0

0 7:20

�0:02 0

0 �7:20

3
7775 ; H OU� D

�
0:1

�0:1

�
; (59)

the following closed-loop nominal constraints OX� are obtained with K D Œ0 � 0:6411�

H OX� D

2
666666664

0:02 0

0 7:20

�0:02 0

0 �7:20

0 �0:064

0 0:064

3
777777775
: (60)

The maximal invariant set O� that fits (60) is given by the following vertex representation

V O� D

2
666666664

50 �0:1389

50 �0

49:7020 0:1389

�49:7020 �0:1389

�50 0:1389

�50 0

3
777777775

T

: (61)

5.4.2. On-line steps: MPC with homothetic transformation. From the strategy (31), the scaling fac-
tor is calculated on-line and verifies ˛.k/ 2 ¹0:067; 0:561; 1:752; 2º. Then, the nominal invariant
set O�, given by (61), is scaled with the homothetic transformation to fit the closed-loop constraints
X�.k/ given by

HX�.k/ D

�
HX�.k/

HU�.k/K

�
; (62)

with HX�.k/ and HU�.k/ as given by (53) and (57), respectively. The invariant set O� and the
different homothetic transformations ˛.k/ O� for the distinct values of ˛ are depicted in Figure 20.

The tracking task is performed by closing the loop with the nonlinear discrete dynamics, as is
depicted in Figure 21. The optimal solution �u.k/;�u.k C 1/; : : : ; �u.k C Np/ of the MPC
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Figure 20. Solid line, nominal invariant set O�; dashed lines, dilation or contraction of the nominal
invariant set.

Figure 21. Closed-loop implementation of the time-varying MPC. The function that describes the velocity
Lx2.k C 1/ D f . Lx2.k/; Lu.k// is given by (44).
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Figure 22. Behaviour of ˛.

problem (21) is computed from the actual state Lx.k/ D Œ Lx1.k/; Lx2.k/�
T of the nonlinear dynamics

(44) using the linearized tracking error �x.k/ D x.k/� . Lx�.k/� Lxe/ (Figure 21). The homothetic
dilation/contraction of the invariant set is applied within the MPC algorithm to fit the closed-loop
constraints X�.k/. The first component �u.k/ of the optimal solution of the MPC problem is used
to shape the control input Lu.k/ for the nonlinear dynamics by making Lu.k/ D �u.k/ C Lu�.k/
(Figure 21). Let us note that to comply with Assumption 1, the references Lu�.k/ and Lx�.k/ are kept
constant during the prediction horizon Np . The sampling period is Ts D 0:2 s and the prediction
horizon is Np D 10.
The evolution of ˛ is plotted in Figure 22 with respect to the vehicle position. The tracking task is
performed for a mass variation of 10% and 50% in the nonlinear model (44). The tracking response

Copyright © 2015 John Wiley & Sons, Ltd. Optim. Control Appl. Meth. (2015)
DOI: 10.1002/oca



MPC TRACKING S.T. TIME-VARYING POLYTOPIC CONSTRAINTS

Lx2.k/ of the nonlinear system is depicted in Figure 23 with respect to the vehicle position. The
difference between the actual nonlinear velocity Lx2.k/ and the target state Lx�.k/ at time k, that
is, � Lx2.k/ D Lx2.k/ � Lx�2 .k/, is depicted in Figure 24 with respect to the vehicle position. In
Figure 25, the input for the nonlinear tracking� Lu.k/ D Lu.k/� Lu�.k/ is depicted with respect to the
vehicle position.
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Figure 23. Dotted line, reference Lx�
2

; dashed line, tracking response of the nonlinear system with a mass
variation of 10%; solid line, tracking response of the nonlinear system with a mass variation of 50%.

0 500 1000 1500 2000 2500 3000

−5

0

5

Figure 24. Dotted lines, �x2min.k/ and �x2max.k/; dashed line, tracking error � Lx2.k/ of the nonlinear
system with a mass variation of 10%; solid line, tracking error � Lx2.k/ of the nonlinear system with a mass

variation of 50%.
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Figure 25. Dotted lines, �umin.k/ and �umax.k/; dashed line, tracking input � Lu.k/ of the nonlinear
system with a mass variation of 10%; solid line, tracking input � Lu.k/ of the nonlinear system with a mass

variation of 50%.
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6. CONCLUSION AND FUTURE WORKS

This paper has presented a real-time MPC-based tracking strategy for linear systems subject to time-
varying constraints in the state and/or the input. A polytopic invariant set computed off-line has
been homogeneously dilated or contracted on-line to fit the polytopic time-varying constraints. The
contraction/dilation of the invariant set has been performed using the invariant set theory and the
properties of invariant sets for discrete-time linear system. The resulting time-varying invariant set
has been used as an admissible terminal constraint set so that it has guaranteed stability and con-
vergence in the tracking task. It has been shown that time-varying constraints can allow to take into
account practical concerns such as the consideration of saturations, preserving feasibility despite
uncertainties and so on.
Beyond the interest of a solution which is appropriate to cope with time-varying constraints, the
approach is well suited for real-time applications. Indeed, the additional cost of the approach, com-
pared with the standard MPC for the time-invariant case, is quite negligible.
As future work, we will study the necessary conditions to ensure recursive feasibility under differ-
ent assumptions regarding the available information on the time-varying constraints. Additionally, it
would be interesting to particularize the approach to specific nonlinear dynamics like LPV systems.
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