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a b s t r a c t 

This paper addresses modeling, identification, and observer design of the Hall-Héroult process. This pro- 

cess is the main core of aluminum manufacturing. More specifically, by building upon a blend of physical- 

chemical constitutive relations and system identification tools, this paper first provides a model describ- 

ing the interplay of Anode-Cathode Distance (ACD), alumina concentration, and pot pseudo-resistance. 

The proposed model is then used to tune a linear Kalman filter generating online estimates of the plant 

state variables. The proposed approach is validated via data taken from a real industrial plant. 

© 2022 European Control Association. Published by Elsevier Ltd. All rights reserved. 
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. Introduction 

Aluminum is produced in large scale via the Hall-Heroult elec- 

rolysis process since the 19th century [5] . This process is carried 

ut by dipping carbon anodes into a cryolite bath solution that 

ontains dissolved alumina ( Al 2 O 3 ). A high intensity electric cur- 

ent is applied to the system and the chemical process produces 

iquid aluminum cumulating at the bottom of the cell, and releases 

arbon dioxide. The process is summarized by the following chem- 

cal reaction: 

l 2 O 3(diss ) + 

3 

2 

C (anode ) → 2 Al (l) + 

3 

2 

CO 2(g) (1) 

A schematic representation of a simple pot cell is shown in 

ig. 1 . To enhance production, industrial plants have a large num- 

er of anodes connected in parallel by a common bar for each elec- 

rolysis cell. The height of this bar can be adjusted to change the 

node-Cathode Distance ( ACD ). This distance is not constant dur- 

ng the operation due to the chemical reaction. Indeed, the car- 

on anodes are consumed and they are replaced after some time, 

hile the liquid aluminum layer increases because of the produc- 
� This research was partially supported by project FUI-AAP 25 PIANO. 
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ion. Furthermore, perturbations of the current and bath compo- 

ition can affect the ACD . However, the hazardous conditions in- 

ide the pot make it impossible to develop a sensor for continuous 

easurement of the system state. The ACD value is critical since a 

arge distance decreases the pot cell efficiency and a small value 

an cause a short-circuit between the produced aluminum and the 

node [3,11] . A recent study shows that an effective ACD regula- 

ion can improve cell energy consumption [4] and consequently 

ncrease the efficiency as shown in [17] . Unfortunately, the mecha- 

isms behind this process are complex and only a few papers have 

odeled this dynamical behavior in detail [9,18] . 

The dissolved alumina concentration ( wAl 2 O 3 ) is also an impor- 

ant quantity that is not continuously measured. Usually, alumina 

s injected in powder state by individual feeders distributed along 

he cell according to a predefined sequence. Low values of alu- 

ina concentration can cause the so-called anode effect , a delete- 

ious phenomenon leading to the production of greenhouse gases 

1] . However, a large alumina powder injection does not induce an 

nstantaneous change in the concentration and it can possibly pro- 

uce sludge phenomena. This is an undesired condition since the 

ccumulation of undissolved alumina in the bath can lead to cell 

amages [2] . Commonly, just a few measurements of the alumina 

oncentration per week are manually taken, which makes it diffi- 

ult to obtain an experimental model. 

In actual plants, only the line current applied to the sys- 

em ( I), the pot cell voltage ( V ), the busbar motion ( BM), and
rved. 
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Fig. 1. Pot schematic view. 
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Section 5 . 
he frequency of the alumina feeding ( F ) are continuously col- 

ected by sensors. For the system regulation, an indirect measure- 

ent called “pseudo-resistance” ( R ) is commonly used to adjust 

CD and wAl 2 O 3 . Based on the pseudo-resistance value, the alu- 

ina feeding frequency is modified, alternating between two pre- 

etermined periods to have faster or slower feeding [18] . Moreover, 

he pseudo-resistance is adjusted via the ACD regulation to ensure 

ystem stability and obtain a good current efficiency [8] . From this 

omplex relation, it is not easy to obtain information about the in- 

tantaneous values of ACD and wAl 2 O 3 . Therefore, it is important 

o model this process to be able to generate online estimations for 

hose quantities. 

Some researchers have been developing nonlinear estimators to 

vercome this information limitation and obtain the desired pro- 

ess states [7,9,12] . However, those works are mostly based on the 

xtended Kalman Filter [13] , i.e. on approximate model lineariza- 

ion on the one hand (facing all related drawbacks), and do not 

ely much on the underlying physics of the process on the other 

and. 

In this context, and on the basis of a plant in actual indus- 

rial operation, the present paper proposes a modeling methodol- 

gy for Hall-Héroult process, which enables real time estimation 

f ACD and wAl 2 O 3 , as an extension of our preliminary works of

a Silva Moreira et al. [14] , 15 ]. Despite its simplicity, our model

aptures the main features of regular operations conditions by 

ombining physical-chemical aspects with experimental models. 

urthermore, in spite of its nonlinearity, we show how tools from 

inear systems theory can be used by separating the estimation 

roblem in two steps: identification in a first one, with least square 

ptimization, and state observer design in a second one, via an ap- 

ropriate rewriting and an exact linear Kalman Filter approach (re- 

erring to formal results of [16] for instance). Finally, the proposed 
2 
ethod is validated on industrial data, taken in actual operational 

onditions. This paper extends our previous work in multiple di- 

ections [14,15] : 

First, the ACD physical model is here explained in details by a 

hemical balance analysis. 

Additionally, a simplification in the alumina concentration is 

one by avoiding any time delay. This is reasonable since the avail- 

ble alumina measurements have been taken at intervals of several 

ours. 

Moreover, the alumina dissolving dynamics has a time re- 

ponse of several minutes. Thus, a delay of one minute, or even 

lightly more, is not expected to relevantly affect the value of the 

lumina at the measurement instants and then a relatively ac- 

urate alumina model can be identified even by neglecting the 

elay. 

Furthermore, the pot pseudo-resistance is represented by a spe- 

ific polynomial function with new identification procedure. 

Finally, validation tests are carried out with new sets of data to 

nsure robustness, collected from industrial APXe pot cell of Rio 

into Laboratoire des Recherches de Fabrications (LRF) located in 

aint Jean de Maurienne, France, in regular operation. The data 

sed in this paper was collected during daily industrial operations. 

herefore, all the parameters identification and state estimation 

rocedures are performed with real signals that are generated aim- 

ng at operation safety and production goals. Notice that for confi- 

entiality reasons, the data details in the y-axis of all plots and the 

alues of the estimated coefficients are not shown. 

The paper is organized as follows: Section 2 presents the pro- 

osed physical-based modeling equations, and Section 3 discusses 

he related identification approach. Section 4 shows the use of 

his model for state estimation. The conclusions are presented in 
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. Modeling 

The complex electrochemical process under consideration is 

odeled in discrete-time since the goal is a real-time application 

f Linear Kalman Filter tools. It is aimed to capture the average dy- 

amics of the pot cell. Hence, the respective states represent global 

ndicators of the plant. This means that local conditions such as 

he current distribution and anode change effect are not taken into 

ccount explicitly. In this context, the models of the unmeasured 

uantities ACD and wAl 2 O 3 are related to the available inputs, i.e. 

eam motion and frequency of feeders, as well as the measured 

isturbance of the electric line current. Then, the system output, 

.e. the pseudo-resistance, is related to the modeled states. The 

odel is obtained using a hybrid approach that combines physical- 

hemical aspects and information extracted from data. Moreover, 

he sampling time of 1 minute is selected because the time con- 

tant for the dissolution of alumina is in this order of magnitude 

nd to avoid the noise influence [19] . 

.1. Anode-cathode distance 

From the problem description, it is possible to define the 

erivative of the ACD ( d 
dt 

ACD ) as a result of the height variations

f the aluminum ( d 
dt 

Al height ), the carbon ( d 
dt 

C height ) layer, and the

nodes busbar beam position ( d 
dt 

BM): 

d 

dt 
ACD = 

d 

dt 
Al height −

d 

dt 
C height + 

d 

dt 
BM (2) 

Each layer height can be written as a function of the mass pro- 

uction using the corresponding densities. Hence, the aluminum 

nd carbon height variations become: 

d 

dt 
Al height = 

1 

ρAl S 

[
d 

dt 
m Al 

]
(3) 

d 

dt 
C height = 

1 

ρC S 

[
d 

dt 
m C 

]
(4) 

here ρAl is the liquid aluminum density, m Al is the aluminum 

roduced mass, ρC is the carbon density, m C is the carbon pro- 

uced mass, and S is the average reaction surface area. 

The produced aluminum mass rate ( d 
dt 

m Al ) is given by Faraday’s 

aw of electrolysis [20] : 

d 

dt 
m Al = 

C e Al m 

3 F 
I (5) 

here C e is the current efficiency, Al m 

is the aluminum molar mass, 

is the line current, F is the Faraday’s constant, and 3 corresponds 

o the valency number of aluminum ions obtained via the follow- 

ng reaction: 

 Al 3+ + 6 O 

2 − + 3 C (anode ) → 4 Al (l) + 3 CO 2(g) (6)

From the chemical balance in (1) , it is possible to relate the alu-

inum mass production with the carbon mass consumption. This 

eads to the following expression for the carbon mass consumption 

ate d 
dt 

m C : 

d 

dt 
m C = 

C m 

4 F 
I (7) 

here C m 

is the carbon molar mass and 4 is the stoichiometric 

oefficient. 

Hence, Eq. (2) can be rewritten using the above expressions as: 

d 

dt 
ACD = 

1 

SF 

(
C e Al m 

3 ρAl 

− C m 

4 ρC 

)
I + 

d 

dt 
BM (8) 
3 
The beam position variation is considered as one of the system 

nputs ( U 1 ): 

 1 := 

d 

dt 
BM (9) 

Hence, by defining β as: 

:= 

1 

SF 

(
C e Al m 

3 ρAl 

− C m 

4 ρC 

)
(10) 

nd using Eq. (10) in (8) , the ACD dynamics result as: 

d 

dt 
ACD = βI + U 1 (11) 

In discrete-time, Eq. (11) becomes: 

CD [ n + 1] = ACD [ n ] + βi [ n ] + u 1 [ n ] (12)

CD [ n ] stands for ACD (nT s ) for a sampling time T s , i and u 1 are dis-

retized integrals of I and U 1 respectively over T s with N s samples, 

s: 

 1 [ n ] = 

T s 

N s 

N s −1 ∑ 

k =0 

U 1 

((
k 

N s 
+ n 

)
T s 

)
(13) 

 [ n ] = 

T s 

N s 

N s −1 ∑ 

k =0 

I 

((
k 

N s 
+ n 

)
T s 

)
(14) 

emark 1. As it is not possible to measure the ACD during the op- 

ration of the plant, β cannot be obtained experimentally. Hence, 

his parameter is calculated using theoretical values for a regular 

ot operation. 

.2. Alumina concentration 

The variation of the alumina concentration wAl 2 O 3 can be mod- 

led as the difference between the quantity injected by the feed- 

rs ( wAl 2 O 3 in ) and the one consumed by the chemical reaction 

 wAl 2 O 3 cons ): 

d 

dt 
wAl 2 O 3 = wAl 2 O 3 in − wAl 2 O 3 cons (15) 

The quantity injected by the feeders at time t can be repre- 

ented by: 

Al 2 O 3 in = 

N g m in 

M 

F (16) 

here N g is the number of feeders in the pot, m in is the amount 

f mass injected by feeders, M is the total bath mass, and F is the 

requency of feeders. As the sampling time for this process is typ- 

cally large, we assume that the alumina dissolving dynamics can 

e neglected. 

The frequency of the feeders is considered as a second system 

nput: 

 2 := F (17) 

Then, Eq. (16) becomes: 

Al 2 O 3 in = 

N g m in 

M 

U 2 (18) 

The Al 2 O 3 consumption is given by the Faraday’s law divided by 

he bath mass: 

Al 2 O 3 cons = 

Al 2 O 3 m 

C e 

6 F M 

I (19) 

here Al 2 O 3 m 

is the alumina molar mass and 6 is the number of 

lectrons required for the electrolysis to perform. Replacing Eqs. 

18) and (19) into (15) : 

d 

dt 
wAl 2 O 3 = 

N g m in 

M 

U 2 − Al 2 O 3 m 

C e 

6 F M 

I (20) 
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Fig. 2. Typical pot resistance curve as a function of alumina concentration and ACD . 
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nd defining: 

1 = 

N g m in 

M 

, α2 = 

Al 2 O 3 m 

C e 

6 F M 

(21) 

q. (20) can be written as: 

d 

dt 
wAl 2 O 3 = α1 U 2 − α2 I (22) 

A discrete-time model for wAl 2 O 3 can then be obtained using a 

imilar procedure for ACD : 

Al 2 O 3 [ n + 1] = wAl 2 O 3 [ n ] + α1 u 2 [ n ] − α2 i [ n ] (23)

ith same notations as before, and: 

 2 [ n ] = 

T s 

N s 

N s −1 ∑ 

k =0 

U 2 

((
k 

N s 
+ n 

)
T s 

)
(24) 

.3. Pseudo-resistance 

Now that ACD and wAl 2 O 3 models are available, it is necessary 

o relate them with the output signal, pseudo-resistance R . From 

he physical modeling described in [6] , it is possible to plot a curve

hat relates ACD , wAl 2 O 3 and R as shown in Fig. 2 . 

However, this relation is complex and takes into account other 

uantities that cannot be continuously measured. One possible so- 

ution to directly relate ACD and wAl 2 O 3 is to approximate the 

urve with a polynomial function around the desired operational 

ange. In particular, by denoting the ACD as z 1 , wAl 2 O 3 as z 2 and

onsidering an alumina concentration range between 2% and 4% , 

he curve can be approximated as follows: 

 = c(z 2 ) 
2 + (d + ez 1 ) z 2 + ( f + gz 1 ) (25)

here c, d, e , f , and g are constant parameters to be determined. 

y differentiating Eq. (25) , parameter f disappears and it is pos- 

ible to obtain a dynamical model for the variation of pseudo- 

esistance as: 

d 

dt 
R = ez 1 

d 

dt 
z 2 + 

(
2 c 

d 

dt 
z 2 + e 

d 

dt 
z 1 

)
z 2 + d 

d 

dt 
z 2 + g 

d 

dt 
z 1 (26) 

rom Eqs. (11) and (22) , the pseudo-resistance as a function of the 

vailable inputs is given by: 
4 
d 

dt 
R = ez 1 ( α1 u 2 − α2 i ) + [ 2 c ( α1 u 2 − α2 i ) + e ( βi + u 1 ) ] z 2 

+ d ( α1 u 2 − α2 i ) + g ( βi + u 1 ) (27) 

Using the discretization method described in previous subsec- 

ions, it is possible to obtain the following model for the resistance 

ariations: 

 [ n + 1] = R [ n ] + e �z 2 [ n ] z 1 [ n ] + (2 c�z 2 [ n ] + e �z 1 [ n ]) z 2 [ n ] 

+ d�z 2 [ n ] + g�z 1 [ n ] (28) 

here: 

z 1 [ n ] := u 1 [ n ] + βi [ n ] (29)

z 2 [ n ] := α1 u 2 [ n ] − α2 i [ n ] (30) 

. Identification 

Using the data collected from daily operational conditions, it is 

ossible to identify parameters α1 and α2 in wAl 2 O 3 model Eq. 

23) . Then, the estimation can be performed for parameters c, d, 

 and g for R model Eq. (28) . Next, it is presented an identification

rocedure, along with the corresponding validation. 

.1. Alumina concentration 

During an operational day, just few alumina concentration mea- 

urements are recorded, and without constant sampling time. 

ence, to identify parameters α1 and α2 , using the data collected 

t N a times 
[
n 1 T s n 1 T s · · · n N a T s 

]
in seconds, Eq. (23) can be 

rranged in matrix form using the accumulation of u 2 and i signals 

n these intervals, as follows: 
 

 

 

 

 

wAl 2 O 3 [ n 2 ] − wAl 2 O 3 [ n 1 ] 

wAl 2 O 3 [ n 3 ] − wAl 2 O 3 [ n 2 ] 

. . . 

wAl 2 O 3 [ n N ] − wAl 2 O 3 [ n N−1 ] 

⎤ 

⎥ ⎥ ⎥ ⎦ 

= 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

∑ n 2 −1 
k = n 1 u 2 [ k ] −∑ n 2 −1 

k = n 1 i [ k ] ∑ n 3 −1 
k = n 2 u 2 [ k ] −∑ n 3 −1 

k = n 2 i [ k ] 

. . . 
. . . ∑ n N −1 

k = n N−1 
u 2 [ k ] −∑ n N −1 

k = n N−1 
i [ k ] 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

[
α1 

α2 

]
(31) 

Based on the structure of Eq. (31) , it is possible to perform a 

east square estimation for parameters α1 and α2 . The experimen- 

al model is validated by a comparison between the simulated val- 

es of alumina concentration with estimated parameters and the 

lumina concentration values collected on the plant. Notice that 

he data used for validation are different from those used for the 

dentification. The model is initialized with a real measurement. 

or every new alumina concentration sample collected, the model 

s reinitialized to improve the accuracy. 

Fig. 3 shows first the comparison between simulated and alu- 

ina concentration values, then the absolute relative error at mea- 

urement times, and the frequency of feeders and the line cur- 

ent. The model is initialized with measurement and the simu- 

ation is started using signals u 2 and i . Every time a new alu- 

ina concentration measurement is available, the model is reini- 

ialized to improve the accuracy of the prediction provided by the 

odel. 

By analyzing the absolute relative error plot and the inputs, it 

urns out that the model presents a very good fit for regular op- 

ration, when current is not affected by a disturbance or absence 
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Fig. 3. Alumina concentration model validation. 

Fig. 4. Resistance model validation. 

o

t

p

e  

u

c

3

e

a

s

f feeding. In particular, the mean absolute relative error is smaller 

han 1 % for this condition. For the general situation, over the full 

eriod of time which is displayed, the model presents an average 

rror of 9 . 2376% . Therefore, this model should be used for a reg-

lar pot operation to estimate the alumina concentration in the 

ollected position. 
5 
.2. Pseudo-resistance 

In Eq. (28) , the parameter identification requires initial knowl- 

dge. On wAl 2 O 3 , which can be available at some specific times but 

lso on ACD , which is not measurable during usual operation. One 

olution is to initialize the procedure at a time when wAl2 O 3 is 
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Fig. 5. State Estimation for a long period - Each dashed line is a state estimation with different initial condition and the solid line is the measurement. 

r

i  

t

(⎡
⎢⎣

w
eliable, and ACD can be inferred from specific physical knowledge, 

n a similar way as in as [6] for instance. Then, using N samples at

imes as 
[
0 , T s , · · · (N − 1) T s 

]
, it is possible to organize Eq. 

28) as follows: 

 

 

 

�R [1] 

. . . 

�R [ N] 

⎤ 

⎥ ⎦ 

= 

⎡ 

⎢ ⎣ 

a 11 a 12 a 13 a 14 

. . . 
. . . 

. . . 
. . . 

a N1 a N2 a N3 a N4 

⎤ 

⎥ ⎦ 

⎡ 

⎢ ⎢ ⎣ 

c 

d 

e 

g 

⎤ 

⎥ ⎥ ⎦ 

(32) 
6 
here: 

a 11 = 2�z 2 [0] z 2 [0] 

a 12 = �z 2 [0] 

a 13 = �z 2 [0] z 1 [0] + �z 1 [0] z 2 [0] 

a 14 = �z 1 [0] 

. . . 
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Fig. 6. State Estimation for a short period - Each dashed line is a state estimation with different initial condition and the solid line is the measurement. 
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 N1 = 2�z 2 [ N − 1] 

( 

z 2 [0] + 

N−1 ∑ 

k =0 

(α1 u 2 [ k ] − α2 i [ k ]) 

) 

 N2 = �z 2 [ N − 1] 

 N3 = �z 2 [ N − 1] 

( 

z 1 [0] + 

N−1 ∑ 

k =0 

(u 1 [ k ] + βi [ k ]) 

) 

+ �z 1 [ N − 1] 

( 

z 2 [0] + 

N−1 ∑ 

k =0 

(α1 u 2 [ k ] − α2 i [ k ]) 

) 

 N4 = �z 1 [ N − 1] 

ith notations �z 1 , �z 2 of Eqs. (29) - (30) , and: 

R [ k ] = R [ k ] − R [ k − 1] (33)

or k ≥ 1 . 

At this stage, the parameters can be identified using again a 

east square estimation algorithm. In Fig. 4 , a comparison between 

he model output and actual measurements is shown. 

The mean absolute error computed for this dataset is 2.21 % . 

owever, Fig. 4 shows a small drift. This happens because the 

odel (28) is an integrator. Therefore, the difference between the 

odel and the measurements accumulates because of the integra- 

or dynamics. Apart from this, it can be concluded that the pro- 

osed estimations are accurate. 

. State estimation 

Based on the models established in Section 2 with the param- 

ter identified in Section 3 , the problem of state estimation can 

ow be addressed. Considering the current intensity as a measured 
7 
isturbance in the system, it is possible to define a discrete-time 

arying state-space model of the plant as follows: 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x [ n + 1] = 

⎡ 

⎣ 

1 a 12 [ n ] a 13 [ n ] 

0 1 0 

0 0 1 

⎤ 

⎦ 

︸ ︷︷ ︸ 
A [ n ] 

x [ n ] + 

⎡ 

⎣ 

b 1 [ n ] 

b 2 [ n ] 

b 3 [ n ] 

⎤ 

⎦ 

︸ ︷︷ ︸ 
B [ n ] 

y [ n ] = 

[
1 0 0 

]︸ ︷︷ ︸ 
C 

x [ n ] 

(34) 

here: 

 12 [ n ] = e (α1 u 2 [ n ] − α2 i [ n ]) (35) 

 13 [ n ] = (2 c(α1 u 2 [ n ] − α2 i [ n ]) + e (u 1 [ n ] + βi [ n ]) (36) 

 1 [ n ] = (d(α1 u 2 [ n ] − α2 i [ n ]) + g(u 1 [ n ] + βi [ n ])) (37) 

 2 [ n ] = (u 1 [ n ] + βi [ n ]) (38) 

 3 [ n ] = (α1 u 2 [ n ] − α2 i [ n ]) (39) 

ith all those varying parameters being known quantities and the 

tate vector given by: 

 [ n ] = 

⎡ 

⎣ 

R [ n ] 

ACD [ n ] 

wAl 2 O 3 [ n ] 

⎤ 

⎦ ∈ R 

3 (40) 
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Table 1 

Estimations final values comparison. 

Mean absolute relative error 

R 0.07 % 

wAl 2 O 3 4.19 % 
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Notice that model (34) is affine in the state. This makes it pos- 

ible to design an exact linear observer for the nonlinear model by 

eeding it with measured quantities of Eqs. (35) - (39) . To perform 

his state estimation, a Time-Varying Linear Kalman Filter [10] is 

sed as a state observer. In particular, Kalman Filter equations are 

iven as follows: 

 rediction : 

ˆ x [ n + 1] − = A [ n ] ̂ x [ n ] + B [ n ] 

P [ n + 1 | n ] = A [ n ] P [ n | n ] A [ n ] T + Q noise 

Update: 

K[ n ] = P [ n | n − 1] C T (CP [ n | n − 1] C T + R noise ) 
−1 

ˆ x [ n ] = 

ˆ x [ n ] − + K[ n ](y [ k ] − C ̂  x [ n ] −) 

P [ n | n ] = (I − K[ n ] C) P [ n | n − 1] 

here ˆ x is the state estimate vector, P is the covariance matrix, 

 noise is the process noise intensity matrix and R noise is the mea- 

urement noise matrix. To implement the observer, it is necessary 

o tune the covariance and noise matrices. For the considered data, 

he initial covariance matrix P [0 | 0] is set to: 

 [0 | 0] = 

⎡ 

⎣ 

1 0 0 

0 10 0 

0 0 1 

⎤ 

⎦ (41) 

The largest entry in the P matrix is related to the ACD [14] . As

t is not possible to measure this state, it is given a larger prior-

ty. The process and measurement noise matrices, Q noise and R noise 

espectively are chosen from various trials (as in [14] ) 

Q noise = 

⎡ 

⎣ 

10 

−5 0 0 

0 10 

−5 0 

0 0 10 

−5 

⎤ 

⎦ , R noise = 10 

−5 (42) 

The proposed observer is tested on data sets with different ini- 

ial conditions. For each test, a different combination of ACD and 

Al 2 O 3 initial values is used in a certain operational range, while 

he values of R are initialized using real measurements. The result- 

ng estimates are shown in Fig. 5 with a zoom on initial times in

ig. 6 . The solid line is the pot resistance measurement, the dashed 

ines are the states estimates and the “x” markers are the alumina 

oncentration measurements. 

From both figures, it is possible to notice a fast convergence, 

or all estimates regardless of the initial conditions. In addition, 

ig. 5 also shows the estimates provided by the observer over a 

ong period and compares those with the measurements of wAl 2 O 3 . 

he values of the mean absolute error reported in Table 1 con- 

rm the effectiveness of the proposed estimation strategy: good 

esults are indeed achieved jointly for resistance and alumina 
8 
oncentration estimation, while relying on a single model combin- 

ng their evolution. This validates the overall model and makes the 

stimation results for ACD (which are consistent with usual indus- 

rial knowledge) quite trustable. 

. Conclusions 

In this paper, a modeling approach to capture the main dy- 

amics of the Hall-Héroult process has been proposed. In particu- 

ar, a state affine representation has been obtained, that combines 

hysical-chemical aspects and experimental data. On this basis, a 

inear Kalman filter is provided to estimate the states of the sys- 

em. The model and observer have been validated with experimen- 

al data. The proposed observer strategy proved to be reliable in 

roviding accurate estimates of the plant states for unknown initial 

onditions. The use of these results for monitoring and closed-loop 

ontrol are part of our ongoing work. 
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[16] A. Ţ iclea , G. Besançon , Systems & Control Letters 62 (9) (2013) 756–763 . 
[17] D.S. Wong , G. Matthews , A.T. Tabereaux , T. Buckley , M.M. Dorreen , in: Light

Metals 2020, Springer, 2020, pp. 791–802 . 
[18] Y. Yao , C.-Y. Cheung , J. Bao , M. Skyllas-Kazacos , B.J. Welch , S. Akhmetov , AIChE

Journal 63 (7) (2017) 2806–2818 . 
[19] S.-q. Zhan , L. Mao , J.-m. Zhou , J.-h. Yang , Y.-w. Zhou , Transactions of Nonferrous

Metals Society of China 25 (5) (2015) 1648–1656 . 

20] C.G. Zoski , Handbook of Electrochemistry, Elsevier, 2006 . 

http://refhub.elsevier.com/S0947-3580(21)00140-0/sbref0001
http://refhub.elsevier.com/S0947-3580(21)00140-0/sbref0001
http://refhub.elsevier.com/S0947-3580(21)00140-0/sbref0002
http://refhub.elsevier.com/S0947-3580(21)00140-0/sbref0002
http://refhub.elsevier.com/S0947-3580(21)00140-0/sbref0003
http://refhub.elsevier.com/S0947-3580(21)00140-0/sbref0003
http://refhub.elsevier.com/S0947-3580(21)00140-0/sbref0003
http://refhub.elsevier.com/S0947-3580(21)00140-0/sbref0003
http://refhub.elsevier.com/S0947-3580(21)00140-0/sbref0003
http://refhub.elsevier.com/S0947-3580(21)00140-0/sbref0004
http://refhub.elsevier.com/S0947-3580(21)00140-0/sbref0004
http://refhub.elsevier.com/S0947-3580(21)00140-0/sbref0004
http://refhub.elsevier.com/S0947-3580(21)00140-0/sbref0005
http://refhub.elsevier.com/S0947-3580(21)00140-0/sbref0005
http://refhub.elsevier.com/S0947-3580(21)00140-0/sbref0005
http://refhub.elsevier.com/S0947-3580(21)00140-0/sbref0006
http://refhub.elsevier.com/S0947-3580(21)00140-0/sbref0006
http://refhub.elsevier.com/S0947-3580(21)00140-0/sbref0007
http://refhub.elsevier.com/S0947-3580(21)00140-0/sbref0007
http://refhub.elsevier.com/S0947-3580(21)00140-0/sbref0007
http://refhub.elsevier.com/S0947-3580(21)00140-0/sbref0008
http://refhub.elsevier.com/S0947-3580(21)00140-0/sbref0008
http://refhub.elsevier.com/S0947-3580(21)00140-0/sbref0008
http://refhub.elsevier.com/S0947-3580(21)00140-0/sbref0008
http://refhub.elsevier.com/S0947-3580(21)00140-0/sbref0009
http://refhub.elsevier.com/S0947-3580(21)00140-0/sbref0009
http://refhub.elsevier.com/S0947-3580(21)00140-0/sbref0009
http://refhub.elsevier.com/S0947-3580(21)00140-0/sbref0009
http://refhub.elsevier.com/S0947-3580(21)00140-0/sbref0009
http://refhub.elsevier.com/S0947-3580(21)00140-0/sbref0010
http://refhub.elsevier.com/S0947-3580(21)00140-0/sbref0010
http://refhub.elsevier.com/S0947-3580(21)00140-0/sbref0011
http://refhub.elsevier.com/S0947-3580(21)00140-0/sbref0011
http://refhub.elsevier.com/S0947-3580(21)00140-0/sbref0011
http://refhub.elsevier.com/S0947-3580(21)00140-0/sbref0011
http://refhub.elsevier.com/S0947-3580(21)00140-0/sbref0011
http://refhub.elsevier.com/S0947-3580(21)00140-0/sbref0012
http://refhub.elsevier.com/S0947-3580(21)00140-0/sbref0012
http://refhub.elsevier.com/S0947-3580(21)00140-0/sbref0012
http://refhub.elsevier.com/S0947-3580(21)00140-0/sbref0012
http://refhub.elsevier.com/S0947-3580(21)00140-0/sbref0013
http://refhub.elsevier.com/S0947-3580(21)00140-0/sbref0013
http://refhub.elsevier.com/S0947-3580(21)00140-0/sbref0013
http://refhub.elsevier.com/S0947-3580(21)00140-0/sbref0014
http://refhub.elsevier.com/S0947-3580(21)00140-0/sbref0014
http://refhub.elsevier.com/S0947-3580(21)00140-0/sbref0014
http://refhub.elsevier.com/S0947-3580(21)00140-0/sbref0014
http://refhub.elsevier.com/S0947-3580(21)00140-0/sbref0014
http://refhub.elsevier.com/S0947-3580(21)00140-0/sbref0014
http://refhub.elsevier.com/S0947-3580(21)00140-0/sbref0015
http://refhub.elsevier.com/S0947-3580(21)00140-0/sbref0015
http://refhub.elsevier.com/S0947-3580(21)00140-0/sbref0015
http://refhub.elsevier.com/S0947-3580(21)00140-0/sbref0015
http://refhub.elsevier.com/S0947-3580(21)00140-0/sbref0015
http://refhub.elsevier.com/S0947-3580(21)00140-0/sbref0015
http://refhub.elsevier.com/S0947-3580(21)00140-0/sbref0016
http://refhub.elsevier.com/S0947-3580(21)00140-0/sbref0016
http://refhub.elsevier.com/S0947-3580(21)00140-0/sbref0016
http://refhub.elsevier.com/S0947-3580(21)00140-0/sbref0017
http://refhub.elsevier.com/S0947-3580(21)00140-0/sbref0017
http://refhub.elsevier.com/S0947-3580(21)00140-0/sbref0017
http://refhub.elsevier.com/S0947-3580(21)00140-0/sbref0017
http://refhub.elsevier.com/S0947-3580(21)00140-0/sbref0017
http://refhub.elsevier.com/S0947-3580(21)00140-0/sbref0017
http://refhub.elsevier.com/S0947-3580(21)00140-0/sbref0018
http://refhub.elsevier.com/S0947-3580(21)00140-0/sbref0018
http://refhub.elsevier.com/S0947-3580(21)00140-0/sbref0018
http://refhub.elsevier.com/S0947-3580(21)00140-0/sbref0018
http://refhub.elsevier.com/S0947-3580(21)00140-0/sbref0018
http://refhub.elsevier.com/S0947-3580(21)00140-0/sbref0018
http://refhub.elsevier.com/S0947-3580(21)00140-0/sbref0018
http://refhub.elsevier.com/S0947-3580(21)00140-0/sbref0019
http://refhub.elsevier.com/S0947-3580(21)00140-0/sbref0019
http://refhub.elsevier.com/S0947-3580(21)00140-0/sbref0019
http://refhub.elsevier.com/S0947-3580(21)00140-0/sbref0019
http://refhub.elsevier.com/S0947-3580(21)00140-0/sbref0019
http://refhub.elsevier.com/S0947-3580(21)00140-0/sbref0019
http://refhub.elsevier.com/S0947-3580(21)00140-0/sbref0020
http://refhub.elsevier.com/S0947-3580(21)00140-0/sbref0020

	Modeling and observer design for aluminum manufacturing
	1 Introduction
	2 Modeling
	2.1 Anode-cathode distance
	2.2 Alumina concentration
	2.3 Pseudo-resistance

	3 Identification
	3.1 Alumina concentration
	3.2 Pseudo-resistance

	4 State estimation
	5 Conclusions
	Declaration of Competing Interest
	References


