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Abstract

This paper deals with the output regulation problem (ORP) of a linear time-invariant (LTI) system in

the presence of sporadically sampled measurement streams with the inter-sampling intervals following a

stochastic process. Under such sporadically available measurement streams, a regulator consisting of a

hybrid observer, continuous-time post-processing internal model, and stabilizer are proposed, which resets

with the arrival of new measurements. The resulting system exhibits a deterministic behavior except for the

jumps that occur at random sampling times and therefore the overall closed-loop system can be categorized

as a piecewise deterministic Markov process (PDMP). In existing works on ORPs with aperiodic sampling,

the requirement of boundedness on inter-sampling intervals precludes extending the solution to the random

sampling intervals with possibly unbounded support. Using the Lyapunov-like theorem for the stability

analysis of stochastic systems, we offer sufficient conditions to ensure that the overall closed-loop system is

mean exponentially stable (MES) and the objectives of the ORP are achieved under stochastic sampling of

measurement streams. The resulting LMI conditions lead to a numerically tractable design of the hybrid

regulator. Finally, with the help of an illustrative example, the effectiveness of the theoretical results are

verified.
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1. Introduction

1.1. Background

The objective of the output regulation problem (ORP), also known as the servomechanism problem,

is to control a specific output of the plant to track a prescribed reference trajectory and reject undesired

disturbances, both of which being generated by an exosystem, while keeping all the trajectories of the

system bounded [1, 2]. Traditionally, there are two basic approaches for solving an ORP, namely the (i)

feed-forward design approach which relies on the solution to regulator equations [1] and (ii) internal model

control approach [3] that converts an output ORP to a stabilization problem that can be solved with

simple eigenvalue placement method. In contrast with [1, 3] where the measured output of the plant is

continuous, we consider the case where measurement streams are only available sporadically. In such cases,

an emulation-based approach was adopted for both sampled linear systems [4, 2] and nonlinear systems [5].

In the presence of measurement intermittency for networked control systems, the emulation-based reg-

ulator ensures the closed-loop system trajectories and regulated output are bounded when the sampling

interval is smaller than a certain threshold [4, 2]. With the design of a generalized hold device and internal

model controller, a less conservative bound on the regulated output was derived for the same problem in

[6]. Depending on the topology to connect the internal model and stabilizing units for the ORP with aperi-

odic sampling, in general, there are two types of architectures used for the ORP- namely (i) pre-processing

internal model [6, 7] and (ii) post-processing internal model [5, 8, 9].

In the first case, the internal model acts as a pre-processor on the control input and is driven by the

stabilizing control action, while in the second case, the internal model directly processes the regulated

error signals and generates an input for the stabilizer [8]. For single-input-single-error (SISE) systems,

both schemes are fundamentally equivalent with pre-processing internal model architecture being more

constructive in some cases such as in [6, 10, 7], while post-processing internal model simplifies the regulator

design [11, 12]. Using either or both of these internal model paradigms, the ORP was studied by the authors

in [10, 13, 14] for periodically sampled measurement updates and in [11, 6, 2] for uncertain, time-varying

and aperiodic sampling intervals.

In all of the papers, mentioned above, the solution to the ORP with measurement intermittency requires

the inter-sampling intervals to be bounded from above. However, this assumption may not be realistic.

Some recent works have addressed the stabilization of linear sampled-data systems subject to a random

sampling interval [15, 16] with possibly unbounded support. Inspired by the works [16, 17], we extend our

previous results on ORP under bounded aperiodic sampling [11] to unbounded random sampling. Since

the solution to the ORP in [6, 7, 2, 4] requires the sampling intervals to be bounded, the results cannot be

immediately adopted for the case of random time-varying intervals. Although the ORP has been studied

for stochastic linear systems, for example in [18, 19], it was still assumed that the measurement streams are

available continuously.
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As noted above, the ORP has been extensively studied for continuous stochastic systems and aperiodic

sampled-data systems with bounded inter-sampling intervals, see for example [2] and the references therein,

but to the best of the authors’ knowledge there are not many analogous results for the same problem with

stochastically sampled measurement streams.

1.2. Contributions

The main contribution of this work is to derive a regulator to ensure that the plant-stabilizer closed-loop

system is internally stable and the regulated output is mean asymptotically convergent to zero in the presence

of stochastically available measurement streams. The regulator comprises a continuous-time stabilizer, post-

processing internal model, and hybrid observer which resets with the arrival of new measurement streams

and reconstructs the regulated output from such stochastically available data. As in [15, 16], we consider

that the intervals between consecutive measurement samples undergo a Poisson process, i.e. the sampling

intervals form a sequence of independent and identically distributed random variables with exponential

distribution. In contrast with the works of [4, 2, 16] for networked control systems where the measurement

output between the samples is held constant before being processed, the hybrid observer proposed in this

work implicitly acts as a generalized hold device for the reconstruction of the regulated output.

As the resulting closed-loop system exhibits deterministic flow dynamics interrupted by the jumps oc-

curring at random sampling times, it is classified as a PDMP. Using Dykin’s equation [20, pg. 31] and

the stochastic version of Lyapunov-like theorem, the sufficient stability conditions guaranteeing mean ex-

ponentially stable (MES) of the closed-loop system yield a set of linear matrix inequalities (LMI) which

consequently lead to the straightforward computation of regulator parameters. With the help of a numerical

case study, we highlight the effectiveness of the proposed approach.

The paper is organized as follows. Section 2 contains the basic definitions and introduces the problem

formulation. In Section 3, we review the post-processing internal model architecture for stochastically

available measurement streams. In Section 4, we present the main results related to sufficient conditions for

MES of the closed-loop system and the mean asymptotic convergence of the regulated output. A numerical

example to illustrate the effectiveness of the proposed approach is presented in Section 5. Finally, some

concluding remarks are given in Section 6.

1.3. Notations

P [x] denotes probability and E[x] expectation of a random variable x. The set N denotes the set of positive

integers including zero. I and 0 represent respectively an identity matrix and a zero matrix with appropriate

dimensions. Rn×m denotes a space of real matrices with order n×m. An open right-half complex plane is

denoted by C+. For a symmetric matrix A, A > 0 (or A ≥ 0) denotes that matrix A is positive definite (or

semi-definite). For square matrices Ai, i = 1, 2, · · · , N of compatible dimensions, A = diag(A1, A2, · · · , AN )

represents a block-diagonal matrix with diagonal elements Ai. The notation λmax(A) (or λmin(A)) represents
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the maximal (or minimal) real part of the eigenvalues of matrix A, He(A) = A + AT, σ(A) denotes the

spectrum of eigenvalues of A. For x, y ∈ RN , ∥x∥ is the Euclidean norm measuring the distance of x from

the origin, col(x, y) =
[
xT, yT

]⊤
. A shorthand notation x+ is used to denote the jump x(t+) at sampling

time instants.

2. Problem Formulation

Consider a linear time-invariant plant of the following form

P



ẋp = Apxp +Bpu+ Epw,

yp = Cpxp,

ep = yp − yw,

yw = Fpw,

(1)

with xp ∈ Rnp , u ∈ Rmp , yp, yw, ep ∈ Rp being respectively the state, the control law to be designed, the

measured output of the plant, exosystem output to be tracked, and the error signal which is thus required

to be regulated to zero. The exogenous signal w ∈ Rq is generated by an exosystem of the form

ẇ = Sw, (2)

where the exosystem matrix S is assumed to be neutrally stable, i.e. S has all eigenvalues on the imaginary

axis. While S is perfectly known, the exosystem state w in (2) is not directly available for feedback design.

The matrices Ap, Bp, Ep, Cp and Fp in (1) are constant matrices of appropriate dimensions. The output yp

is available only at some isolated time instances tk, k ∈ N with inter-sampling intervals δk = tk+1 − tk, k =

1, 2, · · · ,∞. In this work, we assume that {δk} is a sequence of independent and identically distributed

random variables with exponential distribution

F (s) = P [δk ≤ s] = 1− e−λs, k ∈ N, s ≥ 0, (3)

where λ > 0, E[δk] =
1

λ
. If the number of sampling events occurred until the current time t is denoted by

Nt = sup{k ∈ N|tk ≤ t}, (4)

then the probability of Nt = n under the Poisson process of intensity λ is given by

P [Nt = n] = e−λt (λt)
n

n!
. (5)

Inter-sampling events of a stochastic sampled-data system have been successfully modeled with a Poisson

process in [16, 21]. For n = ∞, P [Nt = ∞] = 0 from (5), i.e. there is zero probability of an infinite number

of sampling events occurring up until finite time t. Furthermore, with s = 0, F (s) = 0 in (3) implying zero
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probability of two sampling events occurring concurrently with zero dwell-time. These two facts discard the

possibility of Zeno behavior.

Let us now introduce the following assumptions for the solvability of ORP [1].

Assumption 1. The matrix pair (Ap, Bp) is stabilizable and (Ap, Cp) is detectable. ⋄

Assumption 2. The matrix

Ap − λI Bp

Cp 0

 , λ ∈ σ(S) is of full rank, or equivalently there exists a unique

solution pair (Xp, R) to the following linear regulator equations

XpS = ApXp +BpR+ Ep, CpXp − Fp = 0, (6)

where the matrix Xp uniquely defines the time-invariant manifold Xpw of the plant state xp, on which the

regulated output ep = 0. Additionally, the steady-state input u = Rw renders the given manifold E[xp] = Xpw

positively invariant. ⋄

As noted in [1], under Assumptions 1, and 2, the classical ORP (continuous availability of measurement)

for the plant (1) is solvable by a dynamic error feedback control of the form

u = Kz, ż = G1z +G2ep, (7)

where z ∈ Rnz is the regulator state to be specified later and the constant controller gain matrices G1 and G2

with appropriate dimensions are defined as in [11]. In the presence of sporadic availability of measurement

streams, ep in (7) should be replaced with a reconstructed form of ep, i.e. êp which is generated by a hybrid

observer discussed in the next section. The internal model state vector z approaches its steady state Zw for

the solvability of the ORP, where Z ∈ Rq×nz satisfies

ZS = G1Z,KZ = R, (8)

by virtue of the internal model principle [1]. With the traditional output regulation framework being laid

out, we are now ready to define the objectives of the stochastic ORP considered in this paper.

Problem 1. (i) When w = 0, the origin of the unperturbed closed-loop system is mean exponentially stable

(MES), i.e. there exist two positive scalars c, γ0 such that for every initial condition xp(0) = xp0 ∈ Rnp ,

E[∥xp(t)∥2] ≤ ce−γ0t∥xp0∥2 (9)

with γ0 > 0 being the decay rate of the trajectories; and (ii) the closed-loop system remain internally stable

when w ̸= 0 with mean regulated output asymptotically converging to zero, i.e. limt→∞ E[e(t)] = 0.

5



3. Solution Outline of Post-processing Internal Model

Since the output of the plant is sporadically available, we propose a control scheme depicted in Figure 1,

which is constituted by a post-processing internal model G, hybrid observer O, and a stabilizing controller

K. The hybrid estimator O is designed to provide a converging estimate of the regulation error êp from the

intermittent measurements as follows

O


χ̇ = Tχ, if t ̸= tk,

χ+ = L1χ(t) + L2ep(t), if t = tk,

êp = Hχ,

(10)

where χ ∈ Rnχ , observer matrices Li, i = 1, 2, and T to be designed later. This estimated regulated output

êp is then fed as an input to the internal model

G


ż = G1z +G2êp, if t ̸= tk,

z+ = z(t), if t = tk,

uG = Kz,

(11)

where z ∈ Rnz . The output of the internal model uG then acts as an input to a continuous-time stabilizer

K with state vector ζ ∈ Rnζ of the form

K


ζ̇ = Aζζ +BζuG , if t ̸= tk,

ζ+ = ζ, if t = tk,

u = Cζζ +DζuG .

(12)

As we shall show later, the design of such stabilizer parameters can be computed by simple eigenvalue-

placement techniques aimed at stabilizing the cascaded closed-loop system P̂. Before moving forward, we

let the following property hold.

Property 1. Let

Acl =

Ap BpCζ

0 Aζ

 , Bcl =

BpDζ

Bζ

K,H1 =
[
Cp 0

]
,

then there exist a solution (XM , Z) to the equations

XMS = AclXM +BclZ + Ecl, H1XM − Fp = 0, (13)

for all Ecl ∈ R(np+nζ)×q and Fp ∈ Rp×q, where Ecl =
[
E⊤

p 0
]⊤

, and Z satisfies ZS = G1Z in (8). ⋄
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Figure 1: Schematic block diagram of the “post-processing” internal model architecture for LTI plant with sporadic measure-
ments (average sampling rate is λ). Continuous-time signals are marked with solid arrows, while the sporadic measurements
are with dashed arrows.

We show later that Property 1 is fulfilled under some natural conditions. Let us define an augmented

stabilizer-plant system with the state vector xM = col(xp, ζ) as

ẋM = AclxM +Bclz + Eclw, if t ̸= tk,

ep = H1xM − Fpw,

x+
M = xM , if t = tk,

(14)

where internal model state z evolves according to (11) and is rewritten as

ż = G1z +G2H1χ, if t ̸= tk,

z+ = z, if t = tk.
(15)

By using the change of coordinates x̃M = xM −XMw, z̃ = z−Zw and defining x̃α = col(x̃M , z̃) with Z,XM

being solutions to (8) and (13) respectively, the augmented system P̂ consisting of the stabilizer-plant and

internal model dynamics in transformed coordinates yields the following form

˙̃xα = Acx̃α +Bc(Hχ−
[
H1 0

]
x̃α), if t ̸= tk,

x̃+
α = x̃α, if t = tk,

(16)

where

Ac = A+Bc

[
H1 0

]
,A =

Acl Bcl

0 G1

 ,Bc =

 0

G2

 .

At this stage, it is clear that to solve the ORP, T and Li, i = 1, 2 in (10) need to be designed to ensure

that êp → ep or in other words ẽp := (ep − êp) approaches zero asymptotically. To this end, we denote

χ ∈ Rnχ = (χ1, χ2), where nχ = n+ p and n = np + nζ + nz. The state component χ1 can be viewed as an
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estimate of x̃α in (16) and χ2 of ẽp. Based on this, let us now select the observer parameters as

T =

Ac Q

0 W

 , L1 =

 I 0

−H2 0

 , L2 =

0
I

 ,

H2 =
[
H1 0

]
,H =

[
H2 0

]
,

(17)

where Q ∈ Rn×p and W ∈ Rp×p are to be designed.

Property 2. Let the state matrix Ac of the extended plant model P̂ in transformed coordinates (16) be

Hurwitz. Then, the Property 1 holds.

Proof. it suffices to notice that if

Ac = A+BcH2

is Hurwitz, then the triple (A,Bc,H2) is stabilizable and detectable. Therefore, one has that for all λµ ∈ C+,

the matrix

rank

Acl − λµI Bcl 0

0 G1 − λµI G2

 = n

rank


Acl − λµI Bcl

0 G1 − λµI

H1 0

 = n+ p

From the second condition above, it turns out that for all λS ∈ σ(G1) = σ(S) ⊂ C+

rank


Acl − λSI Bcl

H1 0

0 G1 − λSI

 = n+ p,

which guarantees the existence of a solution pair (XM , Z) to (13) in Property 1 by Theorem 1.9 of [1]. ■

We now illustrate how to select the stabilizer parameters Aζ , Bζ , Cζ , Dζ such that the matrix Ac in (16)

becomes Hurwitz. Let us define a non-singular matrix Tζ ∈ Rn×n that transforms Ac as follows

Āc = T−1
ζ AcTζ =


Ap BpDζK BpCζ

G2Cp G1 0

0 BζK Aζ

 , Tζ =


Inp

0 0

0 0 Inζ

0 Inz
0

 . (18)

With a little abuse of notation, let us denote x = col (xe, x̂e) ∈ Rn, and introduce a system dynamics of the

form

ẋ = Ācx, (19)
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where Āc is given in (18). For Ac to become Hurwitz, it is both necessary and sufficient that Āc in (18) is

Hurwitz, or equivalently x(t) → 0 as t → ∞. To do this, let us first rewrite the dynamics (19) as

ẋe =

 Ap BpDζK

G2Cp G1


︸ ︷︷ ︸

A

xe +

Bp

0


︸ ︷︷ ︸

B

Cζ x̂e, (20)

˙̂xe = Aζ x̂e +Bζ

[
0 K

]
︸ ︷︷ ︸

C

xe, (21)

where x̂e is viewed as an estimate of xe with Bζ as the observer gain, and Cζ x̂e as the observer-based

feedback control law to be designed.

A general observer structure to reconstruct the state xe that evolves according to (20) is given as follows

˙̂xe = (A+BCζ)x̂e +BζC (xe − x̂e) = (A+BCζ −BζC)︸ ︷︷ ︸
Aζ

x̂e +BζCxe (22)

The overall system (19) can be equivalently expressed as decoupled stabilization and estimation problems

by virtue of the separation principle. Based on this, the design conditions are enumerated as follows:

• select controller gain Cζ such that the matrix A+BCζ is Hurwitz,

• select an observer gain Bζ such that the matrix A−BζC is Hurwitz, and

• determine Aζ = A+BCζ −BζC.

Furthermore, the convergence rate of (i) the decoupled control & estimation problems and consequently that

of (ii) x → 0 in (19) can be directly tuned by a suitable selection of gains Cζ and Bζ .

Remark 1. The system matrix Ac of the extended plant model P̂ is thus made Hurwitz by the suitable
selection of the stabilizer parameters Aζ , Bζ , Cζ , Dζ through a simple eigenvalue placement method. This
is in contrast with the pre-processing architecture [11] where the stabilizer parameters are computed simul-
taneously with other regulator parameters by solving a convex optimization problem. However, as noted
in [12, 11], the convexification of sufficient stability conditions to obtain LMIs in pre-processing paradigm
requires intricate algebraic manipulations. □

By defining χ̃1 = x̃α − χ1 and χ̃2 = χ2 − H2χ̃1, the overall closed-loop system with augmented state

variables x̃ = col(x̃α, χ̃) ∈ R2n+p, χ̃ = col(χ̃1, χ̃2) can be described by the following impulsive system [17]
˙̃x=

 Ac −BcH

0 M

x̃, ∀t ≥ 0, t ̸= tk,

x̃+ = diag(I2n, 0p)x̃, t = tk,

(23)

where

M =

 A−QH2 −Q

−H2A+RH2 R

 , R = W + H2Q.

9



With this post-processing internal model architecture, the ORP, defined in Problem 1 reduces to the stabi-

lization problem of a stochastic linear sampled-data system with mean sampling rate λ > 0 under Poisson

distribution. Clearly, the objectives in Problem 1 are met if the equilibrium point x̃ = 0 in (23) is MES.

Before we end this section, let us redefine the problem statement we focus on in this paper.

Problem 2. Given the intensity λ > 0 of the Poisson sampling process, design the regulator parameters Q

and W such that the resulting closed-loop system (23) is MES.

4. Main Results

In this section, we will derive the stability conditions to solve Problem 2 for the closed-loop system (23)

which is deterministic except for jumps occurring at random sampling times. According to [22], system

(23) is a PDMP. This fact allows us to adopt the following key result from [17, 16], which is viewed as a

stochastic analog to Lyapunov’s stability theorems for deterministic nonlinear systems. Since the dynamics

of χ̃ in (23) is decoupled from x̃α, we first need to show the MES of the following PDMP.
˙̃χ = Mχ̃ = f(χ̃), t ̸= tk,

χ̃+ = Nχ̃ = g(χ̃), t = tk,

(24)

where N = diag(In, 0p).

Theorem 1. If V : Rn+p → R is a continuous differentiable function such that

E

 ∑
k≤Np

∣∣V (χ̃+)− V (χ̃)
∣∣ < ∞, p ∈ N. (25)

Then, for t ≥ 0 and ∀χ̃(0) = χ̃0 ∈ Rn+p,

E[V (χ̃(t))] = V (χ̃0) + E
[∫ t

0

UV (χ̃(s) ds)

]
, (26)

UV (χ̃) = ∇V ⊤(χ̃)f(χ̃) + λ (V (g(χ̃)− V (χ̃)) , (27)

where ∇V (χ̃) is the gradient of V (χ̃).

Next, we derive the sufficient conditions for MES of (24) from Theorem 1, which leads to a computa-

tionally tractable design of regulator parameters Q and W .

Lemma 1. Given the Poisson sampling rate λ > 0, the trajectories of (24) are MES with the decay rate

γ, if Q = P−1
1 Q̄, W = P−1

2 R̄ − H2Q where P1 ∈ Rn > 0, P2 ∈ Rp > 0, Q̄ ∈ Rn×p, R̄ ∈ Rp×p, γ > 0 are

solutions to He (P1A−Q̄H2)+γP1 −A⊤H⊤
2 P2+H⊤

2 R̄
⊤−Q̄

• He (R̄)+(γ −λ)P2

≤0. (28)
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Proof. From the PDMP of the trajectories χ̃ in (24), for any t ≥ 0 we obtain

χ̃(t) =eM(t−tNt )NeM(tNt−tNt−1)· · ·NeM(t2−t1)NeMt1 χ̃0,

∥χ̃(t)∥ ≤ ec1t∥χ̃0∥, c1 = ∥M∥ ≥ 0, ∥N∥ = 1. (29)

Therefore, for any k ≥ 1, ∥χ̃(t+k )∥ ≤ ∥χ̃(tk)∥ ≤ ec1tk∥χ̃0∥. Let us first consider a time-varying energy

function V(χ̃, t) = eγtχ̃⊤Pχ̃ with P = diag(P1, P2) ∈ Rn+p > 0. Then, for any χ̃0 ∈ Rn+p, we have

E

 ∑
k≤Np

∣∣V(χ̃+, t+k )−V(χ̃, tk)
∣∣ = E

 ∑
k≤Np

eγtk
∣∣χ̃⊤(t+k )Pχ̃(t+k )− χ̃⊤(tk)Pχ̃(tk)

∣∣
≤ 2∥P∥E

 ∑
k≤Np

eγtk∥χ̃(tk)∥2
 ≤ c2E

 ∑
k≤Np

e(2c1+γ)tk

 ≤ c2Npe
(2c1+γ)p < ∞, (30)

where c2 = 2∥P∥∥χ̃0∥2. Then, according to Theorem 1, we move on to evaluate (26). By differentiating

V(χ̃, t) along the trajectories of the flow-map in (24) and adding the scaled difference of energy due to the

jumps as in (27), UV(χ̃, t) = χ̃⊤Mχ̃ yields:

M =

 He (P1(A−QH2)) + γP1 −A⊤H⊤
2 P2 + H⊤

2 R
⊤P2 − P1Q

• He (P2Q) + (γ −λ)P2

 ,

which after the substitution of P1Q = Q̄ and P2R = R̄ reduces to M ≤ 0 by (28). Therefore, UV(χ̃, t) ≤ 0

and consequently from (26), we obtain

E [V(χ̃, t)] ≤ V(χ̃0) =⇒ eγtE
[
χ̃⊤Pχ̃

]
≤ χ̃⊤

0 Pχ̃0, (31)

or equivalently

E
[
∥χ̃(t)∥2

]
≤ λmax(P )

λmin(P )
e−γt∥χ̃0∥2,∀χ̃0 ∈ Rn+p. (32)

This concludes the proof. ■

Since the matrix Ac in (23) is Hurwitz, by using the MES property of the trajectories χ̃ in (25), the

origin of the continuous system dynamics concerning the state variable x̃α in (23) can be shown to be MES

as well. This fact is illustrated next. Let us rewrite the closed-loop system with state variable x̃α from (23)

as

˙̃xα = Acx̃α −BcHχ̃, (33)

where λmax(Ac) < 0 and ∥eAct∥ ≤ c2e
−βt, for c2, β > 0 by Property 2. Furthermore, to achieve a satisfactory

convergence rate β > 0, the stabilizer parameters in (12) can be appropriately chosen, as discussed above.

By using these facts along with Young’s inequality and Jensen’s inequality for integrals [23], from (33) we

then obtain for any t ≥ 0

E
[
∥x̃α∥2

]
≤ 2∥eAct∥2∥x̃α0∥2 + 2t∥BcH∥ × E

[∫ t

0

∥eAc(t−s)∥2∥χ̃(s)∥2 ds

]
,
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≤c3e
−2βt∥x̃α(0)∥2+c4t

∫ t

0

e−2β(t−s)E
[
∥χ̃(s)∥2

]
ds, (34)

where c3 = 2c22, c4 = c3∥BcH∥. Next, the MES of (25) and the scalar identity te−γt ≤ 2

e
e−(γt/2) yields

E
[
∥x̃α∥2

]
≤ c3e

−2βt∥x̃α(0)∥2 + c5e
−γt/2∥χ̃(0)∥2, (35)

where c5 =
2c4λmax(P )

λmin(P )(2β − γ)e
. Using ∥x̃∥2 ≤ ∥x̃α∥2 + ∥χ̃∥2 and the results in (32), (35), we finally obtain

E
[
∥x̃∥2

]
≤ ce−γ0t∥x̃0∥2 (36)

where c = max

(
c3, c5+

λmax(P )

λmin(P )

)
, γ0 = min

(
2β,

γ

2

)
. Thus the origin of the closed-loop system is MES and

Problem 2 is solved. As a consequence,

(E [∥e(t)∥])2 ≤ E[∥e∥2] ≤ ∥H2∥E
[
∥x̃α∥2

]
≤ ∥H2∥E

[
∥x̃∥2

]
≤ c∥H2∥e−γ0t∥x̃0∥2, (37)

or equivalently E [∥e(t)∥] ≤
√
c∥H2∥e−(γ0/2)t∥x̃0∥ and hence limt→∞ E[e(t)] = 0 for all x̃0 ∈ R2n+p.

Remark 2. The conditions in (28) is not directly LMI because of the nonlinear terms γP1 and γP2. How-
ever, for a fixed value of γ, the conditions in (28) are LMIs and the maximum value of the decay rate γ for
which (28) holds is computed through a simple line search. Furthermore, given a desired choice of decay
rate (γ > 0), we can even compute the maximum Poisson sampling rate λ for which the closed-loop system
(24) is MES by solving the following optimization problem

max λ
P1,P2,Q̄,R̄,γ

subject to (28).

5. Illustrative Examples

To illustrate the effectiveness of the post-processing internal model architecture in bestowing mean

asymptotic convergence of the regulation error, let us now consider two numerical examples.

Example 1: In this example, we consider a tracking problem where a mono-frequency harmonic oscillator’s

states are to be tracked by an unstable second-order system despite disturbances. This example mimics the

position-tracking problem of a networked servomotor under sporadically available measurements. Let us

take the plant (1) and exosystem state matrices (2) of the form

Ap =

−2 1

0 0.8

 , Bp =

0
1

 , Ep=

1 0

0 0

 , Cp =
[
0.1 0

]
,

Fp =
[
0 2

]
, S =

 0 1

−1 0

 , σ(S) = ± 1i.

(38)

In this example, the plant is the servomotor model with the states xp = col (xpos, xvel), where xpos is the

position and xvel) is the velocity of the motor. The objective is to make the servomotor position xpos track

10Fpw.
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Figure 2: yp tracks the exosystem measurement yw. The sampled measurements available from the motor are marked in green
while the non-available part of the measurements is marked with dashed lines

As shown in Figure 2, the output of the motor is available only intermittently and the inter-sampling

intervals between consecutive measurements yp are randomly picked from an exponential distribution with

an average sampling rate λ = 2. The inter-sampling intervals, as evident from Figure 2, can be as high as

2.67 seconds.

To achieve output regulation, we design a continuous-time stabilizer satisfying (12) with the stabilizer

matrices given as follows

Aζ =


−2 1 14.98 0

−5.85 −2.8 37.94 16.5

−0.5 0 −3.6 1

−0.4 0 −2.24 0

 , Bζ =


−14.98

−33.44

3.6

1.24

 , Cζ =


−5.85

−3.6

4.5

16.5



⊤

, Dζ = 0, (39)

which makes the closed-loop system matrix Ac in (16) Hurwitz with decay rate β = 0.1. It is easy to verify

that the Assumptions 1, 2 are satisfied. Then, according to [1], we select 1- copy internal model of the

exosystem (11) as

G1 =

 0 1

−1 0

 , G2 =

−5

−4

 . (40)

From (28), the decay rate and the hybrid observer parameters are found to be

γ = 0.1, W = −116.008, Q =
[
Q1 Q2 Q3

]⊤
, Q1 =

[
1163.51 3374.21 132.36

]
,

Q2 =
[
578.15 100.99 154.48

]
, Q3 =

[
120.87 170.665

]
.

(41)

Numerical solutions to LMIs are obtained using YALMIP toolbox [24] with SDPT3 solver [25] in Matlab©.

With these regulator parameters, the closed-loop system matrix (36) is MES at the origin and the regulated

13



(a) ep for average sampling rate λ = 2. (b) λ(γ)

Figure 3: Multiple numerical simulations showing the convergence of regulated output ep for λ = 2, and the variation of the
estimation decay rate γ with λ and vice -versa

output also asymptotically converges to zero as shown in Figure 3a for different sampling sequences with

average sampling rate λ = 2. The decay rate of convergence γ for êp → ep by the hybrid observer O in

(10) is 0.1. However, to obtain an even faster convergence (higher γ) and smaller settling time, a frequent

measure of yp is required. This is evident from Figure 3b where a larger decay rate requirement on the

performance measure can be attained by a proportional increment on the sampling rate λ. To yield a decay

rate γ ≥ 0.1, the corresponding mean sampling rate to be selected is λ ≥ 2. Thus the objectives of the

position synchronization problem of a networked servomotor are achieved under intermittent measurements

with stochastic inter-sampling intervals.

Example 2: Next, we consider an application from a hydroelectric power plant where a surge tank is

required to maintain a desired water level by the appropriate control of flow through the penstock, as shown

in Figure 4. The relationship between the water level rise in the surge tank ∆z and the flow rate in front of

the turbine ∆q is given in [26] by a second-order transfer function model

∆z

∆q
=

k(s+ α1)

s2 + α2s+ α3
. (42)

By considering k = 0.5, α1 = 0.2, α2 = −0.8, α3 = −0.5, and assuming a constant reference signal to be

tracked, the plant model (1) and exosystem parameters (2) are as follows

Ap =

 0 1

0.5 0.8

 , Bp =

0
1

 , Ep=

1 0

0 0

 , Cp =
[
0.1 0.5

]
,

Fp =
[
0 2

]
, S =

0 1

0 0

 , σ(S) = {0, 0}.

(43)
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Figure 4: An abstract representation of hydroelectric power plant with reservoir, penstock, and turbine [27]

The output of the plant, which in this case is the water-level rise, is available sporadically with a mean sam-

pling rate λ = 4.5. Despite the sporadic measurements, to achieve tracking in this case with a convergence

rate γ = 0.1, the regulator parameters are determined as follows

Q =
[
67.41 104.11 191.66 73.36 −4.05 55.95 −41.84 0.3543

]⊤
,

W = −2998.8, G1 = S, G2 =
[
2 −4

]⊤
,

Aζ =


0 1 25.42 0

−37 −5.8 32.31 −8.87

0.2 1 −6.6 1

−0.4 −2 −52.43 0

 , Bζ =


−25.42

−24.81

6.6

52.43

 , Cζ =


−37.5

−6.6

2.5

−8.87



⊤

, Dζ = 5.

(44)

With these regulator parameters, the overall closed-loop system is MES at the origin and the regulated

output asymptotically converges to zero. This can be seen from Figure 5 where the water-level rise in the

surge tank eventually reaches the desired height with the prescribed rate of convergence. Therefore, our

proposed approach to designing the regulator successfully renders MES of the overall closed-loop system

even under sporadically sampled measurement streams.

6. Conclusions

In this paper, we have extended our previous results on aperiodically sampled ORP with bounded inter-

sampling intervals to the case of stochastically sampled measurement streams with possibly unbounded

support. With the use of a post-processing architecture consisting of a hybrid observer, internal model and

a stabilizer, we achieve MES of the closed-loop system and mean asymptotic convergence of the regulated

error. The internal model converts the original problem into a hybrid stabilization problem. Using a
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Figure 5: Water level rise in surge tank ∆z → ∆zref

stochastic analog of Lyapunov’s stability theorem, we offer sufficient LMI conditions for MES, which then

leads to a numerically tractable regulator design.

Unlike our previous results, the proposed regulator is no longer dependent on the bounds of inter-sampling

intervals. But the knowledge of average sampling rate is sufficient for this ORP problem to be solved under

a Poisson sampling process. Building upon this result, our ongoing work focuses on solving cooperative

ORP of multi-agent systems subject to sporadic sampling of transmitted information between the agents.
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