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Stability Analysis of Output Feedback Control Systems With a
Memory-Based Event-Triggering Mechanism

Miguel A. Davó , Christophe Prieur , and Mirko Fiacchini

Abstract—This work is concerned with the stability analysis of
an output feedback control system possibly influenced by unknown
disturbances, where both the plant output and the controller output
are subject to event-triggered sampling. We propose a new event-
triggering mechanism based on the history of the measured out-
puts instead of the current outputs only. This novel feature provides
a simple link between the parameters of the sampling criterion and
the speed of convergence. Accumulation of sampling times is pre-
vented by enforcing a minimum interevent time. The effectiveness
of the proposed event-triggered scheme is illustrated by several
numerical examples, including nonlinear and linear systems.

Index Terms—Disturbance rejection, event-triggered control,
nonlinear system, sampled-data.

I. INTRODUCTION

Sampled-data control for continuous-time dynamical systems is a
very active research topic, in which a continuous-time plant is con-
trolled with a digital device. Traditionally, the control task has been
assumed to be executed periodically, which simplifies the implemen-
tation of the control system. However, the periodic sampling schemes
may produce unnecessary updates of the sampled signals, which will
cause high utilization of resources (e.g., computation time, communica-
tion bandwidth, etc.). To overcome that limitation, the event-triggering
approach was proposed, where the sampling actions are determined
by some function of the system state, rather than by progression of
time. Several experimental results (see [9], [13], and [19]) have shown
the potential of the event-triggered control to reduce the number of
samplings.

In the past few years, a multitude of strategies for event-triggered
control have been proposed (see [8] and [15]). Some strategies are
based on the difference between the current value of the state and the
previous sample (see [14] and [21]), assuming in particular input-to-
state stability (ISS). Other more recent approaches require less strong
assumptions and update the measure of the state only when a Lya-
punov function has a sufficiently negative derivative, as the solution
approaches to the equilibrium (see [18] and [20]). Other techniques are
based on an observer (or a norm-observer) and require the knowledge
of the (sampled) output only (see [22] and [23]). Most of the work
in the literature assumes that the full plant state is available, which
is a strong assumption for many practical applications where only a
part of the state can be directly measured. Generalizing event-triggered
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control techniques to output feedback control is definitively nontrivial;
the simple strategy [21] leads to Zeno phenomenon, as shown in [1]
and [3]. Different event-triggering mechanisms have been proposed to
solve this problem. For instance, [4] and [12] are based on state ob-
servers, which lead to more complex event-triggering schemes. In [3]
and [17], the authors modified the triggering condition to guarantee an
ultimate boundedness property instead of asymptotic stability. Another
approach linked to the time regularization technique is presented in
[1], where time-triggered control and event-triggered control are com-
bined to rule out Zeno phenomenon, while asymptotic stability and ISS
property are preserved.

In this note, we focus on the analysis of the internal stability and
the input-to-output stability (IOS), under unknown disturbances, of
nonlinear output feedback even-triggered control systems. In addi-
tion, we provide a procedure to upper bound the L∞-gain of linear
time-invariant (LTI) systems. We consider the scenario in which the
sensor and the actuator are colocated, and both the plant output and
the controller output are sampled synchronously. To provide asymp-
totic stability and IOS, we propose an event-triggering mechanism,
where the sampling times are computed from the difference between
the current plant output and controller output and the last sample. A
novel feature of the proposed mechanism is that the history of the
outputs is used to determine the sampling times. Inspired by the re-
sults in [1] and [16], the proposed triggering mechanism enforces a
minimum interevent time in order to avoid accumulation of the sam-
pling times. Our stability analysis exploits techniques inspired by the
Lyapunov–Razumikhin theorem and Halanay’s inequality (see, e.g.,
[5]). For the particular case of LTI systems, the proposed exponen-
tial stability conditions and the procedure for computing the L∞-gain
upper bound are written in terms of linear matrix inequalities (LMI).
In addition, less conservative results in terms of the interevent times
are developed by considering piecewise quadratic Lyapunov functions.
The main advantage of our approach is the relation of the parameters of
the sampling algorithm with the speed of convergence. Moreover, sev-
eral examples suggest that these parameters are related to the interevent
times, leading to a tradeoff between the speed of convergence and the
number of needed updates. A preliminary version of this work is [2],
where a more restricted scenario is analyzed and no disturbances are
considered.

The rest of this paper is organized as follows. First, the problem
under consideration and the event-triggered setup are introduced in
Section II. Section III contains the stability analysis of nonlinear con-
trol systems. The results are particularized for LTI systems in Sec-
tion IV. The proposed technique is illustrated by numerical examples in
Section V.

Notation: The sets Sn and Sn+ denote the sets of symmetric matrices
of dimension n × n and the set of symmetric positive-definite matri-
ces of dimension n × n, respectively. The notation P > 0 for P ∈ Sn

means that P is positive definite (P < 0 means negative definite). For
a matrix A ∈ IRn×n , the notation He(A) refers to A + A�. For a
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symmetric matrix A ∈ IRn×n , λm (A) and λM (A) stand for the min-
imum and maximum eigenvalue, respectively. The notation ‖x‖ is the
Euclidean norm for x ∈ IRn , and for a function f : [a, b] → IRn , a
norm is defined as ‖f‖ := sups∈[a ,b ] ‖f (s)‖. A function f : IR+ →
IR+ is of class K if it is continuous, strictly increasing, and f (0) = 0.
The function f is of class K∞, if f ∈ K and lims→∞ f (s) = ∞. A con-
tinuous function f : IR+ × IR+ → IR+ is of class KL if for each fixed
s, the function r �→ f (r, s) belongs to class K, and for each fixed r, the
function s �→ f (r, s) is nonincreasing and lims→∞ f (r, s) = 0. The
space of essentially bounded measurable functions is denoted by L∞.

II. PROBLEM STATEMENT

Consider an output-based control system formed by the feedback
interconnection of a plant P and a controller C. The plant is given by

P :

{
ẋp (t) = fp (xp (t), up (t), w(t))
yp (t) = gp (xp (t))

(1)

where xp ∈ IRn p is the state of the plant, up ∈ IRn u p the control
input applied to the plant, w(t) ∈ IRnw an unknown disturbance, and
yp ∈ IRn y p the output of the plant. The controller is given by

C :

{
ẋc (t) = fc (xc (t), uc (t))
yc (t) = gc (xc (t))

(2)

where xc ∈ IRn c is the state of the controller, uc ∈ IRn u c the input
of the controller, and yc ∈ IRn y c the control signal. In addition, let
us assume that the feedback interconnection between the plant and the
controller is affected by an exogenous signal e(t) :=

[
e�y (t), e�u (t)

]� ∈
IRn e with ne := nyp + ny c , such that the interconnection is given
by up (t) = yc (t) + eu (t) and uc (t) = yp (t) + ey (t). Considering the
statex := [x�

p , x
�
c ]� ∈ IRn withn := np + nc , the closed-loop system

is described by {
ẋ(t) = f (x(t), e(t), w(t))
z(t) = g(x(t))

(3)

where z(t) ∈ IRn z is a performance variable and

f (x, e, w) :=

[
fp (xp , gc (xc ) + eu , w)
fc (xc , gp (xp ) + ey )

]
. (4)

The function f is assumed to be continuous in all its arguments and
f (x, e, w) = 0 if x = 0, e = 0, w = 0. The functions gp and gc are
assumed be continuously differentiable, and there exists a function
ξ ∈ K such that

‖
[
g�p (xp ), g�c (xc )

]� ‖ ≤ ξ(‖x‖). (5)

The function g is assumed to be continuous, and in addition, there exists
a function ξz ∈ K such that ‖g(x)‖ ≤ ξz (‖x‖). In order to derive the
results in this work, the following assumption is considered:

Assumption 1: There exist a locally Lipschitz positive-definite
function V : IRn → IR+ , functions α, α, α, β1w ∈ K∞, a locally Lip-
schitz positive semidefinite function βe : IRn e → IR+ , a real number
θ > 0, a continuous function H : IRn → IR+ , and a continuous non-
negative function δ : IRn y p → IR+ such that, for all x ∈ IRn ,

α(‖x‖) ≤ V (x) ≤ α(‖x‖) (6)

and for all e ∈ IRn e , and w ∈ IRnw

〈∇V (x), f (x, e, w)〉 ≤ −α(V (x)) −H2 (x) − δ(yp )

+ θ2β2
e (e) + β1w (‖w‖). (7)

Remark 1: Assumption 1 is a L2 -gain stability property1 of (3),
which has been used for instance in [1] and [16] with slight
changes.

Consider the feedback interconnection of the plant (1) and the con-
troller (2), where both the plant output and the controller output are
made through a sampling mechanism. Therefore, the input of the plant
and the controller are updated at some instants tk , k ∈ IN, referred to
as sampling times (or triggering times in the context of event-triggered
control). In this way, the interconnection is given by

uc (t) = yp (tk ), up (t) = yc (tk ) (8)

for all t ∈ [tk , tk+1 ), k ∈ IN.
The sampling times can be generated in several ways. In event-

triggered control, the sampling times are governed by event-triggered
mechanisms, that continuously monitor the behavior of the plant and
the controller, and generate events when some condition is satisfied.
This work focuses on the emulation-based approach, where first the
controller is designed to get some desired behavior for the continuous
loop, and second, an event-triggering scheme is designed to provide
a bounded deviation of the event-triggered implementation from the
continuous one under Assumptions 1. Therefore, the problem is to
design a sampling algorithm, i.e., the computation of the sequence
(tk ), k ∈ IN, in order to guarantee stability properties of the system
and at the same time to prevent Zeno solutions.

Let us define ζ(t) :=
[
y�p (t), y�c (t)

]�
, where yp (t) and yc (t) are the

output of the plant and the controller of the system (3). The dynamics
of the event-triggered closed-loop system can be described by (3) and
(4), where now the exogenous signal e : IR+ → IRn e represents the
sampling-induced error given by

e(t) = −ζ(t), t ∈ [0, t1 )

e(t) = ζ(tk ) − ζ(t), t ∈ [tk , tk+1 ), k ∈ IN (9)

and whose evolution is governed between two consecutive sampling
instants by ė(t) = fe (e(t), x(t), w(t)) with

fe (e, x, w) :=

⎡
⎢⎢⎣
− ∂

∂xp
gp (xp )fp (xp , gc (xc ) + eu , w)

− ∂

∂xc
gc (xc )fc (xc , gp (xp ) + ey )

⎤
⎥⎥⎦ . (10)

In order to develop the main results of this work, we extend the
initial condition of the system (3) on the interval [−h, 0] as follows:
x(t) = x(0), t ∈ [−h, 0], where h > 0 will be a design parameter
of the proposed event-triggered mechanism. The error signal is ex-
tended similarly, e(t) = e(0), t ∈ [−h, 0]. In addition, for the sake
of simplicity, we define the function Vt : [−h, 0] → IR+ given by
Vt (s) = V (x(t+ s)), s ∈ [−h, 0], where V (x(t)) is the value of the
Lyapunov function in Assumption 1 along the solution to the system
for some initial condition x(0) and disturbance w.

In order to force a minimum interevent time in the line of [1] and
[16], an exponential growth condition on the sampling-induced error e
is assumed.

Assumption 2: There exist β2w ∈ K∞ and real numbers L1 , L2 ≥
0 such that for all x ∈ IRn , e ∈ IRn e , and w ∈ IRnw

〈∇βe (e), fe (e, x, w)〉 ≤ L1βe (e) + L2H(x) + L2β2w (‖w‖). (11)

Remark 2: The technique proposed in this work is also appli-
cable to a control system with a static output controller given by

1Function β1w in Assumption 1 can be defined as a continuous positive
semidefinite function, but no improvement has been found for the purpose of
this work.
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yc (t) = gc (uc (t)), where uc ∈ IRn u c and yc ∈ IRn y c . In this case,
for analysis purpose, it can be assumed that the controller is di-
rectly connected to the plant. Hence, the event-triggered control sys-
tem is modeled by (3) with f (x, e, w) := fp (xp , gc (gp (xp ) + e), w),
where the error signal is given by (9) with ζ(t) := yp (t) and its
evolution between sampling instants is governed by fe (e, x, w) :=
− ∂

∂ xp
gp (xp )fp (xp , gc (gp (xp ) + e), w).

III. MAIN RESULTS

In this section, we first present the proposed triggering mechanism.
Second, asymptotic, exponential, and IOS criteria are provided for
nonlinear systems.

A. Memory-Based Event-Triggered Mechanism

The proposed triggering condition is based on the results in [1]
and the idea of memory-based event-triggering proposed in our re-
cent work [2]. The sampling algorithm consists in checking when
the sampling-induced error exceeds a bound involving a moving win-
dow of the history of the plant output and control signal. In addition,
the algorithm prevents from Zeno phenomenon by imposing a mini-
mum interevent time. Consider a continuous positive-definite function
σ : IRn e → IR+ , which is assumed to satisfy

σ(ζ) ≤ βV (V (x)) (12)

for all x ∈ IRn and some function βV ∈ K; then, we propose the fol-
lowing sampling algorithm:

tk+1 := inf {t > tk + T such that

θ2β2
e (e(t)) ≥ δ(yp (t)) + max

s∈[t−h ,t ]
σ(ζ(s))} (13)

with 0 < T ≤ T (η, θ, λ, L), where βe , θ, and L = [L1 , L2 ] are from
Assumptions 1 and 2, η > 0, λ ∈ (0, 1), h > 0, and

T (η, θ, λ, L) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1
L1r1

arctan(r2 ), (1 + η)θL2 > L1

1
L1

1 − λ

1 + λ
, (1 + η)θL2 = L1

1
L1r1

arctanh(r2 ), (1 + η)θL2 < L1

(14)

with

r1 :=

√∣∣∣∣( (1+ η )θL 2
L 1

)2
− 1

∣∣∣∣, r2 :=
r1 (1−λ2 )

1
L 1

λ(1+η)θ(L2
2 +1)+1 + λ2

.

(15)
The parameters η, λ, andh are design parameters of the event-triggering
mechanism. The functionT (η, θ, λ, L) is based on a combination of the
functions proposed in [1] and [16]. The main difference is the constant
L2 , which allows us to easily encompass the linear case by the nonlinear
theory. In addition, note that the event-triggering algorithm proposed
in [1] is directly obtained by setting σ(ζ) = 0, L2 = 1, and λ = 0.
Moreover, if L2 = 1, then as η → 0, T (η, θ, λ, L) approaches the
maximum allowable transmission interval given in [16]. In previous
results based on the ISS property, the sampling algorithm aims at
keeping sufficiently small the sampling-induced error to guarantee that
the Lyapunov function is strictly decreasing. However, the proposed
algorithm aims at guaranteeing that the maximum of the Lyapunov
function in a moving time window is decreasing. This allows local
increments of the Lyapunov function while still ensuring the asymptotic
convergence to zero.

B. Stability Analysis of Nonlinear Systems

Definition 1: The trivial solution to the event-triggered control sys-
tem (3) with (9), (13), and w = 0 is
1) stable if ∀ε > 0, there exists a δ = δ(ε) > 0 such that ‖x(0)‖ ≤ δ

implies ‖x(t)‖ ≤ ε for all t ≥ 0;
2) attractive if there exists a δa > 0 such that for any ηa > 0 there

exists T := T (δa , ηa ) such that ‖x(0)‖ ≤ δa implies ‖x(t)‖ ≤ ηa
for all t ≥ T ;

3) asymptotically stable if it is stable and attractive;
4) exponentially stable with decay rate γ if there exist δe > 0 and
ηe > 0 such that ‖x(0)‖ ≤ δe implies ‖x(t)‖ ≤ ηe e

−γ t‖x(0)‖ for
all t ≥ 0;

5) globally asymptotically (respectively exponentially) stable if δa
(respectively δe ) can be an arbitrarily large, finite number.

Definition 2: The event-triggered control system (3) with (9) and
(13) is input-to-output stable if there exist functions β ∈ KL andκ ∈ K
such that

‖z(t)‖ ≤ max(β(‖x(0)‖, t), κ(‖w‖∞)) (16)

for all t ≥ 0, where z is the performance variable along the solution to
the system with initial condition x(0) ∈ IRn , and disturbancew ∈ L∞.

Theorem 1: Under Assumptions 1 and 2, suppose there exist a con-
tinuous nondecreasing function ρ(s) > s and a function � ∈ K∞ sat-
isfying �(s1 + s2 ) ≤ α(s1 ) + ηθλs2 for all s1 , s2 ≥ 0, such that the
function υ defined by

υ : s �→ �(s) − βV (ρ(s)) (17)

is of K-class; then, the event-triggered control system (3) with (9),
(13), and w = 0 is globally asymptotically stable. Moreover, if � and
βV are Lipschitz continuous functions, then system (3) is input-to-
output stable.

Proof: The first part of the proof is based on [1] and [16],
and some details are omitted. Consider a function R(q) = V (x) +
max(0, θφ(τ )β2

e (e)), where q = (x, e, τ ), τ ∈ [tk , tk+1 ), for all k ∈
IN is a clock variable introduced to describe the time elapsed since
the last sampling instant, and φ is the solution to φ̇ = −2L1φ − (1 +
η)θ(L2

2φ
2 + 1) with φ(0) = λ−1 . Consider the case φ(τ ) ≥ 0; then,

Assumptions 1 and 2 and the sampling algorithm (13) imply2

Ṙ(q) ≤ − α(V (x)) −H2 (x) − δ(yp ) + θ2β2
e (e)

+ β1w (‖w‖) + θβ2
e (e)

(
− 2L1φ − (1 + η)θ(L2

2φ
2 + 1)

)
+ 2θφβe (e)

(
L1βe (e) + L2H(x) + L2β2w (‖w‖)

)
.

(18)

Consider that δ(yp ) ≥ 0; then, applying twice the fact that 2ab ≤
1
κ
a2 + κb2 for any a, b ≥ 0, and κ > 0, it follows that

Ṙ(q(t)) ≤ −α(V (x(t))) − ηθ2β2
e (e(t)) + βw (‖w(t)‖) (19)

where βw (s) = max(βw 1 (s), 1
η
β2
w 2 (s)). Considering the function �

in (17) and the fact that φ(τ ) ≤ λ−1 for all τ ≥ 0, it is obtained
that

Ṙ(q(t)) ≤ −�(R(q(t)) + βw (‖w(t)‖). (20)

Now, let us consider the case φ(τ ) ≤ 0; then, τ > T with
T from (13)–(15). First, we get R(q) = V (x); then, Assump-
tion 1 and H2 (x) ≥ 0 imply Ṙ(q(t)) ≤ −�(R(q(t))) − δ(yp ) +
θ2β2

e (e(t)) + βw (‖w(t)‖). Using the sampling mechanism (13),

2The notation Ṙ(q) should be understood as the generalized directional
derivative of Clarke (see [1]).
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(12), the notation Vt , and the fact that V (x) ≤ R(q), it is
obtained that Ṙ(q(t)) ≤ −�(R(q(t))) + βV (‖Rt‖) + βw (‖w(t)‖),
where Rt : [−h, 0] → IR+ is given by Rt (s) = R(q(t− s)), s ∈
[−h, 0]. Since βV (‖Rt‖) ≥ 0, the term βV (‖Rt‖) can be added to
the term on the right-hand side of (20), and thus, we get

Ṙ(q(t)) ≤ −�(R(q(t)) + βV (‖Rt‖) + βw (‖w(t)‖) (21)

for all t ≥ 0.
The rest of the proof is organized in two parts: first, we prove the

global asymptotic stability, and, second, the IOS.
1) Proof of global asymptotic stability: Let us consider w = 0 and

deal with stability and attractivity, separately.
1) Stability: First, note that (5) implies that ‖(x(0), e(0))‖ ≤
ω(‖x(0)‖) with ω ∈ K given by ω(s) :=

√
s2 + ξ(s)2 . In

addition, the fact thatβe is continuous positive semi-definite
and the inequality (6) imply that there exists a functionαR ∈
K∞ such that R(q) ≤ αR (‖(x, e)‖). Now, for any given
ε > 0, pick δ > 0 such that 0 < δ ≤ ω−1 (α−1

R (α(ε))).
Function υ satisfies the conditions in Proposition 3
(given in the Appendix), and thus, Proposition 3 can be
applied to function R(q(t)) with μ < R(q(0)), which
leads to R(q(t)) ≤ R(q(0)) ≤ αR (ω(δ)) ≤ α(ε) for all
t ≥ 0. Therefore, it is obtained α(‖x(t)‖) ≤ V (x(t)) ≤
R(q(t)) ≤ α(ε) for all t ≥ 0, and the proof of stability is
complete.

2) Attractivity: For any given δa , ηa > 0, let μ = α(ηa ) and
ϑ = αR (ω(δa )); then, ‖x(0)‖ ≤ δa implies R(q(0)) ≤ ϑ.
The application of Proposition 3 guarantees that there ex-
ists T (ϑ, μ) such that R(q(t)) ≤ μ for all t ≥ T (ϑ, μ).
Therefore, it follows V (x(t)) ≤ R(q(t)) ≤ μ = α(ηa ) for
all t ≥ T (αR (ω(δa )), α(ηa )), which completes the proof
of attractivity.

The stability and the attractivity imply the asymptotic stability of
the system. Since δa can be chosen arbitrarily large, the global
asymptotic stability is proved.

2) Proof of IOS: Let define the function χ(s) := ευ(s), where υ is as
in (17), for some ε satisfying 0 < ε < 1. For a given initial con-
dition x(0) and a disturbance w, let t̂ := inf{t > 0 : R(q(t)) ≤
χ−1 (βw (‖w‖∞))} with t̂ = ∞ if R(q(t)) > χ−1 (βw (‖w‖∞))
for all t > 0. Then, (21) leads to Ṙ(q(t)) ≤ −�(R(q(t))) +
βV (‖Rt‖) + χ(R(q(t))) for all t ∈ [0, t̂). Lemma 2 with
μ = χ−1 (βw (‖w‖∞)) (note that �(s) − βV (ρ(s)) − χ(s) = (1 −
ε)υ(s) ∈ K) guarantees that there exists a function β ∈
KL such that R(q(t)) ≤ max(β(R(q(0), t), χ−1 (βw (‖w‖∞)))
for all t ≥ 0. The bound of R and the facts that
V (x) ≤ R(q) and ‖z(t)‖ ≤ ξz (‖x(t)‖) ≤ ξz (α−1 (V (x(t))))
lead to ‖z(t)‖ ≤ ξz (α−1 (max(β(αR (ω(‖x(0)‖, t), κ(‖w‖∞))))
with κ(s) = χ−1 (βw (s)), and that completes the proof. �

Theorem 2: Under Assumptions 1 and 2, for a given δ > 0, as-
sume that there exist positive scalars k, k, ke , kξ , and λ1 > λ2

such that

ks2 ≤ α(s), ks2 ≥ α(s), βe (e) ≤ ke‖e‖

ξ(s) ≤ kξ s, λ1s ≤ α(s), λ2s ≥ βV (s) (22)

for all 0 ≤ s ≤ δ and e ∈ IRn e with ‖e‖ ≤ δ, where βV is as in (12);
then, the event-triggered control system (3) with (9), (13), 0 < T ≤
T (η, θ, λ, L) with ηθλ ≥ λ1 and w = 0 is locally exponentially stable
with decay rate γ > 0 given as the unique solution of

2γ = λ1 − λ2e
2γ h . (23)

In addition, if (22) holds for all s ∈ [0,∞) and all e ∈ IRn e , then the
system is globally exponentially stable.

Proof: Let δ2
e = 2

k+ k 2
e k

2
ξ

min(kδ2 , δ) and take �(s) = λ1s. Con-

sidering inequality (21) with w = 0 and the bounds (22), it follows
Ṙ(q(t)) ≤ −λ1R(q(t)) + λ2‖Rt‖ for all t ≥ 0 and ‖x(0)‖ ≤ δe .
Since λ1 > λ2 , then Lemma 1 (Halanay’s inequality) can be applied to
the above inequality. Hence, there exists γ > 0 being the unique solu-
tion to (23) such that R(q(t)) ≤ R(q(0))e−2γ t . The bounds (22) lead
to k‖x(t)‖2 ≤ V (x(t)) ≤ R(q(t)) ≤ (k + θλ−1k2

e k
2
ξ )‖x(0)‖2e−2γ t .

Therefore, the system (3) with (9) and (13) is exponentially stable with
decay rate γ. �

Remark 3: Theorem 2 provides a relation between the parameters
of the sampling algorithm and the decay rate. First, note that from
(23), the decay rate decreases when the parameter h increases. In
addition, 0.5(λ1 − λ2 ) is the supremum of γ, that is, limh→0 γ(h) =
0.5(λ1 − λ2 ), where γ(h) is the solution of (23) as a function of h. In
addition, the function σ is related to γ through the functions βV and
λ2 . On the other hand, small values of η and λ may be desirable to
increase the minimum of the interevent times; however, this leads to
small values of λ1 and, thus, small values of the decay rate through
(23).

IV. APPLICATION TO LTI SYSTEMS

In this section, we focus on a closed-loop system formed by an LTI
plant given by

P :
{
ẋp (t) = Apxp (t) + Bpup (t) + Bpw w(t)
yp (t) = Cpxp (t)

(24)

and an LTI controller described as follows:

C :
{
ẋc (t) = Acxc (t) + Bcuc (t)
yc (t) = Ccxc (t)

(25)

where Ap , Bp , Cp , Bpw , Ac , Bc , and Cc are matrices of appropriate
dimensions. The dynamics of the event-triggered closed-loop system
can be described as{

ẋ(t) = (A + BC)x(t) + Be(t) + Bww(t)
z(t) = Cz x(t) (26)

where Cz is some nonzero matrix of appropriate dimensions that de-
fines the performance variable, e(t) is given by (9), and

A :=
[
Ap 0
0 Ac

]
, B :=

[
0 Bp

Bc 0

]

C :=
[
Cp 0
0 Cc

]
, Bw :=

[
Bpw

0

]
.

(27)

For the analysis of the above system, the general Assumptions 1 and 2
are replaced by an asymptotic stability assumption on the LTI system.

Assumption 3: The controller C renders the system (26) with e(t) =
0 and w(t) = 0 for all t ≥ 0 asymptotically stable, and thus, for every
matrix Q ∈ Sn+ , there exists a matrix P ∈ Sn+ such that

−Q = (A + BC)�P + P (A + BC). (28)

Definition 3: The L∞-gain of the event-triggered control system
(26) with (9) and (13) is defined as

κ := inf{κ̂ ∈ IR+ : ∃ϕ ∈ K s.t.‖z‖∞ ≤ κ̂‖w‖∞ + ϕ(‖x(0)‖),

∀x(0) ∈ IRn , ∀w ∈ L∞}
(29)

where z is the performance variable of the solution to (26) with initial
condition x(0) ∈ IRn , and disturbance w ∈ L∞.

Henceforth, the functions σ and βe for the sampling algorithm (13)
will be given by σ(ζ) := σc ζ

�Uσ ζ and β2
e (e) := e�Uee with σc > 0

and Uσ , Ue ∈ Sn e+ .
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Proposition 1: For given scalars γ, h, σc , η > 0, λ ∈ (0, 1), with
ηλ ≥ 2γ + σc e

2γ h and matricesUσ ,Ue ∈ Sn e+ , assume that there exist
matrices P ∈ Sn+ , and Uw ∈ Snw+ , and real numbers ς1 , ς2 > 0 such
that

C�UσC − P ≤ 0 (30)

(2γ + σc (e2γ h − 1))P − ς1C
�
z Cz ≥ 0 (31)

Ψ + diag((2γ + σc e
2γ h )P + ς2Π, 0, 0) < 0 (32)

hold, where Π = (A + BC)�C�C(A + BC), Q is given by
(28), and

Ψ :=

⎡
⎣−Q PB PBw

� −Ue 0
� � −Uw

⎤
⎦. (33)

Then, for all positive real value 0 < T ≤ T (η, 1, λ, L) and

L1 =
√

‖Ue ‖‖C B ‖√
λm (Ue )

, L2 = max
(√

‖Ue ‖
ς2

,

√
‖Ue ‖‖C Bw ‖√

η ‖Uw ‖

)
(34)

the event-triggered control system given by (9), (13), and (26) with
w = 0 is globally exponentially stable with decay rate γ. Moreover,

the L∞-gain of the system is smaller than or equal to
√

1
ς1
‖Uw ‖.

Proof: Consider the Lyapunov function V (x) = x�Px, with
time derivative along the solutions to (26) given by V̇ (x(t)) =
−x�(t)Qx(t) +He

(
x�(t)P (Be(t) + Bww(t))

)
. Adding

e�(t)Uee(t) − e�(t)Uee(t) and w�(t)Uww(t) − w�(t)Uww(t)
with Ue ∈ Sn e+ , Uw ∈ Snw+ , it is obtained V̇ (x(t)) ≤
ϕ�Ψϕ + e�Uee + ‖Uw ‖‖w‖2 , where ϕ :=

[
x� e� w�]�

. In
addition, condition (32) implies

V̇ (x(t)) ≤ −λ1V (x) − ς2x
�x+ e�Uee + ‖Uw ‖‖w(t)‖2 (35)

with λ1 = (2γ + σc e
2γ h ). Note that condition (30) leads to σ(ζ) ≤

βV (V (x)) with βV (s) = σc s. Moreover, Assumptions 1 and 2
are satisfied by considering the following functions and real num-
bers: α(s) = λ1s, H(x) =

√
ς2‖C(A + BC)x‖, θ = 1, β1w (s) =

‖Uw ‖s2 , β2
2w (s) = η‖Uw ‖s2 , δ(yp ) = 0. Therefore, the exponential

stability with decay rate γ > 0 is concluded by applying Theorem 2.
In order to obtain an upper bound of the L∞-gain, let us consider

(21) from the proof of Theorem 1, with the above functions and real
numbers:

Ṙ(q(t)) ≤ −(2γ + σc e
2γ h )R(q(t)) + σc‖Rt‖ + ‖Uw ‖‖w(t)‖2 .

(36)
Consider some ε such that e2γ h > ε > 1, then (21) leads to Ṙ(q(t)) ≤
−εσcR(q(t)) + σc‖Rt‖, whenever R(q(t)) ≥ ‖Uw ‖

2γ+σ c (e2 γ h −ε ) ‖w‖
2
∞.

Applying Proposition 3 with υ1 (s) = εσc s, υ2 (s) = σc s, and ρ(s) =
1+ ε

2 s, it is obtained

R(q(t)) ≤ max
(

‖Uw ‖
2γ+σ c (e2 γ h −ε ) ‖w‖

2
∞, R(q(0))

)
. (37)

Choosing ε > 1 sufficiently close to 1, it follows that (31) implies
(2γ + σc (e2γ h − ε))P − ςC�

z Cz ≥ 0, and in addition, ‖z(t)‖2 ≤
1
ς1

(
2γ + σc (e2γ h − ε)

)
R(q(t)) for all t ≥ 0, which yields to the up-

per bound of the L∞-gain, κ ≤
√

1
ς1
‖Uw ‖ , since 2γ + σc (e2γ h −

1) > 2γ + σc (e2γ h − ε). �
Remark 4: Note that for any system (26) satisfying Assumption 3,

we can always find γ, σc , h, Uσ , and Ue , such the LMIs (30)–(32) are
feasible. For instance, let us set Uσ = λm (P )

‖C �C ‖ ; then, the LMI (30) is

feasible. In addition, LMI (31) is feasible for ς1 ≤ (2γ + σc (e2γ h −
1) λm (P )

‖C �
z C z ‖

. Finally, by takingUe = αe I andUw = αw I withαe ,αw >

0, and applying the Schur complement twice on (32), it follows that
the LMI (32) is feasible if

Q − (2γ + σc e
2γ h )P − ς2Π − 1

αe
PBB�P > 0

Q − (2γ + σc e
2γ h )P − ς2Π − 1

αe
PBB�P − 1

αw
PBwB

�
w P > 0

(38)

with Π = He(C(A + BC)), which hold for sufficiently large αe and
αw , and sufficiently small γ, σc , and ς2 .

The conditions in Proposition 1 are obtained by using a quadratic
Lyapunov function, which leads to a conservative stability criterion,
especially for unstable open-loop systems. A simple relaxation of the
quadratic Lyapunov functions consists in dividing the state space in
different regions and considering a quadratic Lyapunov function for
each region, leading to a piecewise quadratic Lyapunov function (see
[10]). In order to divide the state space, we consider a uniform partition
of the IR2 subspace, which leads to a partition of the IRn space through
an orthogonal projection defined by a matrix Υ ∈ IR2×n (the results
may depend on the election of Υ). For the sake of the simplicity, the
following result only deals with the exponential stability, although the
estimation of the L∞-gain can be tackled with the same approach.

Proposition 2: For given scalars γ, h, σc , η > 0, λ ∈ (0, 1), with
ηλ ≥ 2γ + σc e

2γ h , matrices Uσ , Ue ∈ Sn e+ , and Υ ∈ IR2×n , assume
that there exist matrices Pi ∈ Sn+ , scalar ς > 0, and scalars �1 i , �2 i ≥
0, i = 1, . . . , N such that

C�UσC − Pi + �1 i Si < 0 (39)[
−Qi + (2γ + σc e

2γ h )Pi + ςΠ + �2 i Si PiB
� −Ue

]
< 0 (40)

for i = 1, . . . , N , Γ�
1 (PN − P1 )Γ1 = 0, and

Γ�
i (Pi − Pi−1 )Γi = 0, i = 2, . . . , N (41)

hold, where Π = (A + BC)�C�C(A + BC), Qi is given by
(28) for each Pi , Γi is a basis of the null space of ΘiΥ
with Θi :=

[
sin

(
iπ
N

)
− cos

(
iπ
N

) ]
and Si := −Υ�(Θ�

i Θi−1 +
Θ�
i−1Θi )Υ; then, for all positive real value 0 < T ≤ T (η, 1, λ, L) with

L1 =
√

‖Ue ‖‖C B ‖√
λm (Ue )

, L2 =
√

‖Ue ‖
ς

, the event-triggered control system

given by (9), (13), and (26) withw = 0 is globally exponentially stable
with decay rate γ.

Proof: The proof follows as the proof of Proposition 1 by consid-
ering the Lyapunov function

V (x) = x�Pix, if x�Six ≥ 0, i = 1, . . . , N (42)

and by adapting [10]. �

V. EXAMPLES

A. Nonlinear Example

In this example, we consider the controlled Lorenz
equations (see [24]) given by the functions fp (xp ) =
[−ax1 + ax2 , bx1 − x2 − x1x3 + up , x1x2 − cx3 ]

� and gp (x) = x1

with a, b, c > 0 and xp = [x1 , x2 , x3 ]�. The plant is controlled by a
static output feedback controller given by gc (uc ) = −( p 1

p 2
a + b)uc

(see Remark 2), where p1 , p2 > 0. Consider the ISS Lya-
punov function V (x) = p1x

2
1 + p2x

2
2 + p2x

2
3 . By taking suit-

able values of p1 and p2 , Assumptions 1 and 2 are satisfied
with functions α(s) = min(p1 , p2 )s, α(s) = max(p1 , p2 )s,
α(s) = λ1s, λ1 := min(2c, 2a(1 − 2p 1

5p 2
) − 18, 2 − 4p 1 a

5p 2
− 25a

6p 1 p 2
),
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TABLE I
EFFECT OF σc AND h ON THE INTEREVENT TIMES AND THE DECAY RATE
(LOWER BOUND AND NUMERICAL ESTIMATION OF THE DECAY RATE ARE

IN BRACKETS)

β2
e (e) = 2p 1

5a |e|2 , H(x) =
√

2p 1 a
5 (|x1 | + |x2 |), δ(yp ) = 18y2

p ,

θ2 = 0.6(p1a + p2 b)2 , L1 = 0, L2 = 1. Due to the static controller,
it is sufficient to consider the error signal e(t) = yp (tk ) − yp (t). The
function σ of the sampling algorithm (13) is given by σ(ζ) = σc ζ

2

with 0 < σc < λ1 min(p1 , p2 ), and we select βV (s) = σ c
m in(p 1 ,p 2 ) s.

Therefore, the global exponential stability of the event-triggered im-
plementation of the control system follows from Theorem 2. The decay
rate γ is obtained by solving the equation 2γ = λ1 − σ c

m in(p 1 ,p 2 ) e
2γ h

for a given h > 0. Let consider the parameter values a = 10, b = 28,
c = 8/3 used in [24]; then, we set p1 = 3, p2 = 3a, η = 0.03,
λ = 0.04, and it is obtained that T (η, θ, λ, L) = 0.0021. Table I
provides the average of all the interevent times of 100 executions of
the system with random initial conditions3 ‖x(0)‖ ≤ 10, a simulation
time of 10 s, T = 0.002, and several values of the design parameters.
In addition, the lower bound of the decay rate is also shown in Table I.
It can be observed that an increment on both σc and h leads to an
increment of the interevent times at the expense of reducing the speed
of convergence. It should be pointed out that the event-triggering
condition proposed in [1] can be directly recovered by setting σc = 0.
In this case, the decay rate is lower bounded by λ1 = 0.73, and the
average of all the interevent times of the 100 executions of the system
is 0.0078. As Table I illustrates, the main advantage of the proposed
algorithm is that it allows us to obtain greater interevent times in
average at the expense of reducing the decay rate.

B. LTI Example With Stable Plant

In this example, we consider a control system studied in [3], where
the matrices are given by

Ap =
[

0 1
−2 −3

]
, Bp = Bw =

[
0
1

]
, Cp =

[
1 0

]

Ac =
[
−2 1
−13 −2

]
, Bc =

[
−2
−5

]
, Cc =

[
5 2

]
. (43)

The system is affected by a disturbance w, and in order to measure
its impact on the system, the performance variable z is defined by the
matrix Cz = [1 0 0 0].

Let set the matrix Us =
[

1 − u 0
0 u

]
with u ∈ (0, 1); then, it can be

expected that for a given σc , higher interevent times can be obtained
by minimizing ‖Ue‖. Hence, let us set the following minimization
problem with decision variables P , Ue , and Uw :{

minα‖Uw ‖ + (1 − α)‖Ue‖
subject to (30)–(32)

(44)

where ς1 = 1 and ς2 = 1 × 10−5 in (31) and (32). The parameter α
allows us to indirectly balance between the interevent times and theL∞-
gain. Considering the value α = 0.9, γ = 0.402, σc = 0.132, h = 1,

3The initial conditions are taking inside a ball for the sake of the reproducibil-
ity of the results.

TABLE II
SIMULATION COMPARISON WITH [3]

‖w‖∞ 0.5 1 5 10

[3], τavg of yp 0.488 0.200 0.042 0.025
[3], τavg of yc 0.169 0.093 0.025 0.017
[3], Nτ 237 429 1898 2884
Proposed, τavg 0.12
Proposed, Nτ 496

TABLE III
EFFECT OF THE NUMBER OF REGIONS N ON THE INTEREVENT TIMES

N 2 10 20 40

max J 7 × 10−4 35 × 10−4 40 × 10−4 41 × 10−4

T 1.1 × 10−7 6.33 × 10−7 6.58 × 10−7 6.66 × 10−7

τavg 0.0269 0.0472 0.0489 0.0494

and u = 0.01, the optimization problem is solved withUe = 1.56I and
Uw = 0.21. Using the results from the optimization problem, and tak-
ing η = 10 and λ = 0.11, Proposition 1 applies. Therefore, the event-
triggered control system is globally exponentially stable and the
L∞-gain is smaller or equal to 0.46. The minimum interevent time
is given by T (η, 1, λ, L) = 5.19 × 10−6 . For comparison purpose, we
consider the results in [3], which provides the same upper bound of
the L∞-gain. In order to compare both triggering mechanism, let us
consider the disturbance w(t) = ‖w‖∞ sin( π2 t), zero initial condition,
and a simulation time of 30 s. Table II provides the obtained average
interevent times and the number of triggering events, respectively, de-
noted as τavg and Nτ , for several values of ‖w‖∞. The number of the
triggering events is considered as the sum of the sampling of yp and yc .
We notice that the number of triggering events significantly increases
with the increment of ‖w‖∞ for the sampling mechanism in [3], while
it remains constant for the proposed mechanism.

C. LTI Example With Unstable Plant

Let now consider a control system (see [3, Example 2]) composed
of a plant and a controller with matrices

Ap =
[

0 1
−2 3

]
, Bp =

[
0
1

]
, Cp =

[
−1 4

]
Ac =

[
0 1
0 −5

]
, Bc =

[
0
1

]
, Cc =

[
1 −4

]
.

(45)

Let us set the matrix Us =
[ 0 .01 0

0 0 .99

]
. As aforementioned, we can

expect that the maximization of σc and minimization of ‖Ue‖ lead
to greater interevent times, and thus, it is of interest to maximize
J := σ c

‖Ue ‖ . Table III provides the maximum J and T (10, 1, 0.024, L)
as a function of N obtained by Proposition 2 with Υ =

[ 1 0 0 0
0 1 0 0

]
. In

addition, it is shown the average of the interevent times from 100 exe-
cutions of the system with random initial conditions and a simulation
time of 40 s, where the parameters of the proposed algorithm h = 2,
Ue is set to provide the maximum J , and σc is set with the greatest
value that provides a decay rate γ = 0.005. It can be seen that greater
values of J are obtained by increasing the number of regions, which
indirectly entails an improvement of the interevent times.

VI. CONCLUSION

This work proposed an event-triggering mechanism that guarantees
the asymptotic/exponential stability and the IOS of event-triggered
control systems, where both the plant output and the control output
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are subject to sampling. The proposed sampling criterion mixes a
condition based on the history of the outputs and a dwell-time con-
straint. Both nonlinear and linear systems are analyzed. For LTI sys-
tems, the conditions for exponential stability are given in the form of
LMI, and in addition, we provided a procedure to obtain an upper bound
of theL∞-gain. Several numerical examples showed how the interevent
times can be increased by a suitable design of the parameters, but at
the price of reducing the convergence rate of the trajectories. For the
future work, it could be interesting to consider asynchronous sampling
and to apply the proposed mechanism to multiagent systems.

APPENDIX

Lemma 1. (Halanay’s inequality [7]): Let ψ : [−h,∞) → IR+ be
bounded on [−h, 0], h > 0, and continuous on [0,∞). Assume that for
some positive constants λ2 < λ1 , the following inequality holds:

ψ̇ ≤ −λ1ψ(t) + λ2 max
s∈[t−h ,t ]

ψ(s), t ≥ 0. (46)

Then,ψ(t) ≤ e−γ t maxs∈[−h ,0] ψ(s), t ≥ 0, where γ > 0 is the unique
positive solution of the equation γ = λ1 − λ2e

γ h .
Proposition 3: Consider a continuous and differentiable almost ev-

erywhere function ψ : [−h,∞) → IR+ satisfying

ψ̇(t) ≤ −υ1 (ψ(t)) + υ2 (‖ψt‖) (47)

whenever ψ(t) ≥ μ and t ≥ 0, for some μ > 0 and functions υ1 and
υ2 . In addition, assume that there exists a continuous nondecreasing
function ρ(s) > s such that υ(s) := υ1 (s) − υ2 (ρ(s)) is nondecreas-
ing and υ(s) > 0 for all s > 0; then
1) ψ(t) ≤ max(μ, ψ(0), ρ−1 (‖ψ0‖)), t ≥ 0;
2) there exists T = T (ϑ, μ) such that if ‖ψ0‖ ≤ ϑ then ψ(t) ≤ μ for

all t ≥ T and for all ϑ > 0.
Proof: First, we prove Statement 1. To do so, let us consider the

following three cases for some ť ≥ 0:
Case 1: Suppose that ψ(ť) < μ; then, there exists t̂ > ť such that

ψ(t) ≤ μ for all t ∈ [ť, t̂].
Case 2: Suppose that ψ(ť) < ρ−1 (‖ψť‖); then, there exists t̂ > ť

such that ψ(t) < ρ−1 (‖ψť‖) for all t ∈ [ť, t̂].
Case 3: Suppose that ρ−1 (‖ψť‖) ≤ ψ(ť) and μ ≤ ψ(ť); then, (47)

leads to ψ̇(ť) ≤ −υ(ψ(ť)) ≤ 0. Hence, it is impossible for ψ(t) to
exceed ψ(ť), implying ψ(t) ≤ ψ(ť) for all t ≥ ť.

The rest of the proof follows from the combination of the three cases
for all t ≥ 0.

Now, let us focus on Statement 2. For given ϑ, μ > 0, suppose that
μ < ϑ; otherwise, Statement 1 implies Statement 2 with T (ϑ, μ) = 0.
The continuity of ρ implies that there exists an a > 0, such that a <
s− ρ−1 (s) for μ ≤ s ≤ ϑ. In addition, let ν := minμ≤s≤ϑ υ(s). Now,
consider the time τ0 ∈ [−h, 0] such that ψ(τ0 ) = ‖ψ0‖; then, there are
two cases:

Case 1: If ρ−1 (ψ(τ0 )) > ψ(0), then Statement 1 implies ψ(t) ≤
max(ρ−1 (ψ(τ0 )), μ) ≤ max(ψ(τ0 ) − a, μ), ∀t ≥ 0.

Case 2: suppose that ρ−1 (ψ(τ0 )) ≤ ψ(0). If ψ(0) > μ, then there
exists a scalar d with 0 < d ≤ a

ν
such that ψ(t) ≤ ρ(ψ(t)) for all ψ ∈

[0, d], and thus, (47) leads to ψ̇(t) ≤ −υ(ψ(t)) ≤ −ν , t ∈ [0, d]. From
Statement 1, it follows ψ(t) ≤ max(ψ(τ0 ) − a, μ), ∀t ≥ d. Hence,
both cases lead toψ(t) ≤ max(ψ(τ0 ) − a, μ),∀t ≥ a

ν
. Ifψ(τ0 ) − a ≤

μ, then Statement 2 is proved; otherwise, let us pick a time τ1 ∈ [τ0 +
a
ν
, τ0 + a

ν
+ h] such that ψ(τ1 ) = ‖ψτ 0 + a

ν +h ‖. Note that τ1 ≥ τ0 +
a
ν

. Following the reasoning of τ0 , we obtain ψ(t) ≤ max(ψ(τ1 ) −
a, μ), ∀t ≥ τ0 + a

ν
+ h. The process can be repeated for a sequence of

times τ0 < τ1 < τ2 < · · · < τk as long as ψ(τk ) ≥ μ. Therefore, for
a large enough k, there exists time T ≥ τk such that ψ(T ) ≤ μ and
Statement 1 implies ψ(t) ≤ μ for all t ≥ T . �

Lemma 2: For each pair of Lipschitz continuous functions υ1 and
υ2 such that there exists a continuous nondecreasing function ρ(s) > s
satisfying that υ(s) := υ1 (s) − υ2 (ρ(s)) is a nondecreasing function
and υ(s) > 0 for all s > 0, there exists a function β ∈ KL with the
following property: if ψ : [−h,∞) → IR+ is a continuous and differ-
entiable almost everywhere function that satisfies (47) for some given
μ > 0, then it holds that ψ(t) ≤ max(β(‖ψ0‖, t), μ) for all t ≥ 0.

Proof: The proof is divided in five steps.
1) Existence of a global solution to ẏ(t) = −υ1 (y(t)) + υ2 (‖yt‖).

The proof follows from the Lipschitz continuity of υ1 and υ2 and
the results in [6].

2) Existence of T (ϑ, μ) such that if ‖y0‖ ≤ ϑ then y(t) ≤ μ, ∀t ≥
T (ϑ, μ). It follows by Proposition 3.

3) Comparison principle: y0 = ψ0 implies ψ(t) ≤ y(t), ∀t ≥ 0. In
order to prove it, let us define the continuous function d(t) :=
ψ(t) − y(t). Assume that y0 = ψ0 ; then, d(t) = 0, ∀t ∈ [−h, 0].
By way of contradiction, suppose that d(t) > 0 for all t ∈ (0, ε) for
some ε > 0. Considering ε small enough, it follows that ḋ(t) > 0
for all t ∈ (0, ε). Let us now define t̄ := sup{t ∈ [−h, 0] : y(t) =
y0}. If t̄ < 0 then ‖yt‖ = ‖ψt‖ for all t ∈ [0, ε). On the contrary, if
t̄ = 0, then Proposition 3 implies that ẏ(t) < 0 and ψ̇(t) < 0 for all
t ∈ [0, ε), and thus, ‖yt‖ = ‖ψt‖ = ‖y0‖ for all t ∈ [0, ε). There-
fore, from (47), it is obtain that ḋ(t) ≤ −υ1 (ψ(t)) + υ1 (y(t)) <
0, which is a contradiction. Therefore, d(t) ≤ 0 for all t ∈ [0, ε).
Repeating the same procedure, it can be proved that d(t) ≤ 0 for
all t ∈ [0,∞).

4) Steps 2 and 3 lead to ψ(t) ≤ y(t) ≤ μ for all t ≥ T (ϑ, μ) when-
ever ‖ψ0‖ = ‖y0‖ ≤ ϑ.

5) Construction of the function β ∈ KL from T (ϑ, μ). The proof
follows as the proof in [11, Appendix C.6]. �
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[16] D. Nešić, A. R. Teel, and D. Carnevale, “Explicit computation of the
sampling period in emulation of controllers for nonlinear sampled-data
systems,” IEEE Trans. Autom. Control, vol. 54, no. 3, pp. 619–624,
Mar. 2009.

[17] C. Peng and Q. L. Han, “Output-based event-triggered H∞ control for
sampled-data control systems with nonuniform sampling,” in Proc. Amer.
Control Conf., Jun. 2013, pp. 1727–1732.

[18] R. Postoyan, P. Tabuada, D. Nesic, and A. Anta, “A framework for the
event-triggered stabilization of nonlinear systems,” IEEE Trans. Autom.
Control, vol. 60, no. 4, pp. 982–996, Apr. 2015.

[19] J. H. Sandee, W. P. M. H. Heemels, S. B. F. Hulsenboom, and P. P.
J. van den Bosch, “Analysis and experimental validation of a sensor-
based event-driven controller,” in Proc. Amer. Control Conf., 2007,
pp. 2867–2874.

[20] A. Seuret, C. Prieur, and N. Marchand, “Stability of non-linear systems
by means of event-triggered sampling algorithms,” IMA J. Math. Control
Inf., vol. 31, no. 3, pp. 415–433, 2014.

[21] P. Tabuada, “Event-triggered real-time scheduling of stabilizing control
tasks,” IEEE Trans. Autom. Control, vol. 52, no. 9, pp. 1680–1685,
Sep. 2007.

[22] A. Tanwani, C. Prieur, and M. Fiacchini, “Observer-based feedback sta-
bilization of linear systems with event-triggered sampling and dynamic
quantization,” Syst. Control Lett., vol. 94, pp. 46–56, 2016.

[23] A. Tanwani, A. R. Teel, and C. Prieur, “On using norm estimators for
event-triggered control with dynamic output feedback,” in Proc. IEEE
Conf. Decision Control, 2015, pp. 5500–5505.

[24] C. Wan and D. Bernstein, “Nonlinear feedback control with global stabi-
lization,” Dyn. Control, vol. 5, pp. 321–346, 1995.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


