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Abstract
The recent progress in immunology lead to a considerable interest in model-
ing cancer dynamics in order to better understand and analyze such complex
systems. Many works have been carried out in order to design cancer treatment
protocols using mathematical models. One of the main complexities of such
models is the presence of different types of uncertainties, which remains less
considered in the literature. This article deals with the estimation of regions
of attraction (RoAs) under parametric uncertainties for a cancer growth model
with combined therapies. We propose a framework of probabilistic certifica-
tion, based on the randomized methods, in order to derive probabilistically
certified RoAs of a cancer growth model. The model considered in this article
describes the interaction between a tumor and the immune system in presence
of a combined chemo- and immunotherapy treatment, with considerations on
pharmacokinetics and pharmacodynamics of both treatments.
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1 INTRODUCTION

The last decades witnessed a considerable progress in experimental and clinical immunology as well as in model-
ing the immune system dynamics.1 The progress in cancer dynamics modeling motivated researchers to apply control
approaches in order to schedule cancer treatments using optimal control strategies. We can find in the literature many
works regarding the application of optimal control approaches on cancer treatment problems. For instance Reference 2,
where optimal protocols for anti-angiogenic therapy were investigated, or Reference 3 where linear controls were designed
for a tumor-immune interactions model with chemotherapy delivery. However, only few works addressed the problem of
handling parametric uncertainties. One can cite for example, Reference 4 where a robust feedback scheme is proposed
to schedule anti-angiogenic treatment combined with chemotherapy, Reference 5 where an H∞-based robust control was
applied to the same model and Reference 6 where a general framework for probabilistic certification of cancer therapies
was proposed.

The estimation of the region of attraction for cancer models is an interesting problem since it provides a set of possible
initial conditions (tumor volume and immune density for example) that can be driven to a desired target set (benign
region). This problem becomes complex when dealing with nonlinear systems and even more challenging for uncertain
systems. There are some works which dealt with the problem of estimating the RoA for cancer models, we cite for example
References 7 and 8, where the authors proposed different Lyapunov functions based approaches, to estimate the domain
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of attraction of the tumor free equilibrium point corresponding to autonomous cancer growth models, where no therapies
are considered, see also Reference 9 and references therein. However, only few works considered model uncertainties,
in particular in Reference 10, an iterative method to estimate the robust RoA was presented. Furthermore, the work
in Reference 11 dealt with the estimation of regions of attraction (RoAs) for cancer models, using rational Lyapunov
functions and switching control strategies. The latter work has been further investigated in Reference 12 in order to take
into account model disturbances, based on input to state (ISS) Lyapunov functions. Moreover, the model proposed in
Reference 11 has been used for data fitting in Reference 13 for real-life experiments. Finally, it is important to highlight
the fact that the estimation of robust RoAs is based on the worst-case scenario analysis leading to potentially pessimistic
design, this because the worst-case is considered no matter how small its probability of occurrence is.

The presence of parametric uncertainties can drastically affect the efficiency of a nominal controller as well as the
size of the estimated RoAs. In this work, we propose a framework to probabilistically certify the existence of a control
structure that drives the states corresponding to tumor cells and immune density from an initial state set to a certified tar-
get set. This probabilistic certification framework is based on the randomized methods proposed in Reference 14 and 15,
which, unlike the robust classical design, avoids focusing on few unlikely extremely bad scenarios allowing to overcome
the conservatism of the robust RoA design. The methodology that we propose in this article consists mainly of two steps.
First, we derive an ordered sequence of sets and their control strategy such that the states can be driven from a set to the
previous one with a certain probabilistic guarantee. The appropriate choice of the first set allows to insure that the union
of the sets is a probabilistically certified approximation of the RoA. The second step consists in providing a global certi-
fication on the probability of convergence to the initial certified target set. The randomized methods have been already
used in Reference 16 in order to determine the stability region for nonlinear deterministic systems, without taking into
consideration parametric uncertainties.

The model that we investigate here is a modified version of the classical Stepanova one17 that has been extensively used
in the literature, we cite for example References 18-20 where optimal control methodologies were proposed to schedule
chemo- and immunotherapy administration profiles. Furthermore, Reference 21 proposed a model predictive control
scheme to design chemo- and immunotherapy administration schedules. In Reference 22, the authors proposed a robust
model predictive control scheme, in order to consider direct drug targeting pharmacokinetic uncertainties as well as
system model mismatches. In this article, we model the concentration of the chemotherapy agent in the plasma and the
tumor site via a pharmacokinetics compartmental model, we also model the pharmacokinetics of immunotherapy, as well
as the pharmacodynamics of both drugs. Although the classical Stepanova model has been widely used, it has never been
investigated in the literature to estimate the controlled region of attraction of its corresponding tumor free equilibrium.
Therefore, we aim at pointing out the importance of uncertainties considerations in the RoA estimation for such models.

This article is organized as follows: In Section 2, the dynamical cancer model and the problem of RoA probabilis-
tic certification are introduced. Section 3 recalls the randomized algorithms approach for probabilistic certification. In
Section 4, a framework for RoA probabilistic certification is proposed, based on the randomized methods presented in
References 14 and 15. In Section 5, the proposed RoA probabilistic certification framework is applied to the considered
cancer model. Finally, Section 6 summarizes the contribution that we present in this article.

2 PROBLEM STATEMENT

The following nonlinear dynamical system describes the interaction between a tumor and the immune system in presence
of chemotherapy and immunotherapy treatments:
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ẋ5 = −cix5 + s2u2(t),
x(0) = (x1(0), x2(0), x3(0), x4(0), x5(0)) = x0, (1)

where the variables are defined as follows:

x1 The number of tumor cells (106 cells)
x2 The density of effector immune cells (ECs) (dimensionless)
x3 The concentration of chemotherapy in the plasma (𝜇g mL−1)
x4 The concentration of chemotherapy in the tumor effect site (𝜇g mL−1)
x5 The concentration of immunotherapy in the immune cells site (mg mL−1)
u1 The dosage of the chemotherapeutic agent (Etoposide) (𝜇g day−1)
u2 The dosage of the immuno-stimulator agent (Nivolumab) (mg mL−1 day−1)

This model is an extension of the model presented in Reference 18 that has the advantage of being a low dimensional
system that nevertheless includes the main aspects of cancer-immune interactions, and it has been widely used in the
literature for cancer drug scheduling. In many models it is assumed that the drug concentration is equal to its dosage
which is an oversimplification.23 Therefore, we revisited the model proposed in Reference 18 by adding a pharmacokinetic
(PK) compartment (involving x3 and x4) that allows to model the concentration of chemotherapy in the plasma and
the tumor effect site. Furthermore, we incorporated to this model the pharmacodynamics of chemotherapy using a Hill
function, the equations and the parameters values have been taken from References 24 and 25 for the Etopside drug.
Other types of chemotherapy can be considered such as Pegylated Liposomal Doxorubicin, whose main corresponding
medical parameters have been presented in Reference 26. Moreover, we extended the model with the pharmacokinetics of
immunotherapy which contains only one compartment represented by x5 which is the concentration of immunotherapy
in the immune cells site, since we consider that the immunotherapy does not have a direct inhibition effect on the tumor.
The pharmacodynamics effects have also been incorporated using a Hill function. The parameters values related to the
pharmacokinetics and pharmacodynamics (PK/PD) of immunotherapy have been taken from Reference 27.

Table 1 summarizes the definitions of the model parameters and their nominal values. Furthermore, the parameters
s1 and s2 allow to scale the drugs effects. Note that we consider examples of possible treatment protocols, nevertheless, it is
worth emphasizing that in this article, we focus on the assessment of a methodology that remains applicable for different
parameters values, treatment strategies, and equations.

Let’s denote by x = (x1, x2, x3, x4, x5) and u = (u1,u2) respectively, the state and the control input vectors. In this article,
we consider a cycle-based treatment, where the drugs are injected following NC therapeutic cycles. Each cycle having two
phases, a hospitalization period lasting 5 days, where the patient receives one infusion per day, and a rest period where
the patient recovers. Figure 1 shows a typical temporal combined control structure, the different notations in this figure
are defined in Table 2.

For a given treatment cycle, the therapeutic profile considered in this article is completely defined by the following
control parametrization 𝜃:

𝜃 = (𝜈C, 𝜎C, dC, 𝜎I , dI) . (2)

In cancer treatment design, we usually have some constraints to satisfy, they can be defined either on the states or on
the control inputs. These constraints allow to prevent from drug toxicity and excessive immune weakening. In this article,
we consider the following constraints for all t ∈ [0,T], with T ∈ R+:

x2(t) ≥ c, with c ∈ R+, (3)

0 ≤ u1(t) ≤ 1, (4)

0 ≤ u2(t) ≤ 1, (5)

where (3) is a health constraint on the minimal density of immune cells. The constraints on u1(t) and u2(t) for all t, see
(4) and (5), are normalized drug toxicity constraints, they can be satisfied by properly choosing the parametrization 𝜃
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T A B L E 1 Definitions and nominal values of the parameters used in model (1).

Parameter Definition Numerical value Unit Reference

𝜇C Tumor growth rate 1.0078 107 day−1 28

𝜇I Tumor stimulated 0.0029 day−1 28

proliferation rate

𝛼Y Rate of immune 0.0827 day−1 28

cells influx

𝛽Y Inverse threshold 0.0040 (-) 28

𝛾X Interaction rate 1 107 day−1 18

𝛿Y Death rate 0.1873 day−1 28

𝜅X Chemotherapeutic 1 107 day−1 18

killing parameter

𝜅Y Immunotherapy 1 107 day−1 18

administration parameter

x∞ Fixed carrying capacity 780 106 cells 18

𝜂Y Chemo-induced loss 1 mL/(𝜇g day) 28

on immune cells

𝛾c Patient response/resistance 2.5 (-) 24

to Etopside

C50c Half-effect concentration 10 𝜇g mL−1 24

of Etopside

k1 Chemotherapy clearance 1.6 day−1 24,25

rate from plasma

k2 Chemotherapy clearance 0.8 day−1 24,25

rate from tumor

k12 Link process between 0.4 day−1 24,25

plasma and the tumor

V1 Plasma volume 25 L 24,25

V2 Effect site volume 15 L 24,25

𝛾i Patient response/resistance 2.5 (-) 27

to Nivolumab

C50i Half-effect concentration 32×10−6 mg mL−1 27

of Nivolumab

ci Clearance rate of Nivolumab 11.6/24 day−1 27

(namely, dC and dI) of the control input u. Therefore, we will consider only the constraint (3), since the satisfaction of the
other constraints can be monitored by a proper choice of 𝜃.

The uncontrolled model (1) (for u = (0, 0)) has two locally asymptotically stable equilibriums points. The macroscopic
malignant equilibrium is xm = (766.4, 0.018, 0, 0, 0) and the benign one is xb = (41.45, 0.954, 0, 0, 0). In general, the objec-
tive of the treatment is to drive the state initial conditions to the region of attraction of the benign equilibrium (safe region),
without constraints violation. We are specifically interested in characterizing the set of initial conditions (tumor volume
and immune density) from which the trajectories of (1) can be driven to the safe region under parametric uncertainties.

In Reference 28, we proposed a methodology to characterize the controlled region of attraction of model (1) with
bang-bang controls (without pharmacokinetics). Then, we used this approach to derive and estimate the robust region
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T A B L E 2 Definitions of the different notations in Figure 1.

Parameter Definition

𝜎I Duration of immunotherapy infusion

𝜎C Duration of chemotherapy infusion

dI Concentration of immunotherapy infusion

dC Concentration of chemotherapy infusion

T = 5 Hospitalization duration (days)

Tc = 15 Cycle duration (days)

F I G U R E 1 Temporal open-loop control structure for each cycle, in black and yellow, respectively, the immunotherapy, and the
chemotherapy profiles.

of attraction. In this article, we propose to derive a probabilistically certified RoA for model (1), that is based on
chance-constrained problems, tolerating some constraints violations provided that their corresponding probability is
small enough.

Definition 1. We denote by Ω0 ⊆ R
5
+ a set of initial conditions x0, such that the state trajectories (x1, x2) corresponding

to model (1), when no control is applied (i.e., u = (0, 0)), converge to their corresponding benign equilibrium in spite of
all uncertainties realizations, with a given confidence probability. This set can be seen as a targeted safe set for each treat-
ment. Note that since u = (0, 0) and the initial conditions x3(0), x4(0), x5(0) are all equal to zero, the set Ω0 is technically
determined in R2

+.
The region of uncertainties is defined such that the parameters are normally distributed in the interval[

0.9pnom, 1.1pnom
]
, where pnom stands for the vector of nominal parameters that will be properly defined in Section 5.

Problem 1 (Estimation of a probabilistically certified RoA)We aim at computing a sequence of sets{Ωk}
NC
k=1, for

NC therapeutic cycles. Those sets are determined in the space of (x1, x2), representing respectively, the cancer burden
(defined by the number of cancer cells) and the ECs density, such that, in the family of control parametrizations that

we consider, there exists a therapeutic protocol that drives, with a desired probability, the states from Ωk+1 to
k⋃

j=0
Ωj

without safety constraints violations.

We denote by Ω̂
pnom
0 an estimation of the region of attraction of the benign equilibrium for u = (0, 0), when nominal

model parameters (in Table 1) are considered.
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3 OVERVIEW ON PROBABILISTIC CERTIFICATION

The randomized algorithms were presented in References 14,15,29 in order to solve optimization problems with
probabilistic constraints satisfaction. In contrast to the standard robust control design, which is based on the worst-case
scenario analysis leading hence to potentially pessimistic design, the randomized methods provide the possibility to
avoid focusing on the worst scenarios if their probability of occurrence is small. Therefore, this framework is very
interesting from the cancer treatment point of view, since the latter involves many uncertainties that have to be
considered.

This section aims at briefly recalling the main key-points of the randomized methods that are important for the assess-
ment of the approach that we propose in this article, in which we present a framework of estimation of probabilistically
certified region of attraction for a cancer therapies dynamical model.

Consider the following optimization problem :

min
𝜃∈Θ

J(𝜃)

s.t.∀p gc(𝜃, p) = 0, (6)

where 𝜃 ∈ Θ ⊂ Rn𝜃 is the decision variable (which can be a parametrization of a control law) and p is the uncertainties
vector following the probability measure  defined in the set P (the vector p can contain for example model parame-
ters that are considered to be uncertain), J is the cost to be minimized. In terms of control design for dynamical systems,
the cost J can involve the states, the input variables, their respective integrals with respect to time or any combina-
tion of these indicators. Finally, gc is an indicator function on the violation of some given constraints and is defined as
follows:

gc(𝜃, p) ∶=

{
0 if all the constraints are satisfied
1 otherwise

.

The randomized method consists in replacing the original hard problem in (6) by the following relaxed problem:

min
𝜃∈Θ

J(𝜃)

s.t. Pr

{gc(𝜃, p) = 1} ≤ 𝜂, (7)

where the constraint is on the probability of constraints violation, giving therefore a soft constraint in the sense that
we can accept a value of 𝜃 which minimizes the cost J, even if the constraints are violated for some realizations of p,
provided that the probability of these realizations is less than or equal to 𝜂 (small enough). Even though the constraint in
(7) simplifies the previous constraint in (6), the computation of the violation probability remains expensive. Authors in
References 14 and 15 proposed a simplification which consists in replacing the probability by the mean value of gc over Np
drawn independent identically distributed (i.i.d.) samples of p in P according to the probability distribution  . Therefore,
the simplified optimization problem is the following:

min
𝜃∈Θ

J(𝜃)

s.t.
∑Np

i=1gc
(
𝜃, p(i))

Np
≤

m
Np

, (8)

where m is the number of allowed constraints violations. In References 14 and 15, several bounds on Np are given such
that the fulfillment of the constraint in (8) implies that the probability condition in (7) is satisfied with a confidence
probability greater than or equal to 1 − 𝛿. The bounds that are derived on Np involve the precision 𝜂 and the confidence
of fulfillment 𝛿.

In this article, we are interested in specific control structures, since cancer treatment schedules are often defined by
cycles with a hospitalization period where the patient receives several drug infusions and a rest period for recovery. There-
fore, it is more adequate in this case to consider that the controls are parametrized by a discrete variable 𝜃 with cardinality
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T A B L E 3 The evolution of the number of samples Np required to achieve the certification, with respect to the confidence design
parameter 𝛿 and the number of control parametrizations nΘ, for 𝜂 = 10−2 and m = 1.

n𝚯 𝜹 = 0.1 𝜹 = 0.01 𝜹 = 0.001

10 864 1162 1451

100 1162 1451 1732

1000 1451 1732 2008

10,000 1732 2008 2280

T A B L E 4 The evolution of the number of samples Np required to achieve the certification, with respect to the precision design
parameter 𝜂 and the number of control parametrizations nΘ, for 𝛿 = 10−3 and m = 1.

n𝚯 𝜼 = 0.1 𝜼 = 0.01 𝜼 = 0.001

10 146 1451 14,503

100 174 1732 17,312

1000 201 2008 20,073

10,000 228 2280 22,796

nΘ ∈ N. This choice of 𝜃 simplifies the optimization problem (7), since it can be solved by a simple enumeration. In this
case, the following proposition from Reference 15 holds:

Proposition 1. Let m ∈ N be any integer representing the number of accepted failures. Let 𝛿 ∈ (0, 1) be a targeted confidence
parameter. Take Np satisfying

Np ≥
1
𝜂

(
m + ln

(nΘ

𝛿

)
+
(

2m ln
(nΘ

𝛿

)) 1
2

)
, (9)

then any solution of (8) in which {p(j)}N
j=1 are i.i.d. following the probability distribution  satisfies the constraint in (7) with

a probability greater than or equal to 1 − 𝛿

The inequality (9) is mathematically based on the binomial distribution. In this section, we presented a concise
overview of the basic theoretical aspects of this methodology, the readers interested in further details might refer to
Reference 15.

It is interesting to notice that the bound on Np provided by Proposition 1 does not depend on the dimension of p which
is useful when having many uncertain parameters in the certification problem. Furthermore, as we can see in Table 3,
since the confidence parameter 𝛿 affects the bound logarithmically, we can have a highly confident certification with a
tractable number of random samples.

Furthermore, for a specific desired confidence parameter 𝛿 = 10−3, Table 4 provides an idea on the evolution of the
number of trials Np that should be performed for each possible control law 𝜃, with respect to the precision parameter 𝜂
and the number of control parametrizations nΘ. Therefore, the total number of simulations is Nsim = Np × nΘ.

This approach provides a powerful pragmatic tool allowing to certify control strategies. In Reference 6, a randomized
methods based framework for probabilistic certification of feedback control strategies has been proposed for a combined
cancer therapy model.

4 PROBABILISTIC CERTIFICATION OF ROA

In this section, we will establish a framework of RoA probabilistic certification, based on the randomized methods
presented in the previous section. We propose to use this general framework in order to probabilistically certify the
existence of a control structure which allows to drive initial states from a given set to a target set under parametric
uncertainties.
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Let us rewrite system (1) into the following form:

ẋ = F(x,u, p), (10)

where p is the vector of parameters that model (1) involves. Furthermore, we consider that the variables of system (10)
are subject to the following constraints:

x ∈ X, x(T) ∈ Ω, u ∈ U, (11)

where the sets X and U are defined as follows:

X = {x ∈ R
5
+ | x2 ≥ c}, (12)

U = {(u1,u2) ∈ R
2
+ | 0 ≤ u1,u2 ≤ 1}, (13)

and Ω ⊆ R
5
+ represents the target set that will certified to be safe for each treatment cycle.

Remark 1. Note that since the states x3, x4, and x5 vanish after the treatment period, when u = (0, 0), the certified safe set
Ω will be determined technically in the space (x1, x2) which is a subset of R2

+.

As previously mentioned, we consider that the control inputs are parametrized by a vector 𝜃 which lies in a discrete
set Θ with cardinality nΘ ∈ N. This choice of 𝜃 fits particularly to the case of cancer therapy design, since some of the
parameters involved in the treatment scheduling are naturally quantified.

Suppose that the parameters vector p is a random variable following the probability distribution  that we denote
p ∼  . Given a set Γ ⊆ R

5
+, containing initial conditions x0 (Remark 1 holds for Γ since the initial conditions

x3(0), x4(0), x5(0) are null), and a parameterization of the input 𝜃 ∈ Θ, let’s consider the following optimization
problem:

min
𝜃∈Θ

J(𝜃)

s.t.∀ (x0, p) ∈ (Γ × P) gc(𝜃, x0, p,Ω) = 0, (14)

where J(𝜃) is a cost function to be minimized. In terms of cancer treatment design, this function can be a combi-
nation of many objectives that one seeks to achieve, for example reducing the quantity of injected drugs, to prevent
from toxicity, or reducing the duty cycle in order to reduce the hospitalization duration. gc is the failure indicator
function, defined on the state trajectories of (10). Note that gc depends on Ω in order to emphasize the fact that the
terminal constraint, expressing that the health indicators belong to the certified target set, is a part of the failure indi-
cator that will be properly defined in the sequel. The function gc is deterministic such that, for a given initial state
x0, an input parametrization 𝜃 and a model parameters vector p ∈ P, it is equal to one if the constraints (11) are vio-
lated, zero otherwise. Problem (14) then aims at selecting the optimal control strategy such that no constraints violation
occurs.

As previously explained, the randomized method consists in replacing the original problem in (14) by the following
chance-constrained problem tolerating some violations:

min
𝜃∈Θ

J(𝜃)

s.t. Pr
0(Γ)×

{gc(𝜃, x0, p,Ω) = 1} ≤ 𝜂, (15)

where the constraint is on the probability of violation, with respect to the distribution of x0 on Γ, that we denote0(Γ), and
p ∼  . This problem gives therefore a chance-constrained formulation in the sense that we can accept a vector 𝜃 which
minimizes the cost J, even if the constraints are violated for some realizations of (x0, p), provided that the probability of
these violations is lower than 𝜂, hence small enough.

Since problem (15) is hard to solve, it can be simplified into the following problem, employing the empirical mean
instead of the probability of the constraints violation, Given Γ ⊆ R5:



MOUSSA et al. 9

min
𝜃∈Θ

J(𝜃)

s.t.
N∑

i=1
gc

(
𝜃, x(i)0 , p(i),Ω

)
≤ m,

(x0, p)(i) ∼ (0(Γ) × ) , ∀i = 1, … ,N, (16)

where m is the maximum number of allowed constraints violation. If N satisfies the condition in (9), then the solution
of (16) satisfies the constraint in problem (15) with a probability higher than 1 − 𝛿.

As previously explained, problem (16) can be solved by simple enumeration which means that, for each possible
treatment protocol defined by 𝜃, we simulate the model (1) for N samples of the uncertain parameter vector p, in order to
compute

N∑
i=1

gc

(
𝜃, x(i)0 , p(i),Ω

)
,

and thereby to select the treatment protocols satisfying the latter constraint. The solution is the treatment protocol defined
by 𝜃 corresponding to the minimum cost J(𝜃). In the next section, we will explain how the iterative resolution of problems
of the type (16) allows one to generate a sequence of sets {Ωk}

NC
k=1 such that the constraints violation on passing from Ωk+1

to
⋃k

j=0Ωj is smaller then 𝜂 with a certain desired confidence probability 1 − 𝛿.

4.1 Algorithm for RoA estimation

Given a target set Ω ⊆ R
5
+, our objective is to certify that the set Γ is such that there exists a control parametrization 𝜃, for

which at least 100 × (1 − 𝜂)% of the trajectories of (10), generated by the distributions of the initial states x0 ∈ Γ and the
uncertain parameters p, converge to Ω at time T, while satisfying constraints (11), with a confidence higher than 1 − 𝛿.
Any solution of (16) defines a local control strategy that satisfies the constraints while minimizing the cost J(𝜃).

Γ generator

We suppose that we have a generator of sets Γ ⊆ R
5
+ with a parametrized geometry providing a family of nested

potential sets Γ, then we can compute the biggest one that is probabilistically certified through (16). In the case under
study, we consider that the sets Γ have a polytopic form.

Therefore, starting from Ω0 which is in the certified region of attraction of many benign equilibriums without thera-
pies, an iterative procedure can be designed to generate the sequence {Ωk}

NC
k=0 such that the trajectories starting in Ωk+1

end in
⋃k

j=0Ωj with the desired probability and without violating the constraints. In particular, we will consider sequences
of sets such that Ωk ∩ Ωk+1 = ∅. Then, we keep doing this certification process until given Ωk−1, the set Ωk is empty. Once
the RoA probabilistic certification algorithm terminates, the candidate to be a probabilisitically certified RoA is the set
ΩC =

⋃NC
i=1Ωi.

Note that, if x0 ∈ Ωk, for k = 1, … ,NC, this means that the trajectory of length T will end in
⋃k−1

j=0 Ωj without violating
the constraint with a certain probability, but no direct probabilistic guarantee is given regarding the convergence to the
set Ω0.

It is not straightforward to derive a probabilistic bound on driving the states directly from the last set of the sequence
ΩNC to Ω0. This is because the latter probability involves the accuracy and confidence parameters, 𝜂 and 𝛿. Another reason
is that there is no guarantee that, given the initial state distribution0(Ωk), the distribution of the state at the end of the kth
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therapeutic cycle is 0(Ωk−1), for which the probabilistic validation is performed. However, after deriving the sequence
of certified sets, we can approximate the probability of driving the states from ΩNC to Ω0, with the corresponding certified
control strategy, using Monte-Carlo simulations.

Algorithm 1. Sequence of probabilistically certified sets

Input: Ω0

k ← 0
while Ωk ≠ ∅ do

Ω ←
k⋃

j=0
Ωj

repeat
Generate non-empty Γ such that Ω ∩ Γ = ∅

until (16) is unfeasible for Γ
if ∃ Γ such that (16) is feasible then
Ωk ← Γ

else
Ωk ← ∅

end if
k ← k + 1

end while
NC ← k − 1

Output: ΩC ←
NC⋃
i=0

Ωi

Finally, by using Algorithm 1, we can obtain a sequence of certified sets, such that the output is the candidate to be a
probabilistically certified RoA ΩC.

Note that since we focus on the estimation of the RoA for a specified control parametrization, the use of a cost function
is not relevant although it could have been used in the case where some of the parameters defining the control are kept
free.

5 PROBABILISTICALLY CERTIFIED ROA FOR A CANCER MODEL

As previously explained, considering NC treatment cycles, our objective consists in estimating the probabilistically cer-
tified RoA of model (1) that we denote ΩC. To this end, we certify a sequence of successive disjoint sets such that their
union is the candidate to be a probabilistically certified RoA.

Moreover, the temporal control profiles that we consider correspond only to the hospitalization period (see Figure 1),
meaning that the rest period is not included in the decision variable 𝜃 defined in Section 2, since we assume that this
parameter can be estimated afterwards depending on the health conditions of the patient.

Therefore, we propose a feedback control strategy that can be seen in an implicit way, such that at the end of each
therapy period, we measure the states (patient health and tumor volume) and depending on the certified set Ωk where
this measure lies, we can estimate the maximal possible recovery time (Tc − T) that the patient can take. At the end of
the rest period, the certified therapy corresponding to this set is then applied, we keep doing this process until we reach
the safe region Ω0.

The initial condition x0 is assumed to be uniformly distributed in the set Γ while the following parameters vector is
assumed to be uncertain:

p = (𝜇C, 𝜇I , 𝛾X , 𝜅X , 𝜅Y , 𝛿Y , 𝛼Y , 𝛽Y , 𝜂Y ) , (17)



MOUSSA et al. 11

and normally distributed in the following interval:[
0.9pnom, 1.1pnom

]
, (18)

where pnom is the nominal value of each parameter, previously presented in Table 1.
The failure indicator function, which determines whether the constraints (3)–(5) are satisfied or not, is defined on

x(t|x0, p, 𝜃) which is the state trajectory of (1) for a given control parametrization 𝜃 and a random sample of x0 and p.
We denote by x(T|x0, p, 𝜃) the state trajectory evaluated at the end of the hospitalization period. Therefore, the failure
indicator is defined as:

gc(𝜃, x0, p,Ω) ∶=

{
0 if x2(t|x0, p, 𝜃) ≥ c ∀t and x(T|x0, p, 𝜃) ∈ Ω
1 otherwise

, (19)

where Ω is a probabilistically certified target set which can be seen as the safe region to reach at the end of the cycle.
Using Algorithm 1, we can derive a sequence of probabilistically certified sets providing the probabilistically certified

RoA. First, we need to derive an initial target set Ω0, in order to initialize the certification algorithm.

5.1 Probabilistically certified initial target set 𝛀0

Definition 2. Given p ∈ P (drawn according to the probability distribution ), x0 following a uniform distribution on
Ωstart ⊆ R

5
+, and Ωend ⊆ R

5
+ a certified target set in a neighborhood of benign equilibrium points of (1), generated by the

realizations of p according to the probability distribution  . We define the certified safe reachability by:

Pr
 (Ωstart)×

{x2(t|x0, p) ≥ c, ∀t > 0 and x(T|x0, p) ∈ Ωend} > 1 − 𝜂. (20)

This means that the state trajectories having initial conditions in Ωstart converge with a given probability to the set Ωend,
after a time horizon T, in spite of all parametric uncertainties and without constraints violations. Note that Ωstart can be
equal to Ωend, in this case Ωstart is slightly different than a probabilistically certified invariant set, since we do not require
that the trajectories starting in Ωstart stay in it, but rather to converge to it after some time T.

First, we certify Ωeq such that:

Pr
 (Ωeq)×

{
x2(t|x0, p) ≥ c, ∀t > 0 and x(T|x0, p) ∈ Ωeq

}
> 1 − 𝜂. (21)

Then, given p and x0 following a uniform distribution on Ω0, that we denote  (Ω0), Ω0 is determined such that:

Pr
 (Ω0)×

{
x2(t|x0, p) ≥ c, ∀t > 0 and x(T|x0, p) ∈ Ωeq

}
> 1 − 𝜂, (22)

for a given time T. Note that the set Ωeq is derived to be used as a target set for the determination of Ω0. In order to
provide an estimation of Ωeq, we draw the distribution of the benign equilibriums of model (1) for many parameters
vector samples (selected according to the probability distribution ). Then, we choose a geometry for Ωeq surrounding
the benign equilibriums of the sample shown in Figure 2. Finally, we expand this set until (21) is not satisfied.

After finding a proper geometry for the set Ωeq such that it satisfies (21), we use Algorithm 1 in order to provide an
estimation of the certified set Ω0. Note that in this case 0(Γ) corresponds to  (Ω0) since we assume that x0 is uniformly
distributed on Ω0, and the target set for the states at time T denoted Ω in the definition of gc corresponds to Ωeq. Fur-
thermore, since we deal with an uncontrolled system, (7) turns out to be a feasibility problem, where we need only to
guarantee the probability condition in (22) by using the empirical mean over gc for N i.i.d. samples of (x0, p) mentioned
in (16), with 𝜃 = 0, nΘ = 1, and with the bound N given by (9), for m = 1, 𝜂 = 10−2 and 𝛿 = 10−3.

We assume that the set Ω0 to be certified has the same geometry as the estimated nominal uncontrolled region of
attraction Ω̂

pnom
0 (derived in Reference 28) that we shrink until (22) is not satisfied given the confidence probability 1 − 𝛿.
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F I G U R E 2 Probabilistically certified sets Ω0 for different horizons T (days). The red circles are the benign equilibrium points of
model (1) for 1000 parameters vector samples.

F I G U R E 3 Phase portrait of (1), the colored trajectories represent the states (x1, x2) for different initial conditions, the blue dots
correspond to the 3 equilibrium points of the system, estimated nominal uncontrolled RoA Ω̂

pnom
0 in dashed cyan and the estimated certified

initial target set Ω0 for T = 60 in blue.

There is clearly no guarantee that the set Ω0 that we obtain is the biggest possible certified set, however, in this case,
proving the existence of a set Ω0 satisfying (22) is enough, since Ω0 is only used as a target set for the Algorithm 1 allowing
therefore to compute the sequence of certified sets.

Figure 2 shows the probabilistically certified RoA of the benign equilibriums Ωeq, the estimated uncontrolled nominal
region of attraction Ω̂

pnom
0 and the initial probabilistically certified target set Ω0 for different T. Figure 3 shows the phase

portrait of (1) with both the estimated nominal RoA Ω̂
pnom
0 without control, and the certified initial target set Ω0 for T = 60.

We can see that the Ω0 is smaller than Ω̂
pnom
0 which shows the effects of parametric uncertainties consideration.

5.1.1 Validation of the estimation of Ω0

In order to validate the estimation of the target set Ω0, we carry out 5000 Monte-Carlo simulations by randomly selecting
the initial states as well as the model parameters according to their respective probability distributions. We can notice
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F I G U R E 4 Monte-Carlo simulations to validate the certified target set Ω0.

that in Figure 4 there are only 11 trajectories that converge to the malignant equilibrium, violating thereby the specified
constraints. This corresponds to 99.78% of successful trajectories, validating therefore the imposed probabilistic bound
on 𝜂.

5.2 Probabilistically certified region of attraction 𝛀C

We denote by ΩC the probabilistically certified region of attraction of system (1). We initialize Algorithm 1 with Ω0 in
order to derive the sequence of probabilistically certified sets providing the certified RoA for model (1).

We consider that the decision variable 𝜃 is defined by the following variables:

⎧⎪⎪⎨⎪⎪⎩

𝜎I ∈ {0, 0.16, 0.32, 0.48, 0.64, 0.8},
𝜎C = 0.5, 𝜈C = 0.2,
dI ∈ {0, 0.25, 0.5, 0.75, 1},
dC ∈ {0, 0.11, 0.22, 0.33, 0.44, 0.56, 0.67, 0.78, 0.89, 1}.

5.2.1 Complexity analysis and computation time

The cardinality ofΘ is nΘ = 300 giving the bound N ≥ 1863 according to (9), for m = 1, 𝜂 = 10−2 and 𝛿 = 10−3. The number
of simulations to be performed for each set certification is Nsim = N × nΘ = 558,900. The required computational time to
perform Nsim simulations is less than 10 min using Matlab coder toolbox. Therefore, 1 simulation requires around 1.1 ms
on a computer with an Intel(R) Core(TM) i5-10310U and a 2.21 GHz CPU. However, it is important to highlight two main
points, the first one is the fact that the number of simulations in our case is due to the choice of solving the optimization
problem by enumeration, since the cardinality of the input set Θ is relatively low. It is definitely possible to solve such
problems using iterative algorithms (such as gradient descent) in order to reduce the computation time. The second point
is that since the problem is completely scalable, it is possible to solve it using parallel computing which considerably
reduces the computational time.

Figure 5 shows the 3 certified cycles for T = 5 days obtained using Algorithm 1, nominal and robust RoAs that have
been estimated using the method presented in Reference 28, where bang-bang control strategies were considered. We can
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F I G U R E 5 Probabilistically certified RoAs for 3 administration cycles, the estimated nominal RoA Ωpnom
u and the estimated robust RoA

ΩR using continuous drugs infusions.

F I G U R E 6 Monte-Carlo simulations to validate the certified sequence of controls with their respective sets, the blue polytope is the set
Ω3 where the initial states were selected.

see that, as the number of cycles increases, the certified RoA gets closer to the robust controlled one denoted ΩR. Even
if the certified RoA remains smaller, it is important to recall that both the nominal and the robust RoAs in Reference 28
have been estimated using continuous infusions of drugs, and do not consider the PK/PD effects. Note also that changing
the type of the sets can change the size of the certified RoA.

5.2.2 Validation of the estimation of ΩC

We approximated the probability of driving the states from Ω3 to Ω0 using 5000 Monte-Carlo simulations. We obtained
that 99.4% of the trajectories of (1) having initial conditions in Ω3 converge to Ω0 using the probabilistic certified control
strategies that we derived. Figure 6 shows the phase portrait of the 5000 Monte-Carlo trajectories. We can notice that only
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F I G U R E 7 Monte-Carlo simulations, the trajectories that violate the minimal constraint on immune cells density, the blue polytope is
the set Ω3 where the initial states were selected.

a small part of these trajectories violate the minimal constraint on immune cells density. The trajectories violating this
constraints are presented in Figure 7.

6 CONCLUSION

In this article, we presented a framework of probabilistic certification for RoAs which is based on the randomized meth-
ods, allowing to overcome the conservatism of worst-case robust approaches by proposing a tractable problem with
probabilistic constraints. This framework has been used to derive a certified region of attraction for a cancer growth
model. Furthermore, we provided a validation on the probability of driving the states to the certified safe target set with
its corresponding control strategy.

The main advantages of this framework is that it is less conservative than the worst-case approach, since it is more
tolerant to constraints violations in the presence of uncertainties. In addition to this, the methodology that we presented
in this article provides the control strategy corresponding to each certified initial states set, which allowed to validate the
estimations using Monte-Carlo simulations. Furthermore, this approach is flexible in terms of computational complexity,
since we can considerably reduce the computational time by solving the optimization problems iteratively instead of using
enumeration or by using parallel computing since the problem is completely scalable.

The probabilistic certification of RoAs can be seen as a tool to tune the several parameters of the treatment protocols by
properly choosing the model parameters and their distributions, the geometry of the RoAs to be certified and the control
parametrization. All these choices impact the size of the certified region of attraction. One of the future works in terms
of RoA certification methodology is to enrich the set generator to consider different geometries, in order to approximate
the biggest certifiable RoA. From a medical point a view, a future perspective would be to consider the synergy between
the different injected drugs and to model their combined effects on the different compartments, in order to solve more
challenging and seemingly realistic problems.
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